JPH06342862A - Liquid-cooled semiconductor device - Google Patents

Liquid-cooled semiconductor device

Info

Publication number
JPH06342862A
JPH06342862A JP5131659A JP13165993A JPH06342862A JP H06342862 A JPH06342862 A JP H06342862A JP 5131659 A JP5131659 A JP 5131659A JP 13165993 A JP13165993 A JP 13165993A JP H06342862 A JPH06342862 A JP H06342862A
Authority
JP
Japan
Prior art keywords
refrigerant
nozzle
liquid
semiconductor device
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5131659A
Other languages
Japanese (ja)
Inventor
Tadakatsu Nakajima
忠克 中島
Shigeyuki Sasaki
重幸 佐々木
Yasuo Osone
靖夫 大曽根
Hideyuki Kimura
秀行 木村
Kenji Takahashi
研二 高橋
Atsuo Nishihara
淳夫 西原
Noriyuki Ashiwake
範行 芦分
Keizo Kawamura
圭三 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5131659A priority Critical patent/JPH06342862A/en
Publication of JPH06342862A publication Critical patent/JPH06342862A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a liquid cooled semiconductor device equipped with a cooling device which improves a capacity of cooling each of semiconductor elements mounted in large numbers on a base, without being accompanied by an increase in the amount of circulation of a refrigerant, and also reduces a temperature distribution on an element surface. CONSTITUTION:A nozzle 3 which communicates with a refrigerant supply header 6 and wherein a restricting member 4 reducing the section of a flow passage in the nozzle sharply in the shape of steps is provided at the part of a refrigerant jetting port 10 positioned in the fore end of the nozzle is disposed for each of a number of semiconductor elements arranged on a base 1, so that it projects toward the semiconductor element 2, and a refrigerant return header 7 is provided between the refrigerant jetting port 10 and the refrigerant supply header 6 so that it traverses the nozzle 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子などが液体
に浸漬され直接冷却される半導体装置に係り、特に、高
発熱密度素子を備えた超高速コンピュータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device in which a semiconductor element or the like is immersed in a liquid and directly cooled, and more particularly to an ultra high speed computer having a high heat density element.

【0002】[0002]

【従来の技術】半導体素子の高集積化技術及び素子を基
板上に高密度に実装する技術の進展に伴い、素子を液体
中に直接浸漬し、素子から発生する多量の熱を除去する
液冷超高速コンピュータが提案されている。例えば、実
公平3−7960 号公報では、複数個の素子を配列した基板
を浸漬する区画と、各素子にそれぞれ対向して設けたノ
ズルを通して加圧した冷媒を吹き付ける加圧区画とから
冷媒を入れた密封容器を構成し、冷媒液の噴流沸騰熱伝
達を用いて素子を冷却する液冷装置が提案されている。
この装置では、冷媒液の衝突噴流と沸騰とを共存させて
用いているため、その冷却能力は従来の装置に比べ著し
く上昇するが、更に冷却能力の向上を果たすには、各ノ
ズルへの冷媒供給量を増大させ、ノズルの径を細くして
噴流の速度を増加させる事が必要となる。しかし、本液
冷装置では、冷媒供給量の増大、及び、流速の増加に伴
う冷媒循環ポンプの負担増加、及び、装置の大形化、更
に、流速の増加がもたらす噴流衝突領域での沸騰抑制作
用による素子面上での冷却の不均一化,素子面温度分布
の不均一化がもたらすコンピュータ演算動作の遅延化に
ついては何等考慮されていない。
2. Description of the Related Art With the progress of high integration technology of semiconductor devices and high-density mounting of devices on a substrate, liquid cooling in which a large amount of heat generated from the device is removed by directly immersing the device in a liquid Ultra-high speed computers have been proposed. For example, in Japanese Utility Model Publication No. 3-7960, a coolant is put in a compartment in which a substrate in which a plurality of elements are arranged is dipped and a pressure compartment in which a pressurized refrigerant is sprayed through nozzles provided facing each element. There has been proposed a liquid cooling device which constitutes a sealed container and cools an element by using jet boiling heat transfer of a refrigerant liquid.
In this device, since the collision jet and the boiling of the refrigerant liquid are used together, the cooling capacity thereof is remarkably increased as compared with the conventional device, but in order to further improve the cooling capacity, the refrigerant to each nozzle It is necessary to increase the supply amount and reduce the diameter of the nozzle to increase the jet velocity. However, in the present liquid cooling device, the refrigerant supply amount is increased, the load on the refrigerant circulation pump is increased due to the increase in the flow velocity, the device is enlarged, and the boiling is suppressed in the jet collision region caused by the increase in the flow velocity. No consideration is given to the delay of the computer operation caused by the nonuniform cooling on the element surface and the nonuniform element surface temperature distribution due to the action.

