JPH06345407A - Hydrogen production device - Google Patents

Hydrogen production device

Info

Publication number
JPH06345407A
JPH06345407A JP16635193A JP16635193A JPH06345407A JP H06345407 A JPH06345407 A JP H06345407A JP 16635193 A JP16635193 A JP 16635193A JP 16635193 A JP16635193 A JP 16635193A JP H06345407 A JPH06345407 A JP H06345407A
Authority
JP
Japan
Prior art keywords
hydrogen
reaction
case
tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16635193A
Other languages
Japanese (ja)
Inventor
Yoshinori Shirasaki
義則 白▲崎▼
Hirokuni Oota
洋州 太田
Hiroshi Uchida
洋 内田
Kennosuke Kuroda
健之助 黒田
Hiroshi Makihara
洋 牧原
Kazuto Kobayashi
一登 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Tokyo Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16635193A priority Critical patent/JPH06345407A/en
Publication of JPH06345407A publication Critical patent/JPH06345407A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To provide a compact hydrogen production device capable of producing high-purity hydrogen by carrying out each reaction in a reforming device, a carbon monoxide transformer and a hydrogen purifier collectively. CONSTITUTION:In a device for producing hydrogen by steam modifying reaction from a hydrocarbon and/or an alcohol, the production device is equipped with an upright cylindrical closed case 1 having an outlet 1a of an exhaust gas of combustion, plural cylindrical reaction tubes 3 standing in the case, a multi- burner 2 above the reaction tubes in the case and a manifold 4 laid at the bottom of the case. The reaction tubes 3 have an upright raw material feed pipe 10 which has the top opening to the inside of the reaction tube and the lower end led to a feed opening 10a of a raw material, an upright hydrogen taking out pipe 11 which covers the outer peripheral side of the feed pipe of the raw material, has the open top and the lower end led to a hydrogen outlet 11a and an upright closed hydrogen permeating pipe 12 which covers the outer periphery of the hydrogen taking out pipe, has the closed top and the lower end led to a feed opening 12a of a sweeping gas. A reforming catalyst 5 is packed between a hydrogen permeating pipe and the reaction tubes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化水素およびまたはア
ルコール類を水蒸気改質して水素を製造する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for steam reforming hydrocarbons and / or alcohols to produce hydrogen.

【0002】[0002]

【従来技術】炭化水素およびまたはアルコール類より水
蒸気改質反応を利用して改質器で水素を製造する方法は
工業上広く使用されている。一方、約200℃以下で作
動する燃料電池においては、電極の白金などの触媒がC
Oにより被毒されるため、該燃料電池に供給する水素含
有ガス中のCO濃度は、1%以下にする必要がある。2
00℃以下の比較的低温で作動する燃料電池としては、
150〜230℃で作動するリン酸型、100℃以下で
作動する固体高分子膜型では、燃料電池に供給する水素
含有ガス中のCO濃度は10ppm 以下にする必要がある
と言われている。このため、従来の方法により製造した
水素を燃料電池用の燃料ガスとするには、当該粗製水素
を一酸化炭素変成器及び水素精製器により更に精製して
高純度とし(約CO10ppm 以下)固体高分子膜型燃料
電池(ポリマー燃料電池)に使用することが考えられ
る。この際生ずる反応はメタンの例で示すと、次のよう
である。
2. Description of the Related Art A method of producing hydrogen in a reformer by utilizing a steam reforming reaction from hydrocarbons and / or alcohols is widely used in industry. On the other hand, in a fuel cell that operates at about 200 ° C or lower, the catalyst such as platinum in the electrode is C
Since it is poisoned by O, the CO concentration in the hydrogen-containing gas supplied to the fuel cell must be 1% or less. Two
As a fuel cell that operates at a relatively low temperature of 00 ° C or lower,
In the phosphoric acid type that operates at 150 to 230 ° C. and the solid polymer membrane type that operates at 100 ° C. or less, it is said that the CO concentration in the hydrogen-containing gas supplied to the fuel cell needs to be 10 ppm or less. Therefore, in order to use hydrogen produced by the conventional method as a fuel gas for a fuel cell, the crude hydrogen is further purified by a carbon monoxide shift converter and a hydrogen purifier to have a high purity (about CO 10 ppm or less). It is considered to be used for a molecular membrane fuel cell (polymer fuel cell). The reaction that takes place in this case is as follows in the case of methane.

