JPH06345512A - Corrosion protective material - Google Patents

Corrosion protective material

Info

Publication number
JPH06345512A
JPH06345512A JP5157957A JP15795793A JPH06345512A JP H06345512 A JPH06345512 A JP H06345512A JP 5157957 A JP5157957 A JP 5157957A JP 15795793 A JP15795793 A JP 15795793A JP H06345512 A JPH06345512 A JP H06345512A
Authority
JP
Japan
Prior art keywords
repair
concrete
cement
powder
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5157957A
Other languages
Japanese (ja)
Inventor
Toshiya Uchibori
利也 内堀
Tomio Hongo
登美男 本郷
Mitsuo Akutsu
光男 阿久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP5157957A priority Critical patent/JPH06345512A/en
Publication of JPH06345512A publication Critical patent/JPH06345512A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B32/00Artificial stone not provided for in other groups of this subclass
    • C04B32/02Artificial stone not provided for in other groups of this subclass with reinforcements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/34Metals, e.g. ferro-silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/02Elements
    • C04B22/04Metals, e.g. aluminium used as blowing agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/61Corrosion inhibitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To provide the corrosion protective material for prolonging the useful life of a reinforcing steel material in a concrete structure, e.g. iron reinforcing bars in a pier, a bridge girder, a bridge floor or an elevated bridge or a PC steel material in a PC concrete structure. CONSTITUTION:This corrosion protective material contains 60-95wt.% metal powder having the action of a sacrificial anode, e.g. Zn powder, Al powder or Mg powder in Portland cement or polymer cement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、コンクリート構造物
中の補強鋼材、例えば、桟橋、橋桁、橋床、高架橋など
の鉄筋やPCコンクリート構造物のPC鋼材を防食する
ための防食材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reinforced steel material in a concrete structure, for example, an anticorrosive material for corrosion-proofing a reinforcing steel such as a pier, a bridge girder, a bridge floor, an viaduct, or a PC steel material of a PC concrete structure. is there.

【0002】[0002]

【従来の技術】近年、コンクリート構造物中の補強鋼材
が、細骨材に含まれる塩分や海塩粒子の侵入などによっ
て腐食され、コンクリートにクラックが生じたり、鋼材
とコンクリートとの間に浮きが生じたりすることが問題
となっている。かかるコンクリートにクラックが生じた
り、補強鋼材とコンクリートとの間に浮きが生じたりし
た場合、従来は、図10に示されるように、これらクラ
ックまたは浮きが生じた部分のコンクリートを除去し、
その部分に新しいセメントを充填固化させて補修部のコ
ンクリート5を形成し補修していた。
2. Description of the Related Art In recent years, a reinforcing steel material in a concrete structure is corroded due to intrusion of salt or sea salt particles contained in fine aggregate, causing cracks in the concrete or floating between the steel material and the concrete. Occurrence is a problem. When cracks occur in such concrete or floating occurs between the reinforcing steel material and the concrete, conventionally, as shown in FIG. 10, the concrete in the portion where these cracks or floating has occurred is removed,
The portion was filled with new cement and solidified to form the concrete 5 of the repaired portion for repairing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、図10
に示されるような部分的な補修では、非補修部2のコン
クリート3は塩分を含んでおり、一方、補修部1のコン
クリート5は塩分を殆ど含んでいないとことから、塩分
を含有している非補修部2と塩分を殆ど含んでいない補
修部1とが隣接し、非補修部補強鋼材4と補修部補強鋼
材4′との間に電位差が生じるようになる。その結果、
非補修部補強鋼材4がアノード、補修部補強鋼材4′カ
ソードとなるマクロセルを形成し、非補修部補強鋼材4
から補修部補強鋼材4′へ腐食電流iが流れ、特に補修
部補強鋼材4′近傍の非補修部補強鋼材4が著しく腐食
したり、腐食を促進されるという問題があった。また、
補修部1のコンクリート5は、補修当時は塩分を殆ど含
有していないが、塩分等の腐食因子の侵入により、補修
部補強鋼材4′が比較的短期間で腐食するという問題も
あった。
However, as shown in FIG.
In the partial repair as shown in Fig. 1, the concrete 3 of the non-repair part 2 contains salt, while the concrete 5 of the repair part 1 contains almost no salt, and thus contains salt. The non-repair portion 2 and the repair portion 1 containing almost no salt are adjacent to each other, and a potential difference is generated between the non-repair portion reinforcing steel material 4 and the repair portion reinforcing steel material 4 '. as a result,
The non-repair part reinforcement steel 4 forms an anode and the repair part reinforcement steel 4'cathode forms a macrocell, and the non-repair part reinforcement steel 4
There is a problem that the corrosion current i flows from the to the repair portion reinforcing steel material 4 ', and particularly the non-repair portion reinforcing steel material 4 near the repair portion reinforcing steel material 4'is significantly corroded or promoted. Also,
Although the concrete 5 of the repair part 1 contains almost no salt at the time of repair, there is a problem that the repair part reinforcing steel material 4'corrodes in a relatively short period of time due to the intrusion of a corrosion factor such as salt.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは、
上記の問題点を解消すべく、鋭意研究を行った結果、セ
メントに犠牲陽極作用を有する金属粉末を重量比で60
〜95%含有してなる防食材を補修時に用いることによ
って、マクロセル腐食が防止されるとともに補強鋼材を
長期間にわたって防食できるという知見を得たのであ
る。この発明は、かかる知見にもとづいてなされたもの
であって、セメントに犠牲陽極作用を有する金属粉末を
重量比で60〜95%含有してなる防食材に特徴を有す
るものである。
Therefore, the present inventors have
As a result of earnest research to solve the above problems, a metal powder having a sacrificial anode action in the cement was mixed in a weight ratio of 60.
By using an anticorrosive material containing ~ 95% at the time of repair, it was found that macrocell corrosion can be prevented and the reinforcing steel can be protected for a long period of time. The present invention has been made on the basis of such findings, and is characterized by an anticorrosive material containing 60 to 95% by weight of a metal powder having a sacrificial anode action in cement.

