JPH06346389A - Method for deinking and apparatus therefor - Google Patents

Method for deinking and apparatus therefor

Info

Publication number
JPH06346389A
JPH06346389A JP15461093A JP15461093A JPH06346389A JP H06346389 A JPH06346389 A JP H06346389A JP 15461093 A JP15461093 A JP 15461093A JP 15461093 A JP15461093 A JP 15461093A JP H06346389 A JPH06346389 A JP H06346389A
Authority
JP
Japan
Prior art keywords
bubbles
air
pressure
deinking
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15461093A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzumura
鈴村  洋
Kenzo Kato
賢造 加藤
Hiroto Wakatoshi
弘人 若年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15461093A priority Critical patent/JPH06346389A/en
Publication of JPH06346389A publication Critical patent/JPH06346389A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/64Paper recycling

Landscapes

  • Paper (AREA)

Abstract

PURPOSE:To provide a method for deinking in which the separation of conventionally inseparable fine ink particles can be carried out and an apparatus therefor. CONSTITUTION:Air 1 is injected into a pulp stock liquid 2 containing recovered waste paper under pressure and the pressure of the injected air is held to move the pulp stock liquid in a pipe 7. Thereby, the injected air 1 is dissolved in the stock liquid 2 and subsequently passed through an enlarged and sharply constricted flow passage 5 to produce small-diameter bubbles, which are then fed to a centrifugal separator 8 continuous thereto to separate and float the bubbles. A reject 3 containing a coalescent material of the bubbles and ink aggregated near the central part is separated from a deinked accept 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は脱インキ方法及び装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deinking method and apparatus.

【0002】[0002]

【従来の技術】従来の脱インキ方法として、PDM(加
圧型脱インキモジュール)について説明すると、図6に
示すように、ケーシング6の円周方向に設けられた複数
の空気注入部1から圧縮空気を吹き込んで、ドーナツ状
の空気室を形成させると共に、供給空気の一部を加圧下
で原料2中に溶解させると同時に、同空気室に対する原
料流の機械的な剪断作用により気泡を発生させる。図5
は従来のPDNの1部切截全体図を示し、エアを溶解さ
せるエアレーションゾーンAに続いて、ミキシングゾー
ンBと分離ゾーンCが形成されており、ミキシングゾー
ンBでは、図7に示すように数段の拡大急縮流路5が形
成されている。
2. Description of the Related Art A PDM (pressurized deinking module) will be described as a conventional deinking method. As shown in FIG. 6, compressed air is supplied from a plurality of air injecting portions 1 provided in a circumferential direction of a casing 6. Is blown in to form a donut-shaped air chamber, and at the same time, a part of the supply air is dissolved in the raw material 2 under pressure, and at the same time, bubbles are generated by the mechanical shearing action of the raw material flow against the air chamber. Figure 5
Shows a partial cutaway view of a conventional PDN, in which a mixing zone B and a separation zone C are formed following an aeration zone A for melting air. In the mixing zone B, as shown in FIG. A stepwise expansion / contraction channel 5 is formed.

【0003】さて図7における拡大流路での圧力損失に
よる圧力低下作用により、原料中の溶解空気が気泡とな
って疎水性のインキ粒子の表面上に析出する。即ち、数
段の拡大急縮流路5での加減速流れと、マイクロタービ
ュレンスにより、微細気泡を含む幅広いサイズ分布の気
泡とインキ粒子の衝突と付着が、高度に達成される。次
に分離ゾーンCでは、インキ粒子を付着した気泡を気液
界面に向けて上昇させ(Dの範囲)て、液面上にインキ
を含有した泡を形成させる。この時分離ゾーンCで原料
のフローパターンを制御して適度な乱流を維持すること
により、繊維の泡への混入を抑制し、繊維の歩留りを向
上させる。次に界面上のフロスは、リジェクト3として
排出され、他はアクセプト4として次の段のPDM装置
に導入される。なお、従来の場合、エアレーションゾー
ンの滞留時間は 0.1秒以下である。
By the pressure lowering action due to the pressure loss in the enlarged flow passage in FIG. 7, the dissolved air in the raw material becomes bubbles and deposits on the surface of the hydrophobic ink particles. That is, due to the acceleration / deceleration flow in the several stages of expansion / contraction channels 5 and the microturbulence, the collision and adhesion of the ink particles and the bubbles having a wide size distribution including fine bubbles are highly achieved. Next, in the separation zone C, bubbles containing ink particles are raised toward the gas-liquid interface (range D) to form bubbles containing ink on the liquid surface. At this time, by controlling the flow pattern of the raw material in the separation zone C and maintaining an appropriate turbulent flow, the mixing of fibers into bubbles is suppressed, and the yield of fibers is improved. Next, the floss on the interface is discharged as reject 3 and the other is accepted as accept 4 and introduced into the PDM device in the next stage. In the conventional case, the residence time in the aeration zone is 0.1 second or less.