【0003】この冷媒循環量の増大を小さく抑えながら
冷却能力を高める工夫として、第一のノズルの周りに末
絞まりの断面形状を持つ第二のノズルを設けた装置が特
開平2−298054 号公報に提案されている。本装置では、
一種のジェットポンプ効果により、素子周辺を満たして
いる冷媒液を再び素子面上に流す構造であるため、冷媒
液の有効活用が図られ、冷媒循環量のある程度の低減を
果たすことができる。しかし、素子周辺を満たしている
冷媒液の駆動が、第一のノズルより噴射された冷媒液の
噴流速度の低下、及び、素子面上での速度,温度境界層
厚の厚化による冷却能力の低下をもたらすこと、更に、
素子により温ためられた素子周辺の冷媒液が再び素子面
上に導かれ、冷媒温度が上昇する事による冷却能力の低
下に対しては解決し得るものではない。
As a device for increasing the cooling capacity while suppressing the increase in the refrigerant circulation amount to a small extent, a device provided with a second nozzle having a narrowed cross-sectional shape around the first nozzle is disclosed in Japanese Patent Laid-Open No. 298054. Has been proposed to. With this device,
Due to a kind of jet pump effect, the refrigerant liquid filling the periphery of the element is made to flow again on the element surface, so that the refrigerant liquid can be effectively utilized and the refrigerant circulation amount can be reduced to some extent. However, driving the refrigerant liquid filling the periphery of the element reduces the jet speed of the refrigerant liquid ejected from the first nozzle, and increases the speed on the element surface and the cooling capacity by increasing the temperature boundary layer thickness. To bring about a decline,
The coolant liquid around the device warmed by the device is again guided to the surface of the device, and the cooling capacity is not lowered due to the rise of the coolant temperature.

【0004】[0004]

【発明が解決しようとする課題】従来の液冷半導体装置
では、大電力を消費する半導体素子が多数搭載された基
板に於いて、各半導体素子の冷却能力に限度があり、冷
却能力を上昇させようとすると冷媒循環量を増加させな
ければならず、冷却装置の大形化,ポンプ動力の増大
化、及び、素子面上温度分布の増大化をもたらすという
問題があった。
In the conventional liquid-cooled semiconductor device, in a substrate on which a large number of semiconductor elements that consume a large amount of power are mounted, the cooling capacity of each semiconductor element is limited and the cooling capacity is increased. In such a case, the amount of refrigerant circulation must be increased, which causes a problem that the cooling device becomes larger, the pump power increases, and the temperature distribution on the element surface increases.

【0005】本発明の目的は、基板に搭載された各半導
体素子の冷却能力を冷媒循環量の増加を伴わずに向上さ
せ、素子面上の温度分布を減少させる冷却装置を備えた
液冷半導体装置を提供することにある。
An object of the present invention is to improve the cooling capacity of each semiconductor element mounted on a substrate without increasing the amount of refrigerant circulation, and to provide a liquid-cooled semiconductor equipped with a cooling device for reducing the temperature distribution on the element surface. To provide a device.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の半導体冷却装置は、基板上に配列された複
数の半導体素子に冷媒を供給する冷媒供給ヘッダと、冷
媒供給ヘッダに突設されそれぞれの半導体素子に冷媒を
噴出する少なくとも一つの噴流ノズルと、それぞれの噴
流ノズルと連通しかつ冷媒供給ヘッダに隣接して設けら
れた冷媒戻りヘッダとよりなる液冷半導体装置におい
て、噴流流出口付近にノズル断面を急縮小する部材を設
けたノズルでそれぞれの噴流ノズルを構成する。
In order to achieve the above object, a semiconductor cooling device of the present invention includes a refrigerant supply header for supplying a refrigerant to a plurality of semiconductor elements arranged on a substrate, and a refrigerant supply header. In a liquid-cooled semiconductor device including at least one jet nozzle that is provided to eject a refrigerant to each semiconductor element, and a refrigerant return header that is provided in communication with each jet nozzle and is provided adjacent to a refrigerant supply header, the jet flow Each jet nozzle is constituted by a nozzle provided with a member that rapidly reduces the nozzle cross section near the outlet.