【0005】この発明の防食材に使用するセメントは、
いかなるセメントでもよいが、特にJIS R 521
0で規定されるポルトランドセメントが好ましい。また
前記セメントに天然ゴムまたは合成ゴム、合成樹脂ある
いはそのモノマー(単量体)などを用いた水溶性または
親水性のポリマー(エマルジョンまたはラテックスの形
態)を水の代りに添加したポリマーセメントも使用する
ことができる。このポリマーセメントは市販されている
ものでよい。前記犠牲陽極作用を有する金属粉末として
は、Zn粉末、Al粉末、Mg粉末等が用いられるが、
その中でもZn粉末が最も好ましい。なお、防食材に対
する水またはポリマーの配合比としては、セメントがポ
ルトランドセメントの場合は重量比で防食材(セメント
+金属粉末):水=1:0.05〜0.5で、好ましく
は1:0.1〜0.3が良い。セメントがポリマーセメ
ントの場合は水の代りにポリマーを用い、重量比で防食
材(セメント+金属粉末):ポリマー=1:0.05〜
0.5で、好ましくは1:0.1〜0.3が良い。
The cement used for the anticorrosive material of the present invention is
Any cement can be used, especially JIS R 521
Portland cement defined by 0 is preferred. Further, a polymer cement obtained by adding a water-soluble or hydrophilic polymer (in the form of emulsion or latex) using natural rubber or synthetic rubber, synthetic resin or a monomer thereof to the cement instead of water is also used. be able to. The polymer cement may be commercially available. As the metal powder having the sacrificial anode action, Zn powder, Al powder, Mg powder, etc. are used.
Among them, Zn powder is the most preferable. When the cement is Portland cement, the compounding ratio of water or polymer to the anti-food material is a weight ratio of anti-food material (cement + metal powder): water = 1: 0.05 to 0.5, preferably 1: 0.1 to 0.3 is good. When the cement is a polymer cement, a polymer is used instead of water, and the weight ratio of food-proof material (cement + metal powder): polymer = 1: 0.05-
It is 0.5, preferably 1: 0.1 to 0.3.