【0004】[0004]

【発明が解決しようとする課題】近年回収古紙の上質紙
への再利用を目指すことが盛んになり、白色度を従来以
上に向上させることが望まれている。このため脱インキ
装置において、特に10μm以下の微細なインキ粒子を
除去する必要が生じている。浮選機にて微細なインキ粒
子を除去するためには、インキ粒子の気泡への付着のチ
ャンスを増大させることが先ず必要であり、空気吹込量
の増大、滞留時間の延長、気泡の微細化などの対策がと
られている。また微細なインキを除去するためには、細
かい泡を作ることが必要であることは従来より知られて
おり、例えばx(μm)の粒子径のインキを取るために
は、5×x(μm)以下の直径の気泡を発生させること
が好ましい。しかし小気泡は浮上速度が小さく、分離性
が余りよくない。本発明は浮上分離よりも強力な遠心力
を利用することにより、分離性に優れた脱インキ方法及
び装置を提供せんとするものである。
In recent years, it has become more and more popular to aim to reuse recovered recovered paper as high-quality paper, and it is desired to improve the whiteness more than ever before. Therefore, it is necessary to remove fine ink particles of 10 μm or less in the deinking device. In order to remove fine ink particles with a flotation machine, it is first necessary to increase the chances of ink particles adhering to the bubbles, increasing the amount of air blown in, extending the residence time, and making the bubbles smaller. Such measures are taken. Further, it has been known that it is necessary to form fine bubbles in order to remove fine ink. For example, in order to remove ink having a particle size of x (μm), 5 × x (μm ) It is preferable to generate bubbles having the following diameters. However, small bubbles have a low floating speed, and their separability is not very good. The present invention intends to provide a deinking method and apparatus excellent in separability by utilizing a centrifugal force stronger than the floating separation.

【0005】[0005]

【課題を解決するための手段】このため本発明は、回収
古紙を含むパルプ原料液に、1〜10kg/cm2Gの加圧力
で空気を注入し、1〜4秒間保持溶解した後ミキシング
ゾーンにて気泡を発生させ、次いで同気泡を遠心分離す
るようにしてなるもので、これを課題解決のための手段
とするものである。また本発明は、回収古紙を含むパル
プ原料液に空気を加圧注入する手段と、同注入空気の圧
力を保持しつつ前記原料液に注入した空気を溶解させる
滞留ゾーンと、同滞留ゾーンに続き気泡を発生させるミ
キシングゾーンと、同ミキシングゾーンで発生した気泡
を分離浮上させる遠心分離ゾーンを設けてなるもので、
これを課題解決のための手段とするものである。
Therefore, according to the present invention, air is injected into a pulp raw material liquid containing recovered waste paper at a pressure of 1 to 10 kg / cm 2 G, and the mixture is held and dissolved for 1 to 4 seconds and then mixed in a mixing zone. To generate bubbles and then to centrifuge the bubbles, which is a means for solving the problem. The present invention further comprises means for pressurizing and injecting air into the pulp raw material liquid containing recovered waste paper, a retention zone for dissolving the air injected into the raw material liquid while maintaining the pressure of the injection air, and a continuation of the retention zone. A mixing zone for generating bubbles and a centrifugal zone for separating and floating bubbles generated in the mixing zone are provided.
This is a means for solving the problem.