【0003】[0003]

【発明が解決しようとする課題】しかし、水素を高純度
にするための上記のプロセスは工程が複雑であり、装置
全体が大型であり、多量の高温熱エネルギーを要し、ま
た、装置の効率が悪く、必然的に水素製造コストが高く
なる欠点を有し、都市ガス等から直接固体高分子膜型燃
料電池に供給するような、一酸化炭素のほとんど含まれ
ない(約CO10ppm 以下)高純度の水素を製造するこ
とは経済性も考慮すると極めて困難である。
However, the above-mentioned process for purifying hydrogen with high purity has complicated steps, the entire apparatus is large, requires a large amount of high-temperature heat energy, and the efficiency of the apparatus is high. Has a drawback that the hydrogen production cost is inevitably high, and it has almost no carbon monoxide (approximately 10 ppm or less CO), which is high purity, such as that supplied directly from a city gas to a solid polymer membrane fuel cell. It is extremely difficult to produce such hydrogen in consideration of economical efficiency.

【0004】このため、水素を選択的に透過する水素分
離膜(メンブレン)を改質反応場と共存させることによ
って改質反応と水素精製を同時に処理するメンブレンリ
アクタの概念が、すでに特開昭61−17401号およ
び特開平4−321502号などで提案されている。し
かしながら、これらの先願では、リアクタの基本原理の
提案のみに留まっており、大型化が容易な実用的リアク
タ構成、特に加熱方式、各流体の供給排出方式の具体例
は示されていない。すなわち、これらの先願では、図4
に示すように水素を選択的に透過する水素透過管を内管
として、その外部に触媒反応管を外管として同心円筒状
に配置し、当該内管と外管の間の円環状空間に改質触媒
を充填し、外管壁を適当な熱媒体で加熱することが示さ
れているだけである。
Therefore, the concept of a membrane reactor that simultaneously processes a reforming reaction and hydrogen purification by making a hydrogen separation membrane (membrane) that selectively permeates hydrogen coexist with a reforming reaction field has already been disclosed in Japanese Patent Laid-Open No. 61-61. -17401 and Japanese Patent Laid-Open No. 4-321502. However, in these prior applications, only the basic principle of the reactor is proposed, and practical examples of a practical reactor configuration that is easy to increase in size, particularly a heating system and a supply / discharge system of each fluid are not shown. That is, in these prior applications, FIG.
As shown in Fig. 5, a hydrogen permeation tube that selectively permeates hydrogen is used as the inner tube, and the catalytic reaction tube is placed as the outer tube in a concentric cylindrical shape on the outside, and an annular space between the inner tube and the outer tube is modified. It has only been shown to be loaded with a quality catalyst and to heat the outer tube wall with a suitable heating medium.

【0005】本発明は上述の点にかんがみてなされたも
ので、従来のプロセスに使用されていた改質器、一酸化
炭素変成器及び水素精製器の反応を一まとめに実施し、
高純度の水素を製造することができるコンパクトな水素
製造装置を提供することを目的とする。
The present invention has been made in consideration of the above points, and the reactions of the reformer, the carbon monoxide shift converter and the hydrogen purifier used in the conventional process are collectively carried out,
An object of the present invention is to provide a compact hydrogen production device capable of producing high-purity hydrogen.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明は炭化水素およびまたはアルコール類から水
蒸気改質反応により水素を製造する装置において、燃焼
排ガス排出口を下部に有する直立円筒状密閉ケースと、
該ケースの内部に直立した複数本の頭部を密閉した円筒
状反応管と、前記ケースの内部において前記反応管の上
方に設けられたバーナと、前記ケースの底部に設けられ
たマニホルドとを具備し、前記反応管が上端が反応管の
内部に開口し下端が前記マニホルドの原料供給口に通ず
る直立円筒状の原料供給管と、該原料供給管の外周側面
を囲繞し且つ上端が開口し下端が前記マニホルドの水素
排出口に通ずる直立円筒状の水素取出管と、該水素取出
管の外周を囲繞し且つ上端が閉鎖され下端が前記マニホ
ルドのスイープガス供給口に通ずる直立円筒状の水素透
過管とを内包し、該水素透過管と前記反応管との間に改
質触媒を充填したことを特徴とする。
In order to solve the above-mentioned problems, the present invention is an apparatus for producing hydrogen from hydrocarbons and / or alcohols by a steam reforming reaction, and is an upright cylindrical hermetic seal having a combustion exhaust gas discharge port in the lower part. A case,
A cylindrical reaction tube having a plurality of upright heads sealed inside the case, a burner provided above the reaction tube inside the case, and a manifold provided at the bottom of the case. The reaction tube has an upper end opening inside the reaction tube and a lower end communicating with a raw material supply port of the manifold, and an upright cylindrical raw material supply pipe surrounding the outer peripheral side surface of the raw material supply pipe and having an upper end opened and a lower end. Is an upright cylindrical hydrogen extraction pipe communicating with the hydrogen discharge port of the manifold, and an upright cylindrical hydrogen permeation pipe surrounding the outer circumference of the hydrogen extraction pipe and having an upper end closed and a lower end communicating with the sweep gas supply port of the manifold. And a reforming catalyst is filled between the hydrogen permeation tube and the reaction tube.