【0006】これら犠牲陽極作用を有する金属粉末をセ
メントに重量比で60〜95%の割合で含有することに
より、本発明の防食材を得ることができる。前記犠牲陽
極作用を有する金属粉末の含有割合が、重量比で60%
未満であると十分な防食効果を得ることができない。一
方、95%を越えて含有されるとセメント量が少なくな
り、コンクリートや鋼材との付着性が低下するので、好
ましくない。ゆえに、犠牲陽極作用を有する金属粉末の
含有割合は重量比で60〜95%と定めた。
By containing the metal powder having the sacrificial anode action in the cement in a weight ratio of 60 to 95%, the anticorrosive material of the present invention can be obtained. The content ratio of the metal powder having the sacrificial anode function is 60% by weight.
If it is less than this, a sufficient anticorrosion effect cannot be obtained. On the other hand, if the content exceeds 95%, the amount of cement becomes small and the adhesion to concrete and steel materials decreases, which is not preferable. Therefore, the content ratio of the metal powder having a sacrificial anode action is set to 60 to 95% by weight.

【0007】[0007]

【作用】このような犠牲陽極作用を有する金属粉末を含
有してなるこの発明の防食材を補修部に充填するか、補
修部の鋼材表面の一部あるいは全部に塗布することによ
って、前記犠牲陽極作用を有する金属粉末が補修部及び
非補修部の鋼材に対して犠牲陽極として作用して、それ
ぞれの鋼材に防食電流を供給するので、マクロセル腐食
が防止できるとともに前記鋼材に長期間にわたって防食
できるのである。
The sacrificial anode is prepared by filling the anticorrosive material of the present invention containing the metal powder having the sacrificial anode action in the repair portion or by coating the steel material surface of the repair portion partially or entirely. Since the metal powder having the action acts as a sacrificial anode for the steel material in the repaired portion and the non-repaired portion and supplies a corrosion protection current to each steel material, macrocell corrosion can be prevented and the steel material can be protected for a long period of time. is there.

【0008】次に、この発明の防食材の使用方法を図面
に基づいて具体的に説明する。図1、図2および図3
は、この発明の防食材を用いて鉄筋コンクリートの一部
を補修した状態の断面概略図であり、図1、図2および
図3において、1は補修部、2は非補修部、3は非補修
部のコンクリート、4は非補修部補強鋼材、4′は補修
部補強鋼材、5は補修部のコンクリート、6は防食材層
である。図1、図2または図3に示されるような補修部
1は、まず、補修部補強鋼材4′が露出するまでコンク
リートをはつって取り除き、補修部補強鋼材4′が錆び
ている場合には、その全ての錆を取り除くことが好まし
いが、少なくとも防食材層6と接する部分の錆を取り除
けばよい。しかる後、前記防食材層6を図1に示される
ように補修部補強鋼材4′に一部形成してもよく、図2
に示されるように一部充填してもよく、または図3に示
されるように補修部補強鋼材4′が全面被覆されるよう
に充填してもよい。前記防食材層6を上述の如く形成ま
たは充填したのち、補修部のコンクリート5を充填して
補修部1が完成する。かかる補修部1においては、防食
材層6に含まれる金属粉末が補修部補強鋼材4′および
非補修部補強鋼材4に対して共に犠牲陽極として作用
し、各々の補強鋼材4′および4に防食電流Iが供給さ
れ、腐食電流iと相殺されてマクロセルが形成されず防
食することができる。
Next, a method of using the anticorrosive material of the present invention will be specifically described with reference to the drawings. 1, 2 and 3
FIG. 1 is a schematic cross-sectional view of a state in which a part of reinforced concrete is repaired using the anticorrosive material of the present invention. In FIGS. 1, 2, and 3, 1 is a repair part, 2 is a non-repair part, and 3 is a non-repair part. Part concrete, 4 is a non-repair part reinforcing steel, 4'is a repair part reinforcing steel, 5 is a repair part concrete, and 6 is an anticorrosion layer. In the repair section 1 as shown in FIG. 1, FIG. 2 or FIG. 3, first, the concrete is removed by removing the concrete until the repair section reinforcing steel material 4 ′ is exposed, and when the repair section reinforcing steel material 4 ′ is rusted, However, it is preferable to remove all the rust, but it is sufficient to remove at least the part in contact with the anti-food material layer 6. After that, the anti-corrosion material layer 6 may be partially formed on the repaired portion reinforcing steel material 4'as shown in FIG.
2 may be partially filled, or as shown in FIG. 3, the repaired portion reinforcing steel material 4'may be entirely filled. After forming or filling the anti-corrosion material layer 6 as described above, the repair portion 1 is completed by filling the concrete 5 of the repair portion. In the repair part 1, the metal powder contained in the anticorrosion material layer 6 acts as a sacrificial anode on both the repaired portion reinforcing steel member 4 ′ and the non-repaired portion reinforcing steel member 4, and the respective reinforcing steel members 4 ′ and 4 are protected against corrosion. The current I is supplied, and the corrosion current i is offset to prevent the formation of macrocells, thus preventing corrosion.