【0006】[0006]

【作用】小粒径のインキを除去するには、より多くの小
径の泡を必要とする。小粒径の泡を発生させるには、加
圧溶解が最もよく使用される。また分離性について、重
力分離では小径の気泡は極めて浮上しにくいので、本発
明では遠心力を利用して気泡を集合化させることによ
り、細かいインキ粒子を中心に除去性の向上を図ること
ができる。
[Function] In order to remove the ink having a small particle diameter, more bubbles having a smaller diameter are required. Pressure dissolution is most often used to generate small particle size bubbles. Regarding the separability, since bubbles of small diameter are extremely difficult to float by gravity separation, the present invention can improve the removability centering on fine ink particles by assembling the bubbles by utilizing centrifugal force. .

【0007】[0007]

【実施例】以下本発明を図面の実施例について説明す
る。先ず小粒径(10μm以下)のインキを除去するた
めには、より多くの小径の泡を必要とする。小粒径の泡
を発生させるには、様々な方法が考えられるが、加圧溶
解が現実には最もよく使用される方法の1つである。即
ち、加圧下で飽和溶解量の空気を溶かし、圧力の低い領
域で小径の気泡を発生させる。本発明者らが直管を用い
て空気の溶解量を調べた所、滞留時間に最適値があるこ
とが分かった。即ち、溶解するのには時間が必要である
が、余り時間が長くなると、直管内の圧力損失のために
絶対圧が下がって、溶解空気量がヘンリーの法則に従っ
て低下する。また分離性については、重力(浮上)分離
では、小径の気泡は極めて浮上し難い。そこで遠心力を
利用して、気泡を集合化させるようにして分離する。但
し、遠心力もかけすぎると、一度合体したインキと気泡
が分離される可能性があるため、対象とする古紙原料に
応じて適当な遠心力を選ぶ必要がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments of the drawings. First, in order to remove the ink having a small particle size (10 μm or less), more bubbles having a smaller diameter are required. Although various methods can be considered for generating bubbles having a small particle size, pressure dissolution is one of the most commonly used methods in reality. That is, the saturated dissolved amount of air is melted under pressure, and small-diameter bubbles are generated in the low pressure region. When the present inventors investigated the amount of dissolved air using a straight pipe, it was found that the residence time had an optimum value. That is, it takes time to melt, but if the time is too long, the absolute pressure decreases due to the pressure loss in the straight pipe, and the amount of dissolved air decreases according to Henry's law. Regarding the separability, bubbles of small diameter are extremely difficult to float by gravity (floating) separation. Therefore, the centrifugal force is used to separate the bubbles so as to aggregate them. However, if too much centrifugal force is applied, the ink and the air bubbles that have once been combined may be separated, so it is necessary to select an appropriate centrifugal force according to the target waste paper material.

【0008】図1に本発明のフロー図を示す。先ず円管
を流れるパルプ原料2に、空気を図6と同様に注入し
た。即ち、加圧約2kg/cm2Gの下で空気を注入した。パ
ルプ原料2は2秒程度配管7を通って溶解し、更に気泡
とインキを図7と同様な拡大急縮流路5で混合させ、次
いで遠心式分離器8で気体を分離し、中心部付近に集合
した泡とインキの合体物を含むリジェクト3と脱インキ
されたアクセプト4に分離する。また微細気泡の発生の
方法は、次の通りである。即ち、気泡の吹き込み方は従
来と同様であるが、溶解ゾーンを設け、ヘンリーの法則
に従って溶解した空気をミキシングゾーンで析出させる
ものである。なお、気泡分離法としては、重力分離法の
代わりに遠心分離法を使用するものである。
FIG. 1 shows a flow chart of the present invention. First, air was injected into the pulp raw material 2 flowing through the circular tube in the same manner as in FIG. That is, air was injected under a pressure of about 2 kg / cm 2 G. The pulp raw material 2 is melted through the pipe 7 for about 2 seconds, and the air bubbles and the ink are mixed in the expansion and contraction flow path 5 similar to that shown in FIG. 7, and then the centrifugal separator 8 separates the gas, near the center part. It is separated into a reject 3 containing a combined product of bubbles and ink and a deinked accept 4. The method of generating fine bubbles is as follows. That is, although the method of blowing bubbles is the same as the conventional method, a dissolving zone is provided and dissolved air is deposited in the mixing zone according to Henry's law. As the bubble separation method, a centrifugal separation method is used instead of the gravity separation method.