【0007】[0007]

【作用】本発明の水素製造装置は改質触媒、水素透過管
(パラジウム薄膜およびパラジウム系合金ほか)、加熱
用バーナ等で構成された水素透過膜方式の改質器であ
り、炭化水素およびまたはアルコール類等から直接高純
度水素を造ることができる。すなわち、反応管内の触媒
層を貫通させて水素透過管を設けることにより簡便に高
純度水素を得る。天井にバーナを設け、このバーナの高
温の燃焼排ガスを各反応管の上方から降り注いで各反応
管に対流熱と伝導熱を均等に伝える。スイープガスは上
昇流として供給され触媒層中のガスの下降流に対し対向
流となるので、水素透過が効率的に行われる。また、水
素透過管を使用することにより化学平衡がずれるため、
改質温度(700〜800℃)を150〜200℃低下
させることができる。
The hydrogen producing apparatus of the present invention is a hydrogen permeable membrane type reformer composed of a reforming catalyst, a hydrogen permeable tube (palladium thin film and palladium alloy, etc.), a heating burner, etc. High-purity hydrogen can be produced directly from alcohols. That is, high-purity hydrogen can be easily obtained by penetrating the catalyst layer in the reaction tube and providing the hydrogen permeation tube. A burner is provided on the ceiling, and high-temperature combustion exhaust gas from this burner is poured down from above each reaction tube to evenly transfer convection heat and conduction heat to each reaction tube. The sweep gas is supplied as an upward flow and becomes a counter flow to the downward flow of gas in the catalyst layer, so that hydrogen permeation is efficiently performed. Also, because the chemical equilibrium shifts by using a hydrogen permeation tube,
The reforming temperature (700 to 800 ° C) can be lowered by 150 to 200 ° C.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の水素製造装置の概略構成を
示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a schematic structure of the hydrogen production apparatus of the present invention.

【0010】図2は図1のII−II断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【0011】円筒形の密閉ケース1が直立している。ケ
ース1の下部に燃焼ガス排出口1aが設けられている。
A cylindrical closed case 1 is upright. A combustion gas discharge port 1a is provided at the bottom of the case 1.

【0012】ケース1の内部の天井にマルチバーナ2が
配置されている。マルチバーナ2はその下面に多数のノ
ズル2aを備え、このノズル2aは短い火炎2bを下向
きに噴出することができる。
A multi-burner 2 is arranged on the ceiling inside the case 1. The multi-burner 2 has a large number of nozzles 2a on its lower surface, and the nozzles 2a can eject a short flame 2b downward.

【0013】ケース1の下部にマニホルド4が設けられ
ている。マニホルド4の詳細は後述する。
A manifold 4 is provided below the case 1. Details of the manifold 4 will be described later.

【0014】ケース1の内部において、マニホルド4の
上に均等に分布して複数個(図示の実施例では7個)の
円筒形の頭部密閉状の反応管3が直立して取り付けられ
ている。マルチバーナ2から噴出される火炎2bが反応
管3の頭部に直接触れないようにするため、図2に示す
よう、ノズル2aと反応管3の配置を直上位置からずら
せることが好ましい。次に反応管3の詳細について述べ
る。
Inside the case 1, a plurality of (7 in the illustrated embodiment) cylindrical head-sealed reaction tubes 3 which are evenly distributed on the manifold 4 are vertically installed. . In order to prevent the flame 2b ejected from the multi-burner 2 from directly touching the head of the reaction tube 3, it is preferable to displace the nozzle 2a and the reaction tube 3 from the position directly above, as shown in FIG. Next, the details of the reaction tube 3 will be described.

【0015】図3は図1の一部の拡大図であり、反応管
3の詳細を示す。
FIG. 3 is an enlarged view of a part of FIG. 1, showing the details of the reaction tube 3.