【0009】かかる補修部1は、図4に示されるよう
に、海水8の上に建設する桟橋7に施すことができ、さ
らに図5に示されるように、高速道路等の高架橋15の
橋脚9に施すことができる。なお、10は車道である。
また、この発明の防食材の別の使用方法として、図6に
示すように、コンクリート3に接続端子板12を適宜な
間隔で埋め込み、次にコンクリート3表面上に防食材層
6を形成し、この形成した防食材層6をリード線13に
より補強鋼材14と電気的に接続し、防食材層6を流電
陽極方式の犠牲陽極材として作用せしめて、補強鋼材1
4を防食することができる。さらに、この防食材層6
は、外部電源方式の電極材として用いることもできる。
The repair section 1 can be applied to a jetty 7 constructed on seawater 8 as shown in FIG. 4, and as shown in FIG. 5, a pier 9 of a viaduct 15 such as an expressway. Can be applied to. In addition, 10 is a roadway.
As another method of using the food protection material of the present invention, as shown in FIG. 6, the connection terminal plates 12 are embedded in the concrete 3 at appropriate intervals, and then the food protection layer 6 is formed on the surface of the concrete 3. The formed anticorrosive material layer 6 is electrically connected to the reinforcing steel material 14 by the lead wire 13, and the anticorrosive material layer 6 is caused to act as a sacrificial anode material of the galvanic anode method to obtain the reinforcing steel material 1.
4 can be anticorrosive. Furthermore, this food protection layer 6
Can also be used as an electrode material for an external power supply system.

【0010】[0010]

【実施例】鉄筋の一部に塗料を塗布して絶縁層を形成し
た直径:2cm、長さ:20cmの寸法を有する黒皮付き鉄
筋、ポルトランドセメント、砂、砂利、並びに水を用意
した。上記ポルトランドセメント、砂、砂利および水を
重量比で、ポルトランドセメント:砂:砂利:水=1:
2:4:0.6となるように配合し、これに塩化物含有
量が1Kg/m3 、5Kg/m3 及び10Kg/ m3 の三種類
の異なる濃度になるようにそれぞれ食塩を混合し、得ら
れたセメントコンクリートを内径:6cm、高さ19cmの
型枠に充填し、さらに上記鉄筋を上記セメントコンクリ
ートの中央に挿入したのちセメントコンクリートを固化
させ、図7に示されるような、鉄筋44の絶縁層11の
一部がコンクリート33から露出している鉄筋コンクリ
ート供試体55を作製した。この鉄筋コンクリート供試
体55を1ヶ月間大気中に放置し、この間、1日1時間
人工海水中に浸漬した。
Example A coating material was applied to a part of the reinforcing bar to form an insulating layer. A black bar reinforcing bar having a diameter of 2 cm and a length of 20 cm, Portland cement, sand, gravel, and water were prepared. By weight ratio of the above Portland cement, sand, gravel and water, Portland cement: sand: gravel: water = 1:
2: 4: 0.6 so that the chloride content is mixed to each of three different concentrations of 1 kg / m 3 , 5 kg / m 3 and 10 kg / m 3. The obtained cement concrete was filled in a formwork having an inner diameter of 6 cm and a height of 19 cm, and the rebar was inserted into the center of the cement concrete, and then the cement concrete was solidified. As shown in FIG. A reinforced concrete specimen 55 having a part of the insulating layer 11 exposed from the concrete 33 was prepared. This reinforced concrete test piece 55 was left in the atmosphere for one month, and during this time, it was immersed in artificial seawater for one hour a day.