【0009】従来例の場合は浮上分離であるため、下記
のストークスの式によって浮上速度が決まるが、泡径が
小さくなるにつれて、浮上速度は極めて小さくなる。
In the case of the conventional example, since the levitation is separated, the levitation speed is determined by the following Stokes' equation, but the levitation speed becomes extremely small as the bubble diameter becomes smaller.

【数1】 VH =g・d2l −ρP ) /18μ ‥‥‥ (1) ここで d:泡径(m) g:重力加速度(=9.8m/s2) VH : 浮上速度(m/s) μ:粘度 (kg/m・sec)[Formula 1] V H = g · d 2l −ρ P ) / 18μ ‥‥‥‥ (1) where d: bubble diameter (m) g: gravitational acceleration (= 9.8 m / s 2 ) V H : Ascent rate (m / s) μ: Viscosity (kg / msec)

【0010】例えば粘度が10-3kg/m・sec(=1センチ
ポイズ)の場合、50μmの泡の浮上速度は1.36mm/sec
であって、極めて小さく、それ以下の泡径では更に浮上
速度は小さくなる。一方本発明の遠心分離法は、分離速
度が以下のようになる。
For example, when the viscosity is 10 −3 kg / m · sec (= 1 centipoise), the floating speed of bubbles of 50 μm is 1.36 mm / sec.
However, when the bubble diameter is extremely small, the floating speed becomes smaller. On the other hand, in the centrifugal separation method of the present invention, the separation speed is as follows.

【数2】 Vc =(ρl −ρP ) d2 ・ w2 r/18μ ‥‥‥ (2) =VR 2 /g・r VH ここで w:角速度(rad/sec) r:回転半径(m) VR :回転速度(m/sec) ρl , ρP :液体及び気体の密度 (kg/m3)[Number 2] Vc = (ρ l -ρ P) d 2 · w 2 r / 18μ ‥‥‥ (2) = V R 2 / g · r V H here w: angular velocity (rad / sec) r: Rotation radius (m) V R: speed (m / sec) ρ l, ρ P: density of the liquid and the gas (kg / m 3)

【0011】仮に (1)式の浮上分離の場合、流体の水平
方向の速度をVc =0.061m/secとし、浮上高さH= 0.3
14m、浮上所要距離を求めると、粒子径と浮上所要距離
の関係は表1のようになった。
In the case of levitation separation of equation (1), the horizontal velocity of the fluid is Vc = 0.061 m / sec, and the levitation height H = 0.3.
When the required flying distance was found to be 14 m, the relationship between the particle diameter and the required flying distance was as shown in Table 1.

【表1】 [Table 1]

【0012】表1から浮上所要距離を1mとすると、限
界の浮上粒子径は188μmとなる。なお、浮上所要距
離は、図5のD方向の距離を云う。ところが同一の物性
で、遠心分離法を適用し、r= 0.2m、VR =3m/s と
すると、50μmの粒子径で、
From Table 1, assuming that the required flying distance is 1 m, the limit floating particle diameter is 188 μm. The required flying distance is the distance in the D direction of FIG. However, when the centrifugal separation method is applied with the same physical properties and r = 0.2 m and V R = 3 m / s, a particle diameter of 50 μm

【数3】Vc =32 /9.8 ×0.2 ×1.36=6.25mm/sec 0.2/6.25×10-3≦L/0.061(m/sec) L=1.95mとなり、この長さだけあれば、50μm以上
の泡径まで除去可能となる。
[Equation 3] Vc = 3 2 /9.8 × 0.2 × 1.36 = 6.25mm / sec 0.2 / 6.25 × 10 -3 ≦ L / 0.061 (m / sec) L = 1.95m, and if this length is 50μm or more It is possible to remove up to the bubble size.