【0016】反応管3は前述したように直立円筒状の密
閉タンクであり、天井が閉鎖され、下端がオフガス排出
口3aに連通している。反応管3はその内部に、中心と
なる原料供給管10と、その外側の水素取出管11と、
更にその外側の水素透過管12を内包している。これら
の管10、11、12は直径方向に互いに間隔を置いて
同心に直立状に配置されている。水素透過管12は多孔
質担体にパラジウムを無電解メッキ法により成膜して調
製したもので作られ、その他の部材は主としてステンレ
ススチールで作られている。
As described above, the reaction tube 3 is an upright cylindrical closed tank, the ceiling of which is closed and the lower end of which is connected to the offgas discharge port 3a. Inside the reaction tube 3, a raw material supply tube 10 serving as a center, a hydrogen extraction tube 11 outside thereof,
Further, the hydrogen permeation tube 12 on the outside thereof is included. These tubes 10, 11 and 12 are arranged diametrically spaced apart from each other and concentrically in an upright position. The hydrogen permeation tube 12 is made of a porous carrier prepared by depositing palladium on the porous carrier by an electroless plating method, and the other members are mainly made of stainless steel.

【0017】原料供給管10は上端が反応管3の内部に
開口し、下端が原料供給口10aに連通している。
The raw material supply pipe 10 has an upper end open to the inside of the reaction tube 3 and a lower end communicating with the raw material supply port 10a.

【0018】水素取出管11は原料供給管10の外周を
囲繞し且つ上端が水素透過管12の内部に開口し、下端
が水素排出口11aに連通している。
The hydrogen extraction pipe 11 surrounds the outer circumference of the raw material supply pipe 10, has an upper end opened inside the hydrogen permeation pipe 12, and a lower end communicated with the hydrogen discharge port 11a.

【0019】水素透過管12は水素取出管11の外周と
天井を、それらとの間に間隙を設けて密閉状に囲繞し、
下端がスイープガス供給口12aに連通している。
The hydrogen permeation tube 12 encloses the outer periphery and the ceiling of the hydrogen extraction tube 11 in a hermetically sealed manner with a gap between them.
The lower end communicates with the sweep gas supply port 12a.

【0020】原料の都市ガス及び水蒸気はマニホルド4
の原料供給口10aから原料供給管10に入り、水素製
造装置の下部中央の穴から上向きに吹き上げられ、スイ
ープガスはマニホルド4のスイープガス供給口12aか
ら水素透過管12に入り装置の下部中央の環状入口から
上向きに吹き上げられる。水素とスイープガスの混合体
及びオフガスは装置の下部中央のそれぞれの環状出口か
らマニホルド4を経て排出される構造となっている。
City gas and water vapor used as raw materials are manifold 4
From the raw material supply port 10a to the raw material supply pipe 10 and is blown upward from a hole in the center of the lower part of the hydrogen production apparatus, and the sweep gas enters the hydrogen permeation pipe 12 from the sweep gas supply port 12a of the manifold 4 and It is blown up from the annular entrance. The mixture of hydrogen and the sweep gas and the off gas are discharged from the respective annular outlets at the center of the lower part of the apparatus through the manifold 4.

【0021】ケース1の燃焼排ガス排出口1a、反応管
3のプロセスオフガス排出口3a、水素透過管12のス
イープガス供給口12a、水素取出管11の水素排出口
11a、原料供給管10の材料供給口10aはすべてマ
ニホルド4にまとめられている。なお、プロセスオフガ
スは生成したガスから水素を透過除去した残りガスであ
り、スイープガスは水素透過管12で生成した水素を掃
気するためのガスである。
Combustion exhaust gas discharge port 1a of case 1, process off gas discharge port 3a of reaction tube 3, sweep gas supply port 12a of hydrogen permeation tube 12, hydrogen discharge port 11a of hydrogen extraction tube 11, raw material supply tube 10 All the mouths 10a are put together in the manifold 4. The process off gas is a residual gas obtained by permeating and removing hydrogen from the generated gas, and the sweep gas is a gas for scavenging the hydrogen generated in the hydrogen permeation pipe 12.

【0022】水素透過管12と各反応管3との間隙に改
質触媒5を充填している。改質触媒としては第VIII族金
属(Fe,Co,Ni,Ru,Rh,Pd,Pt等)を
含有する触媒が好ましく、Ni,Ru,Rhを担持した
触媒またはNiO含有触媒が特に好ましい。
A reforming catalyst 5 is filled in the gap between the hydrogen permeation tube 12 and each reaction tube 3. As the reforming catalyst, a catalyst containing a Group VIII metal (Fe, Co, Ni, Ru, Rh, Pd, Pt, etc.) is preferable, and a catalyst supporting Ni, Ru, Rh or a NiO-containing catalyst is particularly preferable.

【0023】上記構成になる本発明の水素製造装置は次
のように作動する。
The hydrogen production apparatus of the present invention having the above-mentioned structure operates as follows.