【0011】実施例1 上記1ヶ月間大気中に放置した鉄筋コンクリート供試体
55の上半分を補修部とするために割裂し、鉄筋44を
露出せしめた。一方、ポルトランドセメントにZn粉末
を表1〜表3に示される重量比で配合し混合した本発明
防食材1〜24および比較防食材1〜15を用意した。
これら防食材に対する水の配合比は、防食材(セメント
+Zn粉末):水=1:0.1(重量比)の割合で配合
し混合した。そして図8に示されるように、上記割裂し
露出せしめた鉄筋44の全表面に0.1cmの厚さに塗布
し、防食材層6を形成し、この防食材層6の上にさらに
セメント:砂:砂利:水=1:2:4:0.6(重量
比)からなるセメントコンクリートで、元の供試体と同
じ寸法になるように補修し、補修部1および非補修部2
からなる補修体66を作製した。
Example 1 The reinforcing bar 44 was exposed by splitting the upper half of the reinforced concrete specimen 55 that had been left in the atmosphere for the above-mentioned one month to form a repair part. On the other hand, Portland cement was mixed with Zn powder in a weight ratio shown in Tables 1 to 3 to prepare Inventive Inhibitors 1 to 24 and Comparative Inhibitors 1 to 15 prepared.
The compounding ratio of water to these anti-food materials was such that the anti-food materials (cement + Zn powder): water = 1: 0.1 (weight ratio) were mixed and mixed. Then, as shown in FIG. 8, it is applied to the entire surface of the split and exposed rebar 44 to a thickness of 0.1 cm to form an anticorrosion layer 6, and further cement is applied on the anticorrosion layer 6. Cement concrete consisting of sand: gravel: water = 1: 2: 4: 0.6 (weight ratio), repaired to the same size as the original specimen, repaired part 1 and unrepaired part 2
A repair body 66 made of was prepared.

【0012】これら補修部1および非補修部2からなる
補修体66を人工海水を満たした容器(図示せず)内に
設置し、上部には蓋(図示せず)を設け、常に湿気のあ
る環境下に6ヶ月間放置したのち、前記容器から取り出
し、補修体66を再び割裂して鉄筋44の腐食状態を調
べるとともに防食材6と鉄筋との付着状況を目視および
ハンマー連打することにより観察し、さらに非補修部2
の塩化物含有量も測定し、それらの結果を表1〜表3に
示した。なお比較防食材1〜3はZn粉末が含有されて
いないので、この比較防食材1〜3により得られた補修
部は従来法による補修部に相当するものである。
The repairing body 66 consisting of the repairing portion 1 and the non-repairing portion 2 is installed in a container (not shown) filled with artificial seawater, and a lid (not shown) is provided on the upper portion thereof so that the container is always moist. After leaving it in the environment for 6 months, it is taken out of the container, the repair body 66 is split again to check the corrosion state of the reinforcing bar 44, and the adhesion state of the foodstuff 6 and the reinforcing bar is visually and visually struck by hammering. , Further non-repair department 2
Was also measured, and the results are shown in Tables 1 to 3. Since the comparative anti-food materials 1 to 3 do not contain Zn powder, the repair parts obtained from the comparative anti-food materials 1 to 3 correspond to the repair parts by the conventional method.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】実施例2 実施例1で用意した本発明防食材1〜24および比較防
食材1〜15に対し、水の代りにスチレン・ブタジエン
ゴム系ゴムラテックスを主成分としたポリマー(以下ポ
リマーという)を、 防食材(セメント+Zn粉末):ポリマー=1:0.2
5(重量比) となるように配合し混合したものを、図9に示されるよ
うに、割裂し露出せしめた鉄筋44の一部表面に0.3
cmの厚さで塗布し、防食材層6を形成し、この防食材層
6の上にさらに実施例1で使用したセメントコンクリー
トで、元の供試体55と同じ寸法になるように補修し、
補修部1および非補修部2からなる補修体66を作製し
た。これら補修部1および非補修部2からなる補修体6
6を実施例1と同じ環境下に6ヶ月間放置したのち、補
修体66を再び割裂し、鉄筋44の腐食状態を調べると
ともに防食材層6と鉄筋44との付着状況を目視および
ハンマー連打することにより観察し、さらに非補修部2
の塩化物含有量を測定したが、実施例1とほぼ同じ結果
が得られた。
Example 2 A polymer containing styrene-butadiene rubber-based rubber latex as a main component instead of water (hereinafter referred to as a polymer) was used for the anticorrosive materials 1 to 24 of the present invention and the comparative anticorrosive materials 1 to 15 prepared in Example 1. ), Food protection material (cement + Zn powder): polymer = 1: 0.2
As shown in FIG. 9, 0.3 parts of the reinforcing bars 44 which were split and exposed were mixed and mixed so as to be 5 (weight ratio).
It is applied with a thickness of cm to form the anticorrosion layer 6, and the cement concrete used in Example 1 is further repaired on the anticorrosion layer 6 so as to have the same dimensions as the original test piece 55.
A repair body 66 including the repair part 1 and the non-repair part 2 was produced. Repair body 6 consisting of these repair section 1 and non-repair section 2
After leaving 6 in the same environment as in Example 1 for 6 months, the repair body 66 is cleaved again, the corrosion state of the reinforcing bar 44 is examined, and the state of adhesion between the food-proof material layer 6 and the reinforcing bar 44 is visually and hammered repeatedly. By observing, and further repairing part 2
The chloride content of was measured, and almost the same result as in Example 1 was obtained.