【0007】[0007]

【作用】本発明の半導体冷却装置によれば、噴流ノズル
の噴流流出口部付近においてノズル断面が急激に絞られ
ているため、冷媒循環量の増加、及び、圧力損失の大幅
な増加を見なくとも、絞り部での縮流効果により冷媒の
噴流速度を増加させることができ、縮流部負圧領域で発
生するキャビテーション気泡が素子面上の噴流衝突域に
於ける沸騰気泡の生成を促進するため、噴流衝突域から
壁噴流域にわたって素子面上で沸騰が行われるようにな
り、素子面上での伝熱形態を同一に、したがって、素子
面上の温度分布の温度分布が均一化される。
According to the semiconductor cooling device of the present invention, since the nozzle cross section is sharply narrowed in the vicinity of the jet outlet of the jet nozzle, the refrigerant circulation amount and the pressure loss are not significantly increased. In addition, the jet speed of the refrigerant can be increased by the contraction effect in the throttle part, and the cavitation bubbles generated in the negative pressure region of the contraction part promote the generation of boiling bubbles in the jet collision region on the element surface. Therefore, boiling is performed on the element surface from the jet collision area to the wall jet area, the heat transfer form on the element surface is the same, and therefore the temperature distribution of the temperature distribution on the element surface is made uniform. .

【0008】[0008]

【実施例】以下、図面を参照しながら、本発明の実施例
について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の一実施例を示す液冷半導体
モジュールの断面図である。基板1上に電気接続部材5
を介して配列された多数の半導体素子(素子)2のそれ
ぞれに、冷媒供給ヘッダ6と連通するノズル3が素子2
の方向に突き出して配置されており、ノズル先端に位置
する冷媒噴出口10部分にはノズル内流路断面をステッ
プ的に急激に縮小するスリーブ状絞り部材4が設けられ
ている。また、冷媒噴出口10と冷媒供給ヘッダ6との
間にはノズル3を横断して冷媒戻りヘッダ7が設けられ
ている。
FIG. 1 is a sectional view of a liquid-cooled semiconductor module showing an embodiment of the present invention. Electrical connection member 5 on substrate 1
The nozzle 3 communicating with the coolant supply header 6 is provided in each of the plurality of semiconductor elements (elements) 2 arranged via the element 2.
The sleeve-shaped throttle member 4 that sharply reduces the cross-section of the flow path in the nozzle stepwise is provided at the portion of the refrigerant ejection port 10 located at the tip of the nozzle. A refrigerant return header 7 is provided across the nozzle 3 between the refrigerant ejection port 10 and the refrigerant supply header 6.