【0024】下方から供給される燃料をマルチバーナ1
で燃焼することにより高温の燃焼排ガスが発生する。燃
焼排ガスは、矢印Dの方向に、各反応管3の上から降り
注ぎ、それらの間に流入して各反応管3に熱を伝える。
かくして、各反応管3の中の改質触媒5および反応流体
としての改質ガスが加熱され、水蒸気改質反応が行われ
る。なお、燃焼排ガスはマニホルド4の排出口1aから
外部へ排出される。
The fuel supplied from below is supplied to the multi-burner 1
Combustion in this way produces high temperature combustion exhaust gas. The combustion exhaust gas flows down in the direction of arrow D from the top of each reaction tube 3, flows between them, and transfers heat to each reaction tube 3.
Thus, the reforming catalyst 5 in each reaction tube 3 and the reforming gas as the reaction fluid are heated, and the steam reforming reaction is performed. The combustion exhaust gas is exhausted to the outside from the exhaust port 1a of the manifold 4.

【0025】スイープガスがマニホルド4の供給口12
aから水素透過管12に矢印B方向に送りこまれる。
The sweep gas is supplied to the supply port 12 of the manifold 4.
It is sent from a into the hydrogen permeation tube 12 in the direction of arrow B.

【0026】原料ガスとしてのメタン等及び水蒸気の混
合物がマニホルド4の供給口10aから矢印A方向に送
入され、原料供給管10を通じて各反応管3の改質触媒
5の上部から内部に侵入する。改質触媒5の内部を通過
する間に、燃料ガスの燃焼により発生する熱でメタン等
の原料ガスを水蒸気改質して水素を生成する。この時の
反応式は、メタンの例で示すと、次のようである。 生成した水素は水素透過管12の中に矢印C方向に透過
侵入し、ここでスイープガスに乗ってBの方向に上昇し
たのち水素取出管11の中を矢印E方向に進行しマニホ
ルド4の排出口11aから矢印E方向に外部へ押し出さ
れる。
A mixture of methane and the like as a raw material gas and water vapor is fed from the supply port 10a of the manifold 4 in the direction of arrow A, and penetrates from the upper portion of the reforming catalyst 5 of each reaction tube 3 through the raw material supply pipe 10. . While passing through the inside of the reforming catalyst 5, the source gas such as methane is steam-reformed with the heat generated by the combustion of the fuel gas to generate hydrogen. The reaction formula at this time is as follows, when an example of methane is shown. The produced hydrogen permeates into the hydrogen permeation pipe 12 in the direction of arrow C, and rises in the direction of arrow B along with the sweep gas, and then advances through the hydrogen extraction pipe 11 in the direction of arrow E to exhaust the manifold 4. It is pushed out from the outlet 11a in the direction of arrow E.

【0027】また、反応管3の中の炭酸ガスのようなオ
フガスはマニホルド4の排出口3aから矢印F方向に外
部へ排出される。この際、改質触媒5の充填層中のオフ
ガスの排出方向(下降)は水素透過管12の中のスイー
プガスの流入方向(上昇)に対し対向方向であるから、
改質触媒5の充填層内を流れる改質ガスの中から水素を
水素透過管12へ効率良く透過させることができる。
Further, the off gas such as carbon dioxide gas in the reaction tube 3 is discharged from the discharge port 3a of the manifold 4 in the direction of arrow F to the outside. At this time, the discharge direction (downward) of the off gas in the packed bed of the reforming catalyst 5 is opposite to the inflow direction (upward) of the sweep gas in the hydrogen permeation tube 12,
Hydrogen can be efficiently permeated to the hydrogen permeation pipe 12 from the reformed gas flowing in the packed bed of the reforming catalyst 5.

【0028】上記実施例の装置に使用した反応管3の数
は必要に応じ増減することができる。また上記実施例で
はマルチバーナを使用した例を示したが、同等の特性を
有する単一バーナを使用しても同様の効果が得られるこ
とは言を待たない。
The number of reaction tubes 3 used in the apparatus of the above embodiment can be increased or decreased as necessary. Further, although an example using a multi-burner is shown in the above-mentioned embodiment, it is needless to say that the same effect can be obtained by using a single burner having equivalent characteristics.