【0017】上記実施例1および2によると、(1)Z
n粉末をポルトランドセメントに重量比で60%以上添
加した防食材を塗布すると腐食は生じなくなるが、Zn
粉末が60%未満含有している防食材では防食効果はな
く、Zn粉末含有量が少なくなるに従って腐食量は大き
くなり、特に補修部近傍の非補修部2の鉄筋44は激し
く腐食していること、(2)鉄筋44と防食材層6の付
着性については、Zn粉末含有量が95%を越えると、
付着性が悪くなり、比較的簡単に鉄筋44と防食材層6
とが剥離すること、などがわかった。以上のことから、
この発明の防食材は、Zn粉末を重量比で60〜95%
含有することが好ましく、この範囲のZn粉末を含むこ
とにより十分な防食効果と付着性を有する防食材層を形
成することができることがわかる。
According to Examples 1 and 2 above, (1) Z
Corrosion does not occur when an anti-corrosion material containing 60% by weight or more of n powder added to Portland cement is used.
An anticorrosive material containing less than 60% of powder has no anticorrosion effect, and the amount of corrosion increases as the content of Zn powder decreases. Particularly, the reinforcing bar 44 of the non-repair part 2 near the repair part is severely corroded. (2) Regarding the adhesion between the reinforcing bar 44 and the foodstuff protection layer 6, when the Zn powder content exceeds 95%,
Adhesion becomes poor, and it is relatively easy to rebar 44 and food protection layer 6.
It was found that and peel off. From the above,
The anti-food material of the present invention contains Zn powder in a weight ratio of 60 to 95%.
It is preferable to contain it, and it can be seen that the inclusion of the Zn powder in this range makes it possible to form an anticorrosion material layer having a sufficient anticorrosion effect and adhesiveness.