【0010】本発明の動作を図2を参照しながら説明す
る。冷媒供給ヘッダ6よりノズル3に導かれた、例え
ば、フロロカーボンに代表される素子温度より沸点が低
く、かつ、電気絶縁性の過冷却された冷媒は、冷媒噴出
口10部分に設けられた絞り部材4により急縮小,加速
され、また、絞り部材4内部において絞り部材内壁より
冷媒流の一部が剥離した縮流11となって冷媒噴出口1
0より素子2に向かい噴射される。各素子2に衝突した
噴流は90度その流れ方向を変え、素子面上を放射状に
流れるが、この際、顕熱及び潜熱により素子2から吸熱
して加熱され、沸騰気泡を発生しながら下流側へと流れ
る。ここで、冷媒噴出口10部分急縮小の強さの度合い
に応じ、剥離部に剥離渦のみが形成される場合と減圧に
よるキャビテーション気泡が生成される場合とがある
が、何れの場合もスケールの大きな乱れ成分を持った噴
流、或いは、気泡の混じった噴流が素子2に噴射される
ことになり、素子面上での沸騰気泡の生成が促進され、
沸騰熱伝達率が上昇する。また、縮流或いは気泡の混入
により噴流速度が加速され、対流熱伝達率が上昇する。
以上沸騰及び対流熱伝達率の上昇は素子から除去しうる
熱量を増加させ、素子のより高集積化を可能とするた
め、コンピュータの高速動作化が計れるようになる。更
に、噴流衝突域における沸騰気泡生成の促進は、素子面
上全域における活発な沸騰を促すことができ、素子面上
の温度分布を均一化させることができる。この結果、素
子動作のスレッシュホールドを狭い範囲に設定できるよ
うになるため、コンピュータの一層の高速動作化が図れ
るようになる。
The operation of the present invention will be described with reference to FIG. The supercooled refrigerant, which has a boiling point lower than the element temperature represented by, for example, fluorocarbon, and is electrically insulated and guided to the nozzle 3 from the refrigerant supply header 6 is a throttle member provided at the refrigerant ejection port 10 portion. 4, the refrigerant is rapidly contracted and accelerated, and inside the throttle member 4, a part of the refrigerant flow is separated from the inner wall of the throttle member to form a contracted flow 11 which forms the refrigerant outlet 1
It is ejected from 0 toward the element 2. The jet flow colliding with each element 2 changes its flow direction by 90 degrees and flows radially on the element surface, but at this time, the sensible heat and latent heat absorb the heat from the element 2 to heat it and generate boiling bubbles. Flows to. Here, there are cases where only separation vortices are formed in the separation part and cases where cavitation bubbles are generated due to depressurization, depending on the degree of the strength of the refrigerant jet port 10 sudden reduction. A jet with a large turbulence component or a jet with a mixture of bubbles will be jetted to the element 2, promoting the generation of boiling bubbles on the element surface,
Boiling heat transfer rate increases. Further, the jet flow velocity is accelerated by the contraction flow or the inclusion of bubbles, and the convection heat transfer coefficient is increased.
The boiling and the increase in the convective heat transfer coefficient increase the amount of heat that can be removed from the device and enable higher integration of the device, which enables the high speed operation of the computer. Further, promotion of boiling bubble generation in the jet collision region can promote active boiling over the entire element surface, and can make the temperature distribution on the element surface uniform. As a result, the threshold of the element operation can be set within a narrow range, so that the operation speed of the computer can be further increased.

【0011】一方、素子2の端部に達した沸騰気泡を含
む気液二相状態の冷媒は、冷媒戻りヘッダ7に集合させ
られ素子部より排出される。ここで、冷媒噴出口10よ
り噴射された冷媒噴流が、噴流と実質的に直行して流れ
る冷媒戻りヘッダ7内の流れの影響を受けて乱されるこ
とを避けなければならないが、そのためには、冷媒噴出
口10をできる限り素子面に近づけると共に、冷媒戻り
ヘッダ7の流路断面積を大きくし、冷媒戻りヘッダ内の
流速を小さくすることが必要であり、ノズル3の長さを
長く取らなければならない。ここで、ノズル内の冷媒の
流動損失はノズル長さに比例して増加するが、この実施
例に示す冷媒噴出口10部分にのみ絞り部材4を設ける
ことにより、必要な噴流速度を保ちながら絞り部材4以
外のノズルの大部分においてノズル径を太くし、ノズル
内冷媒流速を遅くすることができるため、ノズルでの流
動損失を小さく、従って、冷媒循環ポンプ(図示せず)
の負担を縮小することができる。この結果、冷却装置の
体積を小さくすることができるため、液冷コンピュータ
装置を小さく、従って、伝送距離を短くして演算動作速
度の向上を図れるようになる。また、冷媒循環ポンプ負
担の低減は、ポンプ消費動力の低減を果たす。
On the other hand, the refrigerant in the gas-liquid two-phase state containing the boiling bubbles reaching the end portion of the element 2 is collected in the refrigerant return header 7 and discharged from the element portion. Here, it is necessary to avoid that the refrigerant jet stream injected from the refrigerant jet port 10 is disturbed by the influence of the flow in the refrigerant return header 7 that flows substantially perpendicular to the jet stream, but for that purpose, It is necessary to make the refrigerant ejection port 10 as close as possible to the element surface, increase the flow passage cross-sectional area of the refrigerant return header 7 and reduce the flow velocity in the refrigerant return header, and to lengthen the nozzle 3. There must be. Here, the flow loss of the refrigerant in the nozzle increases in proportion to the length of the nozzle. However, by providing the throttle member 4 only at the refrigerant jet port 10 portion shown in this embodiment, the throttle flow is maintained while maintaining the required jet speed. In most of the nozzles other than the member 4, the nozzle diameter can be made large and the refrigerant flow velocity in the nozzle can be slowed down, so that the flow loss in the nozzle is small, and therefore the refrigerant circulation pump (not shown).
Can reduce the burden of. As a result, the volume of the cooling device can be reduced, so that the liquid cooling computer device can be downsized, and the transmission distance can be shortened to improve the operation speed. Further, the reduction of the burden of the refrigerant circulation pump serves to reduce the power consumption of the pump.