【0029】上記実施例の装置を逆さにして、バーナに
燃料を下方から吹き込んで燃焼させ、スイープガスや原
料ガス、水蒸気を上部から流入させ、水素やオフガスを
上部から排出するように構成することもできる。
Inverting the apparatus of the above embodiment, the fuel is blown into the burner from the lower side for combustion, and the sweep gas, the raw material gas, and the steam are introduced from the upper portion, and the hydrogen and the off gas are discharged from the upper portion. You can also

【0030】[0030]

【実施の具体例】本発明の実施の具体例を以下に説明す
る。 (1)装置構成 反応管3(内径35.5mm) 水素透過管12(外径20mm) 水素取出管11(外径12mm) 原料供給管10(外径6mm)より成る有効長1000mm
の多重同心円筒状の反応管構造体を構成し、これらの計
6本を内径180mm×有効高さ1200mmのケース4の
内部に直立配置した。すなわちケース4の中心軸上に1
本、ほかの5本はその外側の円周方向に等間隔になるよ
うに配置した。水素透過管12は、パラジウム系の薄膜
より成るメンブレンを用い、改質触媒5としては、ニッ
ケル系触媒(平均粒子径2mmφ)を使用した。なお、外
気への放熱を小さくするため、ケース4の外側は厚さ1
50mmのロックウールで保温した。 (2)操作条件 ・原料ガス供給量: メタン0.35Nm3 /h ・改質用スチーム供給量: 1.05Nm3 /h (スチーム/メタンのモル比S/C=3.1) ・スイープガス(スチーム)供給量:1.4kg/h ・スイープガス圧力: 大気圧 ・触媒層温度: 540〜550℃ ・触媒層圧力: 6.5kg/cm2-abs. なお、バーナ側の燃焼条件は触媒層の平均温度が上述の
値になるように調整された。 (3)水素生成試験結果 上述の操作条件下で、メタン0.35Nm3 /hを原料
として、スイープガスに同伴されて得られた水素量は
1.01Nm3 /hであり、水素中の不純物としてのC
Oは1ppm 以下であった。メタンの反応転化率としても
約81%が達成された。水素透過管を採用しない従来型
のリフォーマでは、操作温度と圧力の関係から化学平衡
の壁があるために転化率は25%である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below. (1) Equipment configuration Reaction tube 3 (inner diameter 35.5 mm) Hydrogen permeation tube 12 (outer diameter 20 mm) Hydrogen extraction tube 11 (outer diameter 12 mm) Raw material supply pipe 10 (outer diameter 6 mm) Effective length 1000 mm
The reaction tube structure of multiple concentric cylinders was constructed, and a total of 6 of these were placed upright inside the case 4 having an inner diameter of 180 mm and an effective height of 1200 mm. That is, 1 on the center axis of case 4
The five books and the other five books were arranged at equal intervals in the outer circumferential direction. The hydrogen permeation tube 12 was a membrane made of a palladium-based thin film, and the reforming catalyst 5 was a nickel-based catalyst (average particle diameter 2 mmφ). In order to reduce heat radiation to the outside air, the outside of the case 4 has a thickness of 1
It was kept warm with 50 mm rock wool. (2) Operating conditions-Source gas supply rate: Methane 0.35 Nm 3 / h-Reforming steam supply rate: 1.05 Nm 3 / h (steam / methane molar ratio S / C = 3.1) -Sweep gas (Steam) supply rate: 1.4 kg / h ・ Sweep gas pressure: atmospheric pressure ・ Catalyst layer temperature: 540 to 550 ° C ・ Catalyst layer pressure: 6.5 kg / cm 2 -abs. The combustion conditions on the burner side are catalyst The average temperature of the layers was adjusted to the values given above. (3) Results of hydrogen generation test Under the above-mentioned operating conditions, the amount of hydrogen obtained by entraining methane 0.35 Nm 3 / h in the sweep gas was 1.01 Nm 3 / h, and impurities in hydrogen were found. As C
O was 1 ppm or less. A reaction conversion rate of methane of about 81% was also achieved. In a conventional reformer that does not employ a hydrogen permeation tube, the conversion rate is 25% due to the chemical equilibrium wall due to the relationship between operating temperature and pressure.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば直