【0018】[0018]

【発明の効果】この発明の防食材を用いると、コンクリ
ート構造物の部分的補修後に生じる補強鋼材のマクロセ
ル腐食や塩分等の腐食因子の侵入による腐食を防止する
ことができ、コンクリート構造物の耐用年数を延長させ
ることができ、さらに補修時の施工も水やポリマーの量
を調整することにより吹き付けや注入工法を採用するこ
とが可能であり、また、電気防食法における流電陽極方
式での犠牲陽極材、または外部電源方式での電極材とし
て用いることができるなど産業上すぐれた効果を奏する
ものである。
EFFECTS OF THE INVENTION By using the anticorrosive material of the present invention, it is possible to prevent macrocell corrosion of a reinforcing steel material that occurs after a partial repair of a concrete structure or corrosion due to the intrusion of a corrosion factor such as salt, thereby improving the durability of the concrete structure. The number of years can be extended, and it is possible to adopt spraying or pouring method by adjusting the amount of water or polymer for the construction at the time of repair, and sacrifice of galvanic anode method in cathodic protection method. It has excellent industrial effects such that it can be used as an anode material or an electrode material in an external power supply system.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の防食材の使用方法を説明するための
概略説明図である。
FIG. 1 is a schematic explanatory view for explaining a method of using an anticorrosive material of the present invention.

【図2】この発明の防食材の他の使用方法を説明するた
めの概略説明図である。
FIG. 2 is a schematic explanatory view for explaining another method of using the anticorrosive material of the present invention.

【図3】この発明の防食材の他の使用方法を説明するた
めの概略説明図である。
FIG. 3 is a schematic explanatory view for explaining another method of using the anticorrosive material of the present invention.

【図4】この発明の防食材による施工場所を説明するた
めの概略説明図である。
FIG. 4 is a schematic explanatory view for explaining a construction site of the anticorrosive material of the present invention.

【図5】この発明の防食材による他の施工場所を説明す
るための概略説明図である。
FIG. 5 is a schematic explanatory view for explaining another construction site of the anticorrosive material of the present invention.

【図6】この発明の防食材を流電陽極方式の犠牲陽極材
として使用する状態を示す概略説明図である。
FIG. 6 is a schematic explanatory view showing a state in which the anticorrosive material of the present invention is used as a sacrificial anode material of a galvanic anode method.

【図7】鉄筋コンクリート供試体の斜視図である。FIG. 7 is a perspective view of a reinforced concrete test piece.

【図8】実施例1で補修した鉄筋コンクリート供試体の
斜視図である。
8 is a perspective view of a reinforced concrete test piece repaired in Example 1. FIG.

【図9】実施例2で補修した鉄筋コンクリート供試体の
斜視図である。
9 is a perspective view of a reinforced concrete test piece repaired in Example 2. FIG.

【図10】従来の補修方法を説明するための概略説明図
である。
FIG. 10 is a schematic explanatory diagram for explaining a conventional repair method.

【符号の説明】[Explanation of symbols]

1 補修部 2 非補修部 3 非補修部のコンクリート 4 非補修部補強鋼材 4′ 補修部補強鋼材 5 補修部のコンクリート 6 防食材層 7 桟橋 8 海水 9 橋脚 10 車道 11 絶縁層 12 接続端子板 13 リード線 14 補強鋼材 15 高架橋 33 コンクリート 44 鉄筋 55 鉄筋コンクリート供試体 66 補修体 1 Repair part 2 Non-repair part 3 Concrete of non-repair part 4 Reinforcement steel material of non-repair part 4'Reinforcement steel material of repair part 5 Concrete of repair part 6 Food protection layer 7 Pier 8 Seawater 9 Pier 10 Roadway 11 Insulation layer 12 Connection terminal board 13 Lead wire 14 Reinforced steel material 15 Viaduct 33 Concrete 44 Reinforcing bar 55 Reinforced concrete specimen 66 Repaired body

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 //(C04B 28/02 14:34) 2102−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area // (C04B 28/02 14:34) 2102-4G

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セメントに犠牲陽極作用を有する金属粉
末を重量比で60〜95%含有してなることを特徴とす
る防食材。
1. An anticorrosive material comprising 60 to 95% by weight of a metal powder having a sacrificial anode action in cement.
【請求項2】 前記セメントは、ポルトランドセメント
であることを特徴とする請求項1記載の防食材。
2. The anti-food material according to claim 1, wherein the cement is Portland cement.
【請求項3】 前記犠牲陽極作用を有する金属粉末は、
Zn粉末であることを特徴とする請求項1または請求項
2記載の防食材。
3. The metal powder having a sacrificial anode action,
It is Zn powder, The anti-food material of Claim 1 or Claim 2 characterized by the above-mentioned.
JP5157957A 1993-06-03 1993-06-03 Corrosion protective material Pending JPH06345512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5157957A JPH06345512A (en) 1993-06-03 1993-06-03 Corrosion protective material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5157957A JPH06345512A (en) 1993-06-03 1993-06-03 Corrosion protective material