【0013】次に円管を用いて測定した液流れ方向の滞
留時間と、溶存空気量の関係を図2に示す。これより滞
留時間が2秒程度で、溶存空気量がピークとなることが
分かる。この場合は約2〜3秒程度が実用的と考える。
なお、図2で示す破線は、2.0 kg/cm2G、18℃での飽
和空気量を示す。また圧力が1.0 kg/cm2Gの場合は、滞
留時間3〜4秒がピークとなり、圧力が10.0kg/cm2Gの
場合は、1〜2.5 秒となるので、全体を含めて1〜4秒
が下記に示す圧力1〜10kg/cm2Gの範囲で実用的と考
える。なお、遠心力の範囲としては、 (2)式のVc /V
H =VR 2 /grで表わすと、3≦VR 2 /gr≦20
が実験的に好ましい。この範囲はVR 2 /grを3以上
に取らないと、浮上分離式に比較して装置をコンパクト
にできないためであり、20以上とすると一旦泡と合体
したインキが遠心力により分離されるためである。な
お、表1の浮上所要距離とは、円管の底部に泡が存在し
たと仮定して、液面に浮上するのに必要な距離(円管の
流れ方向の長さ)をストークスの式により計算したもの
である。
FIG. 2 shows the relationship between the residence time in the liquid flow direction measured using a circular tube and the amount of dissolved air. From this, it can be seen that the amount of dissolved air reaches a peak when the residence time is about 2 seconds. In this case, it is considered that about 2 to 3 seconds is practical.
The broken line shown in FIG. 2 indicates the saturated air amount at 18 ° C. at 2.0 kg / cm 2 G. In addition, when the pressure is 1.0 kg / cm 2 G, the residence time peaks at 3 to 4 seconds, and when the pressure is 10.0 kg / cm 2 G, it becomes 1 to 2.5 seconds. It is considered to be practical within a pressure range of 1 to 10 kg / cm 2 G per second as shown below. The range of centrifugal force is as follows: Vc / V in equation (2)
When expressed by H = V R 2 / gr, 3 ≦ V R 2 / gr ≦ 20
Is experimentally preferable. This range is because if V R 2 / gr is not set to 3 or more, the apparatus cannot be made compact as compared with the floating separation type, and if it is 20 or more, the ink once combined with the bubbles is separated by centrifugal force. Is. Note that the required floating distance in Table 1 is the distance (length in the flow direction of the circular pipe) required to float to the liquid surface, calculated based on the Stokes equation, assuming that bubbles were present at the bottom of the circular pipe. It is calculated.

【0014】一方圧力の限定範囲は、1kg/cm2G〜10
kg/cm2Gである。また常圧での空気溶解量をS、圧力を
Pg(kg/cm2G) とすると、その圧力での最大の空気溶解
量は、(Pg +1)×Sとなる。故にPg を余り小さく
すると、空気溶解量が小さくなりすぎるため、常圧の2
倍以上、即ち、Pg =1kg/cm2G以上とするのが好まし
い。また圧力が高ければ高い程、原理的には小さい泡を
多数発生させるが、余り多すぎても脱インキへの効果が
上がらなくなるため、実用上は10kg/cm2G以下であ
る。
On the other hand, the limited range of pressure is 1 kg / cm 2 G to 10
It is kg / cm 2 G. If the amount of air dissolved at normal pressure is S and the pressure is Pg (kg / cm 2 G), the maximum amount of air dissolved at that pressure is (Pg + 1) × S. Therefore, if Pg is made too small, the amount of air dissolved will become too small.
It is preferable that it is more than double, that is, Pg = 1 kg / cm 2 G or more. Further, the higher the pressure is, the more small bubbles are generated in principle, but the effect on deinking will not be enhanced even if it is too much, so that it is practically 10 kg / cm 2 G or less.