立円筒状密閉ケースの内部に複数本の円筒状反応管を林
立させ、この反応管の中に同心に原料供給管と水素取出
管と水素透過管とを内包し、反応管の上方に設けたマル
チバーナから高温の燃焼排ガスを降り注いで反応管を加
熱し、前記ケースの底部に設けたマニホルドより原料等
を供給し、かつ排出物をこのマニホルドから排出するよ
うに構成したので、下記のような優れた効果が得られ
る。 (1)水素透過管を使用することにより、精製装置を設
けることなく、炭化水素およびまたはアルコール類から
直接に高純度の水素を造ることができる。 (2)マルチバーナ、輻射板、原料供給管、反応管、改
質触媒層、水素透過管、水素取出管、ケースが効率的に
配置され、特に反応管の直径が小さくなり、伝熱性が向
上し、発生熱エネルギーが有効に利用され、省エネルギ
ープロセスが実現し、水素製造能力が向上し、装置全体
がコンパクトになる。 (3)頂部にマルチバーナを配置し、火炎が直接反応管
と接触しないようにすると共に、燃焼ガスの均一下降流
を形成していることから、水素透過管とを改質触媒の耐
熱温度を超過するようなホットスポットの発生を防止し
得る。 (4)水素透過管内を流通するスイープガスと、改質触
媒層内を流れる改質ガスとを水素透過管壁を介して向流
接触により物質移動させていることから、改質ガス中水
素の回収率を高めると共に、透過ガス中の水素濃度を高
くすることを可能としている。 (5)反応後の水素の分離、精製工程が省略される。 (6)水素透過管により化学平衡をずらし、改質温度
(700〜800℃)を従来より150〜200℃低下
させ、装置の製作に使用する材料の選択範囲を拡大し、
価格を低廉にし、装置の耐久性を向上させる。
As described above, according to the present invention, a plurality of cylindrical reaction tubes are installed inside an upright cylindrical closed case, and a raw material supply tube and a hydrogen extraction tube are concentrically provided in the reaction tube. And a hydrogen permeation tube are included, high-temperature combustion exhaust gas is poured from a multi-burner provided above the reaction tube to heat the reaction tube, and raw materials are supplied from a manifold provided at the bottom of the case, and the exhaust gas is also discharged. Is configured to be discharged from this manifold, the following excellent effects can be obtained. (1) By using a hydrogen permeation tube, high-purity hydrogen can be directly produced from hydrocarbons and / or alcohols without providing a refining device. (2) The multi-burner, radiant plate, raw material supply pipe, reaction pipe, reforming catalyst layer, hydrogen permeation pipe, hydrogen extraction pipe, and case are efficiently arranged. Especially, the diameter of the reaction pipe is reduced and heat transfer is improved. However, the generated heat energy is effectively used, the energy saving process is realized, the hydrogen production capacity is improved, and the entire apparatus becomes compact. (3) A multi-burner is placed at the top to prevent the flame from coming into direct contact with the reaction tube and to form a uniform downward flow of combustion gas. The occurrence of excessive hot spots can be prevented. (4) Since the sweep gas flowing in the hydrogen permeation tube and the reformed gas flowing in the reforming catalyst layer are mass-transferred by countercurrent contact through the hydrogen permeation tube wall, It is possible to increase the recovery rate and increase the hydrogen concentration in the permeated gas. (5) The step of separating and purifying hydrogen after the reaction is omitted. (6) The chemical equilibrium is shifted by the hydrogen permeation tube, the reforming temperature (700 to 800 ° C.) is lowered by 150 to 200 ° C. from the conventional one, and the selection range of materials used for manufacturing the device is expanded,
The price is low and the durability of the device is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水素の製造装置の概略構成を示す縦断
面図である。
FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a hydrogen production device of the present invention.