Publications (1)

Publication Number Publication Date
JPH06345512A true JPH06345512A (en) 1994-12-20

Family

ID=15661156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5157957A Pending JPH06345512A (en) 1993-06-03 1993-06-03 Corrosion protective material

Country Status (1)

Country Link
JP (1) JPH06345512A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770839A1 (en) * 1997-11-07 1999-05-14 Richard Guerin Repairing reinforced concrete with mortar containing sacrificial anode metal filler
JP2004536231A (en) * 2001-07-24 2004-12-02 ホィットモア,デービッド Cathodic protection
EP1982964A1 (en) 2007-04-20 2008-10-22 Evonik Degussa GmbH Preparation containing organosilicium compound and its use
JP6206995B1 (en) * 2016-08-04 2017-10-04 中日本高速道路株式会社 Method for forming protective film and highly corrosion-resistant steel member having protective film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770839A1 (en) * 1997-11-07 1999-05-14 Richard Guerin Repairing reinforced concrete with mortar containing sacrificial anode metal filler
JP2004536231A (en) * 2001-07-24 2004-12-02 ホィットモア,デービッド Cathodic protection
EP1982964A1 (en) 2007-04-20 2008-10-22 Evonik Degussa GmbH Preparation containing organosilicium compound and its use
JP6206995B1 (en) * 2016-08-04 2017-10-04 中日本高速道路株式会社 Method for forming protective film and highly corrosion-resistant steel member having protective film
JP2018021234A (en) * 2016-08-04 2018-02-08 中日本高速道路株式会社 Formation method of protective film, and high corrosion resistance steel member having protective film

Similar Documents

Publication Publication Date Title
Bentur et al. Steel corrosion in concrete: fundamentals and civil engineering practice
US7160433B2 (en) Cathodic protection system
Virmani et al. Corrosion protection: Concrete bridges
EP0707667B1 (en) Cathodic protection of reinforced concrete
US8157983B2 (en) Composite anode for cathodic protection
JPS5883071A (en) Anticorrosion for ferroconcrete, tension wire or like in construction unit
Sergi et al. Sacrificial anodes for cathodic prevention of reinforcing steel around patch repairs applied to chloride-contaminated concrete
JPH06345512A (en) Corrosion protective material
Powers et al. Corrosion of post-tensioned tendons in Florida bridges
JP6697971B2 (en) Fresh concrete for salt damage
KR100721215B1 (en) Method for repairing and reinforcing damage of reinforced concrete using gel-type sacrificial anode and waterproof material having exellent insulating properties
EP0085582A1 (en) Cathodic protection using conductive polymer concrete
WO2008118589A1 (en) Composite anode for cathodic protection
JP6636761B2 (en) Cross-section restoration method for concrete structures
Bennett Corrosion of reinforcing steel in concrete and its prevention by cathodic protection
US20090183998A1 (en) Activating matrix for cathodic protection
JP2017014567A (en) Monitoring method for sacrificial anode construction method in concrete structure
JP3521195B2 (en) Method for preventing corrosion of steel material of mortar or concrete member and material for preventing corrosion of steel material used therefor
Vrable Cathodic protection for reinforcing steel in concrete
JP4460083B2 (en) Durable steel / concrete harbor structure, harbor structure concrete additive material, and harbor structure cement
Whiting et al. Laboratory evaluation of sacrificial anode materials for cathodic protection of reinforced concrete bridges
Whitmore Intermittent impressed current corrosion protection of reinforced concrete using solar power to mitigate corrosion of reinforced concrete
JP2711455B2 (en) Backfill for cathodic protection
Isra et al. The Effectiveness Evaluation of Sacrificial Anode in Reinforced Concrete that has been Installed for One Year
Goodwin et al. Protection of reinforcement with corrosion inhibitors, phase II