【0012】図3は本発明の他の実施例を示す断面図で
ある。ノズル3の先端に位置する冷媒噴出口10部分の
絞り部材41がオリフィス状リングによって構成されて
おり、その他の構成は図1に示す実施例と同じである。
本実施例では、絞り部材41の下流側における剥離渦の
形成が図1に示す実施例の場合よりも顕著なものとな
る。
FIG. 3 is a sectional view showing another embodiment of the present invention. The throttle member 41 in the portion of the refrigerant ejection port 10 located at the tip of the nozzle 3 is constituted by an orifice ring, and the other configurations are the same as those of the embodiment shown in FIG.
In this embodiment, the formation of the separation vortex on the downstream side of the throttle member 41 becomes more remarkable than in the embodiment shown in FIG.

【0013】図4は本発明の第二の実施例を示す断面図
である。ノズル3の先端に位置する冷媒噴出口10部分
の絞り部材42が断面形状が概略円弧状のリングにより
構成されている。本実施例では、絞り部の形状が滑らか
な曲線で結ばれているため、剥離の形成という点では効
果が低下するが、ノズル外周からの絞り加工により絞り
部材42を形成することができるため、ノズルの製作が
容易になる。
FIG. 4 is a sectional view showing a second embodiment of the present invention. The throttle member 42 at the portion of the refrigerant ejection port 10 located at the tip of the nozzle 3 is formed of a ring having a substantially arcuate cross section. In this embodiment, since the shape of the throttle portion is connected by a smooth curve, the effect is reduced in terms of formation of peeling, but since the throttle member 42 can be formed by drawing from the nozzle outer periphery, The nozzle can be easily manufactured.

【0014】図5は本発明の第三の実施例を示す断面図
である。ノズル3の先端に位置する冷媒噴出口10部分
のノズル壁肉厚tが、t>D/2(Dはノズル内径)の
関係を満たすよう厚く形成し、更に、冷媒噴出口10と
素子2との距離Hを、H<D/4の関係を満たすように
小さく構成している。本実施例では、冷媒噴出口10と
素子2とで形成される狭流路によって冷媒の流れが加速
されるため、静圧の低下によるキャビテーション気泡の
生成が促進される。ここで、本実施例では、ノズル自体
を厚肉のパイプにより構成する場合について示したが、
冷媒噴出口10部分のみを厚肉としても良い。
FIG. 5 is a sectional view showing a third embodiment of the present invention. The thickness t of the nozzle wall at the portion of the refrigerant outlet 10 located at the tip of the nozzle 3 is formed thick so as to satisfy the relationship of t> D / 2 (D is the inner diameter of the nozzle), and the refrigerant outlet 10 and the element 2 are connected to each other. The distance H is set to be small so as to satisfy the relationship of H <D / 4. In the present embodiment, the flow of the refrigerant is accelerated by the narrow flow path formed by the refrigerant ejection port 10 and the element 2, so that the generation of cavitation bubbles due to the decrease in static pressure is promoted. Here, in the present embodiment, the case where the nozzle itself is configured by a thick pipe is shown,
Only the portion of the refrigerant ejection port 10 may be thickened.