【0015】次に本発明の実施例における第1の具体例
を説明する。同一の原料(新聞古紙)、溶液(水800
リットルに対して脱墨剤40g、水酸化ナトリウム84.2
g、珪酸ソーダ600g、過酸化水素229g)で処理
し、これを濃度1%になるように希釈したものを用い
た。処理液量は285リットル/min 、空気液比=20
%、入力圧力=2kgf/cm2の場合、PDMを6段直列に
つないで最終段で測定した脱インキ率を図3のハッチン
グの部分に示す。本発明はハッチングなしの部分であ
る。また脱インキ率はJIS法に従って手抄紙により濾
過し、その紙を粒子アナライザにより測定した値を用い
た(JIS−TAPPI 紙パルプ試験方法 No.39-8
2)。本発明は前記従来法に対し空気溶解時間を2秒と
り、直径40cm、長さ2mの円管に回転速度3m/sec の
速度を与えるようにした。その結果本発明の方が従来法
よりも、特に10μm以下の粒子径インキの除去性能が
高いことが分かった。
Next, a first specific example in the embodiment of the present invention will be described. The same raw material (newspaper waste), solution (water 800
Deinking agent 40 g, sodium hydroxide 84.2 per liter
g, 600 g of sodium silicate, 229 g of hydrogen peroxide) and diluted to a concentration of 1% were used. Treatment liquid volume is 285 liters / min, air-liquid ratio = 20
%, Input pressure = 2 kgf / cm 2 , the deinking rate measured at the final stage by connecting 6 stages of PDM in series is shown in the hatched portion of FIG. The present invention is the part without hatching. The deinking rate was obtained by filtering the paper with handmade paper according to the JIS method and measuring the paper with a particle analyzer (JIS-TAPPI Paper Pulp Test Method No. 39-8).
2). In the present invention, the air dissolution time is set to 2 seconds in comparison with the conventional method, and a circular tube having a diameter of 40 cm and a length of 2 m is given a rotation speed of 3 m / sec. As a result, it was found that the present invention has a higher performance of removing ink having a particle size of 10 μm or less than the conventional method.

【0016】次に本発明を第2の具体例により説明す
る。この第2具体例は第1具体例と同様の条件で、入口
圧力を3kg/cm2Gとしたもので、その時のテスト結果を
図4に示す。図4と図3を比較すると、図4の方が全般
的なインキ除去率は良好になっている。
Next, the present invention will be described with reference to a second specific example. In this second specific example, the inlet pressure was 3 kg / cm 2 G under the same conditions as in the first specific example, and the test results at that time are shown in FIG. Comparing FIG. 4 and FIG. 3, the overall ink removal rate is better in FIG.

【0017】次に図1の装置について説明すると、図1
の空気注入部1は図6の従来の空気注入部1と同一形状
である。図6ではd1 =77φ、d2 =87φ、d3
13φとなっている。ここでd3 の空気注入管1は、d
3 の円周の接線方向に入るようになっている。図1のF
の部は、滞留時間が約2秒となるように配置された内径
77φで、2.2 mの長さのパルプとなっている。また図
1のB部は、図8に示すように円柱を截頭円錐状に削成
した形状となっており、それを4〜6個連結している。
1例としてd4 =68φ、d5 =30φ、d6 =76φ
である。また図1のDは図9と同一構造で、通常の液体
サイクロンと同様の形状であり、入口配管9は分離器8
に対して接線方向に接続されている。1例としてd8
110φ(内径)、d7 =60φ(内径)であり、d9
=110とした。
Next, the apparatus shown in FIG. 1 will be described.
The air injecting section 1 has the same shape as the conventional air injecting section 1 in FIG. In FIG. 6, d 1 = 77φ, d 2 = 87φ, d 3 =
It is 13φ. Here, the air injection pipe 1 of d 3 is d
It is designed to enter the tangential direction of the circumference of 3 . F of FIG.
The section is a pulp having an inner diameter of 77φ and a length of 2.2 m arranged so that the residence time is about 2 seconds. Further, as shown in FIG. 8, the portion B in FIG. 1 has a shape in which a column is cut into a truncated cone shape, and 4 to 6 pieces thereof are connected.
As an example, d 4 = 68φ, d 5 = 30φ, d 6 = 76φ
Is. Further, D of FIG. 1 has the same structure as that of FIG. 9 and has the same shape as a normal liquid cyclone, and the inlet pipe 9 is a separator 8
Are tangentially connected to. As an example, d 8 =
110φ (inner diameter), d 7 = 60φ (inner diameter), and d 9
= 110.