【図2】図1のII−II断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】図1の一部の拡大図であり、反応管内の詳細構
造を示す。
FIG. 3 is an enlarged view of a part of FIG. 1, showing a detailed structure inside the reaction tube.

【図4】これまでに提案されているメンブレンリアクタ
方式の水素製造装置の原理を示す図である。
FIG. 4 is a diagram showing the principle of a membrane reactor type hydrogen production apparatus proposed so far.

【符号の説明】[Explanation of symbols]

1 ケース 1a 燃焼排ガス排出口 2 マルチバーナ 2a ノズル 2b 火炎 3 反応管 3a プロセスオフガス排出口 4 マニホルド 5 改質触媒 10 原料供給管 10a 原料ガス供給口 11 水素取出管 11a 水素排出口 12 水素透過管 12a スイープガス供給口 1 Case 1a Combustion exhaust gas discharge port 2 Multi-burner 2a Nozzle 2b Flame 3 Reaction tube 3a Process off gas discharge port 4 Manifold 5 Reforming catalyst 10 Raw material supply pipe 10a Raw material gas supply port 11 Hydrogen extraction pipe 11a Hydrogen discharge port 12 Hydrogen permeation pipe 12a Sweep gas supply port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 洋 神奈川県横浜市緑区あざみ野3−2−15− 106 (72)発明者 黒田 健之助 東京都新宿区富久町15−1 三菱重工業株 式会社エンジニアリングセンター内 (72)発明者 牧原 洋 広島県広島市西区観音新町4−6−22 三 菱重工業株式会社広島研究所内 (72)発明者 小林 一登 広島県広島市西区観音新町4−6−22 三 菱重工業株式会社広島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Uchida 3-2-15-106 Azamino, Midori-ku, Yokohama, Kanagawa Prefecture (72) Kennosuke Kuroda 15-1 Tomihisacho, Shinjuku-ku, Tokyo Mitsubishi Heavy Industries Engineering Co., Ltd. In the center (72) Inventor Hiroshi Makihara 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Sanryoh Heavy Industries Ltd. Hiroshima Research Institute (72) Inventor Kazuto Kobayashi 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Hishi Heavy Industries Ltd. Hiroshima Research Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素およびまたはアルコール類等か
ら水蒸気改質反応により水素を製造する装置において、
燃焼排ガス排出口を下部に有する直立円筒状密閉ケース
と、該ケースの内部に直立した複数本の頭部密閉円筒状
反応管と、前記ケースの内部において前記反応管の上方
に設けられたバーナと、前記ケースの底部に設けられた
マニホルドとを具備し、前記反応管が上端が反応管の内
部に開口し下端が前記マニホルドの原料供給口に通ずる
直立円筒状の原料供給管と、該原料供給管の外周側面を
囲繞し且つ上端が開口し下端が前記マニホルドの水素排
出口に通ずる直立円筒状の水素取出管と、該水素取出管
の外周を囲繞し且つ上端が閉鎖され下端が前記マニホル
ドのスイープガス供給口に通ずる直立円筒状の水素透過
管とを内包し、該水素透過管と前記反応管との間に改質
触媒を充填したことを特徴とする水素製造装置。
1. An apparatus for producing hydrogen from a hydrocarbon and / or alcohol by a steam reforming reaction,
An upright cylindrical closed case having a combustion exhaust gas discharge port at the bottom, a plurality of head closed cylindrical reaction tubes standing upright inside the case, and a burner provided above the reaction tube inside the case. An upright cylindrical raw material supply pipe having a manifold provided at the bottom of the case, the reaction tube having an upper end opening inside the reaction tube and a lower end communicating with a raw material supply port of the manifold, and the raw material supply An upright cylindrical hydrogen take-out tube that surrounds the outer peripheral side surface of the pipe and has an upper end that opens and a lower end that communicates with the hydrogen discharge port of the manifold; An upright cylindrical hydrogen permeation tube communicating with a sweep gas supply port is included, and a reforming catalyst is filled between the hydrogen permeation tube and the reaction tube.
JP16635193A 1993-06-11 1993-06-11 Hydrogen production device Withdrawn JPH06345407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16635193A JPH06345407A (en) 1993-06-11 1993-06-11 Hydrogen production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16635193A JPH06345407A (en) 1993-06-11 1993-06-11 Hydrogen production device

Publications (1)

Publication Number Publication Date
JPH06345407A true JPH06345407A (en) 1994-12-20

Family

ID=15829773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16635193A Withdrawn JPH06345407A (en) 1993-06-11 1993-06-11 Hydrogen production device

Country Status (1)

Country Link
JP (1) JPH06345407A (en)

Similar Documents

Publication Publication Date Title
US6171574B1 (en) Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel
US6461408B2 (en) Hydrogen generator
US7481857B2 (en) Carbon monoxide conversion process and reactor
Saracco et al. High-temperature membrane reactors: potential and problems
KR101807112B1 (en) A shell-and-tube type reactor for reforming natural gas and a preparation method of syngas or hydrogen gas by using the same
US7252692B2 (en) Process and reactor module for quick start hydrogen production
JPS6117401A (en) Method and device for converting steam by using coal or hydrocarbon
US6923944B2 (en) Membrane reactor for gas extraction
US4378336A (en) Monolith reactor
JP3406021B2 (en) Hydrogen production equipment
EP1066216A1 (en) Use of a membrane reactor for hydrogen production via the direct cracking of hydrocarbons
JPH06345405A (en) Hydrogen production device
JP3197095B2 (en) Hydrogen production equipment
JP3839598B2 (en) Hydrogen production equipment
JP3197097B2 (en) Hydrogen production equipment
JP3202442B2 (en) Hydrogen production equipment
JPH06345406A (en) Hydrogen production device
JP3839599B2 (en) Hydrogen production equipment
JPH06345407A (en) Hydrogen production device
JPH092801A (en) Hydrogen manufacturing apparatus
JP3202441B2 (en) Hydrogen production equipment
JP3197098B2 (en) Hydrogen production equipment
JP3197096B2 (en) Hydrogen production equipment
JP3197108B2 (en) Hydrogen production equipment
JPH092802A (en) Hydrogen manufacturing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905