【0015】図6は本発明の第四の実施例を示す断面図
である。一つの素子2に対し四本のノズル3が配置され
ており、冷媒噴出口10部分の構成は図1に示す実施例
の場合と同じである。本実施例では、素子面上における
壁噴流の流速分布を一本のノズルの場合よりも均一化さ
せることができるため、より素子面の温度分布を均一化
することができる。ここで、本実施例ではノズルが四本
の場合について図示したが、素子2の大きさに応じ四本
以上或いは以下であっても良い。
FIG. 6 is a sectional view showing a fourth embodiment of the present invention. Four nozzles 3 are arranged for one element 2, and the structure of the refrigerant ejection port 10 is the same as that of the embodiment shown in FIG. In the present embodiment, the flow velocity distribution of the wall jet on the element surface can be made more uniform than in the case of one nozzle, so that the temperature distribution on the element surface can be made more uniform. Here, in the present embodiment, the case where the number of nozzles is four is illustrated, but the number of nozzles may be four or more or less depending on the size of the element 2.

【0016】図7は本発明の第五の実施例を示す断面図
である。素子2側端面が閉じられたノズル31の端面板
に四つの冷媒噴出口101が設けられた構造によりノズ
ルを形成する。本実施例では、図5及び図6に示す本発
明の実施例の効果を合わせて持つ。ここで、本実施例で
は冷媒噴出口101が四個の場合について図示したが、
素子2の大きさに応じ四個以上或いは以下であっても良
い。
FIG. 7 is a sectional view showing a fifth embodiment of the present invention. The nozzle is formed by a structure in which four refrigerant ejection ports 101 are provided on the end face plate of the nozzle 31 whose end face on the element 2 side is closed. This embodiment has the effects of the embodiments of the present invention shown in FIGS. 5 and 6 together. Here, in this embodiment, the case where the number of the refrigerant ejection ports 101 is four is illustrated, but
The number may be four or more or less depending on the size of the element 2.

【0017】図8は本発明の他の実施例を示す断面図で
ある。基板1上に電気接続部材5を介して配列された多
数の半導体素子(素子)2のそれぞれに、冷媒供給ヘッ
ダ6と連通するノズル3が素子2の方向に突き出して配
置されており、ノズル先端に位置する冷媒噴出口10部
分にはノズル内流路断面をステップ状に急激に縮小する
絞り部材4が設けられている。また、各素子間を区切る
所定高さの仕切り部材12が各素子2の周りに素子冷却
室13を形成して設けられ、冷媒噴出口10が素子2か
ら所定寸法へだてて素子冷却室13に内包されている。
また、仕切り部材12によって区切られた素子冷却室1
3と冷媒供給ヘッダ6との間には冷媒戻りヘッダ7が形
成され、各素子冷却室13は素子2と反対側ですべて冷
媒戻りヘッダ7に開口する冷媒排出口14を有してい
る。本実施例では、冷媒戻りヘッダ7内を流れる戻り冷
媒の流れの影響をノズルよりの噴流が受けて乱されるこ
とを防止することができるため、安定した素子の冷却が
できるようになる。
FIG. 8 is a sectional view showing another embodiment of the present invention. A nozzle 3 communicating with the coolant supply header 6 is arranged so as to project in the direction of the element 2 on each of a large number of semiconductor elements (elements) 2 arranged on the substrate 1 via electrical connection members 5, and the nozzle tip is provided. A throttle member 4 that sharply reduces the cross section of the flow path in the nozzle in a stepwise manner is provided at the portion of the refrigerant ejection port 10 located at. Further, a partition member 12 having a predetermined height for partitioning each element is provided by forming an element cooling chamber 13 around each element 2, and the refrigerant ejection port 10 extends from the element 2 to a predetermined dimension and is included in the element cooling chamber 13. Has been done.
Further, the element cooling chamber 1 divided by the partition member 12
A coolant return header 7 is formed between the coolant supply header 3 and the coolant supply header 6, and each element cooling chamber 13 has a coolant discharge port 14 that opens to the coolant return header 7 on the opposite side of the element 2. In the present embodiment, it is possible to prevent the jet flow from the nozzle from being disturbed by the influence of the flow of the return refrigerant flowing through the inside of the refrigerant return header 7, so that stable element cooling can be performed.