【0018】従来法は図6に示すような空気注入部があ
り、すぐに溶解ゾーンがなくて、図7の拡大急縮流路5
を有するミキシングゾーンがある。なお、この場合の管
径やミキシング部のサイズは、本発明と同様である。ま
た従来法の図5の分離部Dの内径は31.4cmであり、長さ
は約1.0 m/段であるが、6段あるので6mとなる。こ
こで本発明方法と従来方法を比較すると表2のようにな
る。
The conventional method has an air injection part as shown in FIG. 6 and immediately has no melting zone.
There is a mixing zone with. The pipe diameter and the size of the mixing portion in this case are the same as those in the present invention. Further, the inner diameter of the separating portion D in FIG. 5 of the conventional method is 31.4 cm, and the length is about 1.0 m / step, but since there are 6 steps, it becomes 6 m. Table 2 shows a comparison between the method of the present invention and the conventional method.

【表2】 なお、前記第2の具体例は、第1具体例と比較して圧力
を高くし、溶解空気を増やして、微少の泡を多数発生さ
せた時の効果を調べたものである。
[Table 2] In the second specific example, the effect when a large number of minute bubbles are generated by increasing the pressure and increasing the dissolved air in comparison with the first specific example is examined.

【0019】[0019]

【発明の効果】以上詳細に説明した如く本発明では、注
入空気を溶解させる滞留ゾーンを設けることにより、従
来方式に比べて微細径の気泡を多く発生させることがで
き、細かい(10μm以下)インキ粒子の除去性を向上
できる。また本発明は、浮上分離ではなく遠心分離法を
利用するため、微細気泡が分離できない従来法に比較し
て、細かい(10μm以下)インキ粒子を中心に除去性
の向上を図ることができる。
As described above in detail, in the present invention, by providing the retention zone for dissolving the injected air, it is possible to generate a large number of bubbles having a fine diameter as compared with the conventional method, and a fine (10 μm or less) ink. The removability of particles can be improved. In addition, since the present invention utilizes the centrifugal separation method instead of the floating separation method, it is possible to improve the removability centering on fine (10 μm or less) ink particles, as compared with the conventional method in which fine bubbles cannot be separated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る脱インキ装置のフロー図
である。
FIG. 1 is a flow chart of a deinking device according to an embodiment of the present invention.

【図2】本発明の実施例における流れ方向の滞留時間と
溶存空気量との関係を示す線図である。
FIG. 2 is a diagram showing the relationship between the residence time in the flow direction and the amount of dissolved air in the example of the present invention.

【図3】本発明におけるインキ粒子サイズとインキ除去
率との関係の1例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of the relationship between the ink particle size and the ink removal rate in the present invention.

【図4】本発明におけるインキ粒子サイズとインキ除去
率との関係の他の例を示す説明図である。
FIG. 4 is an explanatory diagram showing another example of the relationship between the ink particle size and the ink removal rate in the present invention.

【図5】従来のPDMの全体側面図である。FIG. 5 is an overall side view of a conventional PDM.

【図6】従来のPDMの気体注入部の断面図である。FIG. 6 is a cross-sectional view of a gas injection part of a conventional PDM.

【図7】従来のPDMの混合部流路を示す側断面図であ
る。
FIG. 7 is a side sectional view showing a mixing section flow path of a conventional PDM.

【図8】図7における混合部流路の大径部と小径部寸法
を示す断面図である。
8 is a cross-sectional view showing dimensions of a large diameter portion and a small diameter portion of the mixing section flow passage in FIG.