【0018】[0018]

【発明の効果】本発明によれば、噴流ノズルの噴流流出
口部付近においてノズル断面が急激に絞られているた
め、冷媒循環量の増加、及び、圧力損失の大幅な増加な
しに、絞り部での縮流効果により冷媒の噴流速度を増加
させることができ、縮流部負圧領域で発生するキャビテ
ーション気泡が素子面上の噴流衝突域に於ける沸騰気泡
の生成を促進するため、噴流衝突域から壁噴流域にわた
って素子面上で沸騰が行われ、素子面上での伝熱形態を
同一に、したがって、素子面上の温度分布が均一化され
る。その結果、素子の一層の高集積化を可能とし、素子
のスレッシュホールドに対する温度マージンを小さく取
ることができ、コンピュータ論理動作の高速化を図るこ
とができる。また、冷媒循環ポンプの負荷を小さくする
ことができるため、ポンプ消費動力を低減できると共
に、冷却装置を小さく、従って、液冷コンピュータ装置
を小さくすることができ、伝送配線長を短くしてコンピ
ュータシステム動作の高速化を図ることができる。
According to the present invention, since the nozzle cross section is sharply narrowed in the vicinity of the jet flow outlet of the jet nozzle, the throttle portion can be increased without increasing the refrigerant circulation amount and the pressure loss. The jet flow velocity of the refrigerant can be increased by the constriction effect in the jet, and the cavitation bubbles generated in the negative pressure region of the contraction part promote the generation of boiling bubbles in the jet collision region on the element surface, so that the jet collision Boiling is performed on the element surface from the region to the wall jet region, the heat transfer form on the element surface is the same, and therefore the temperature distribution on the element surface is uniform. As a result, it is possible to further increase the degree of integration of the element, reduce the temperature margin with respect to the threshold of the element, and speed up the computer logic operation. In addition, since the load of the refrigerant circulation pump can be reduced, the power consumption of the pump can be reduced and the cooling device can be reduced, and therefore the liquid cooling computer device can be reduced, and the transmission wiring length can be shortened to reduce the computer system. It is possible to speed up the operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す斜視断面図。FIG. 1 is a perspective sectional view showing an embodiment of the present invention.

【図2】図1に示す実施例の動作を説明する断面図。FIG. 2 is a sectional view for explaining the operation of the embodiment shown in FIG.

【図3】本発明の一実施例を示すノズル部の断面図。FIG. 3 is a sectional view of a nozzle portion showing an embodiment of the present invention.

【図4】本発明の第二の実施例を示すノズル部の断面
図。
FIG. 4 is a sectional view of a nozzle portion showing a second embodiment of the present invention.

【図5】本発明の第三の実施例を示すノズル部の断面
図。
FIG. 5 is a sectional view of a nozzle portion showing a third embodiment of the present invention.

【図6】本発明の第四の実施例を示すノズル部の断面
図。
FIG. 6 is a sectional view of a nozzle portion showing a fourth embodiment of the present invention.

【図7】本発明の第五の実施例を示すノズル部の断面
図。
FIG. 7 is a sectional view of a nozzle portion showing a fifth embodiment of the present invention.

【図8】本発明の他の実施例を示す斜視断面図。FIG. 8 is a perspective sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…基板、2…半導体素子、3,31…ノズル、4,4
1,42…絞り部材、5…電気接続部材、6…冷媒供給
ヘッダ、7…冷媒戻りヘッダ、8…冷媒供給管、9…冷
媒排出管、10…冷媒噴出口。
1 ... Substrate, 2 ... Semiconductor element, 3, 31 ... Nozzle, 4, 4
1, 42 ... Throttling member, 5 ... Electrical connection member, 6 ... Refrigerant supply header, 7 ... Refrigerant return header, 8 ... Refrigerant supply pipe, 9 ... Refrigerant discharge pipe, 10 ... Refrigerant ejection port.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 秀行 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 高橋 研二 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 西原 淳夫 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 芦分 範行 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 川村 圭三 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideyuki Kimura 502 Jinritsu-cho, Tsuchiura-shi, Ibaraki Prefecture Hiritsu Manufacturing Co., Ltd.Mechanical Research Laboratory (72) Kenji Takahashi 502 Jinre-cho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd. Inside the Mechanical Research Institute (72) Inventor Atsushi Nishihara 502 Jinritsu-cho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd. Inside the Mechanical Research Laboratory (72) Noriyuki Ashibu No. 502 Jinmachi-cho, Tsuchiura-shi, Ibaraki Inside the Hiritsu Manufacturing Mechanical Research Co., Ltd. (72) Inventor Keizo Kawamura 502 Jinritsucho, Tsuchiura City, Ibaraki Prefecture