【図9】図6の装置における分離器の詳細図である。9 is a detailed view of the separator in the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 空気注入部 2 原料 3 リジェクト 4 アクセプト 5 拡大急縮流路 7 溶解のための配管 8 遠心式分離器 9 配管 1 Air injection part 2 Raw material 3 Reject 4 Accept 5 Expanded rapid compression flow path 7 Pipe for dissolution 8 Centrifugal separator 9 Pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回収古紙を含むパルプ原料液に、1〜1
0kg/cm2Gの加圧力で空気を注入し、1〜4秒間保持溶
解した後ミキシングゾーンにて気泡を発生させ、次いで
同気泡を遠心分離することを特徴とする脱インキ方法。
1. The pulp raw material liquid containing recovered waste paper contains 1 to 1
A deinking method comprising injecting air at a pressure of 0 kg / cm 2 G, holding and dissolving for 1 to 4 seconds, generating bubbles in a mixing zone, and then centrifuging the bubbles.
【請求項2】 回収古紙を含むパルプ原料液に空気を加
圧注入する手段と、同注入空気の圧力を保持しつつ前記
原料液に注入した空気を溶解させる滞留ゾーンと、同滞
留ゾーンに続き気泡を発生させるミキシングゾーンと、
同ミキシングゾーンで発生した気泡を分離浮上させる遠
心分離ゾーンを設けたことを特徴とする脱インキ装置。
2. A means for injecting air into a pulp raw material liquid containing recovered waste paper under pressure, a retention zone for dissolving the air infused into the raw material liquid while maintaining the pressure of the injecting air, and a retention zone following the same. A mixing zone that generates bubbles,
A deinking device comprising a centrifugal separation zone for separating and floating bubbles generated in the mixing zone.
JP15461093A 1993-06-02 1993-06-02 Method for deinking and apparatus therefor Withdrawn JPH06346389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15461093A JPH06346389A (en) 1993-06-02 1993-06-02 Method for deinking and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15461093A JPH06346389A (en) 1993-06-02 1993-06-02 Method for deinking and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH06346389A true JPH06346389A (en) 1994-12-20

Family

ID=15587951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15461093A Withdrawn JPH06346389A (en) 1993-06-02 1993-06-02 Method for deinking and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH06346389A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294575A (en) * 2001-03-28 2002-10-09 Ishikawajima Sangyo Kikai Kk Processing equipment for froth
JP2009256808A (en) * 2008-04-11 2009-11-05 Toppan Printing Co Ltd Method for recycling waste printed paper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294575A (en) * 2001-03-28 2002-10-09 Ishikawajima Sangyo Kikai Kk Processing equipment for froth
JP4530574B2 (en) * 2001-03-28 2010-08-25 株式会社Ihi機械システム Floss processing equipment
JP2009256808A (en) * 2008-04-11 2009-11-05 Toppan Printing Co Ltd Method for recycling waste printed paper

Similar Documents

Publication Publication Date Title
US5131980A (en) Hydrocyclone removal of sticky contaminants during paper recycling
EP0473566B1 (en) Gas sparged hydrocyclone
US4186094A (en) Apparatus for eliminating by flotation impurities in the form of solid particles contained in a liquid
US3399770A (en) Method for centrifugal separation of particles from a mixture
FI78744C (en) Method and apparatus for removing ink.
US5069751A (en) Hydrocyclone deinking of paper during recycling
JPS63158143A (en) Froth floating method and device
US2717536A (en) Conditioning paper-making stock
US4309283A (en) Hydrocyclone
US3425545A (en) Method and apparatus for separating fibrous suspensions
JPH11262691A (en) Hydrocyclone and separation method
JPH0718110B2 (en) Purifier for paper pulp
JPH06346389A (en) Method for deinking and apparatus therefor
JPH0748791A (en) Flotation device
JPH0657670A (en) Flotator
US6129212A (en) Flotation process and mixing device
US2931503A (en) Conditioning paper-making stock
GB1570345A (en) Ies in the form of solid particles contained in a liquid process and apparatus for eliminating by flotation impurit
EP0542835A1 (en) Method and apparatus for improving flotation separation
JP2002516933A (en) Method and apparatus for flotation of foreign matter from aqueous fiber material suspension
CA1085317A (en) Centrifugal separator concentrator device and method
US3764006A (en) Cyclonic separator with liquid flow added axially
JPH11514288A (en) Screening equipment
US5916446A (en) Process and apparatus for the separation of solid matter via flotation
JP2000508968A (en) Method and apparatus for separating a heavy fraction of an aqueous slurry from a light fraction by the action of centrifugal force

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905