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】基板上に配列された複数の半導体素子と、
前記半導体素子に冷媒を供給する冷媒供給ヘッダと、前
記冷媒供給ヘッダに突設されそれぞれの前記半導体素子
上面に前記冷媒を噴出する少なくとも一本のノズルと、
それぞれのノズルと連通し、前記冷媒供給ヘッダに隣接
して設けられた冷媒戻りヘッダとよりなる液冷半導体装
置において、前記ノズルの先端部分にはノズル内流路断
面を急激に縮小する絞り部材により構成される急縮小流
路を有する冷媒噴出口が設けられていることを特徴とす
る液冷半導体装置。
1. A plurality of semiconductor elements arranged on a substrate,
A coolant supply header for supplying a coolant to the semiconductor element, and at least one nozzle projecting from the coolant supply header and ejecting the coolant on the upper surface of each semiconductor element,
In a liquid-cooled semiconductor device that is in communication with each nozzle and is provided with a refrigerant return header provided adjacent to the refrigerant supply header, a tip end portion of the nozzle is provided with a throttle member that sharply reduces the cross section of the flow path in the nozzle. A liquid-cooled semiconductor device, characterized in that it is provided with a refrigerant outlet having a sharp reduction flow path.
【請求項2】請求項1において、前記絞り部材がステッ
プ状にノズル内流路を縮小するスリーブ状部材である液
冷半導体装置。
2. The liquid-cooled semiconductor device according to claim 1, wherein the throttle member is a sleeve-shaped member that reduces the flow path in the nozzle in a stepwise manner.
【請求項3】請求項1において、前記絞り部材がオリフ
ィス状リング部材である液冷半導体装置。
3. The liquid-cooled semiconductor device according to claim 1, wherein the throttle member is an orifice ring member.
【請求項4】請求項1において、前記絞り部材が概略円
弧上の断面形状を有するリング状部材である液冷半導体
装置。
4. The liquid-cooled semiconductor device according to claim 1, wherein the throttle member is a ring-shaped member having a substantially arcuate cross-sectional shape.
【請求項5】請求項1において、前記半導体素子の周り
に互いに隣接する半導体素子間を区切る仕切り部材が設
けられ、前記仕切り部材の半導体素子側内部に前記冷媒
噴出口が設けられている液冷半導体装置。
5. A liquid cooling system according to claim 1, wherein a partition member is provided around said semiconductor element to partition adjacent semiconductor elements, and said coolant outlet is provided inside said partition member on the semiconductor element side. Semiconductor device.
【請求項6】請求項1において、前記冷媒が、前記半導
体素子の温度より低い沸点を有する過冷却された液であ
る液冷半導体装置。
6. The liquid-cooled semiconductor device according to claim 1, wherein the refrigerant is a supercooled liquid having a boiling point lower than the temperature of the semiconductor element.
【請求項7】請求項1において、前記冷媒が、パーフロ
ロカーボン系冷媒である液冷半導体装置。
7. The liquid-cooled semiconductor device according to claim 1, wherein the refrigerant is a perfluorocarbon-based refrigerant.
【請求項8】基板上に配列された複数の半導体素子と、
前記半導体素子に冷媒を供給する冷媒供給ヘッダと、前
記冷媒供給ヘッダに突設されそれぞれの半導体素子上面
に前記冷媒を噴出する少なくとも一本のノズルと、それ
ぞれのノズルと連通しかつ前記冷媒供給ヘッダに隣接し
て設けられた冷媒戻りヘッダとよりなる液冷半導体装置
において、前記ノズルの先端に位置する冷媒噴出口の壁
の肉厚t、及び、前記冷媒噴出口と前記半導体素子面と
の距離Hが前記冷媒噴出口口径Dとの関係が t>D/2,H<D/4 …(数1) であることを特徴とする液冷半導体装置。
8. A plurality of semiconductor elements arranged on a substrate,
A coolant supply header for supplying a coolant to the semiconductor element, at least one nozzle projecting from the coolant supply header and ejecting the coolant on the upper surface of each semiconductor element, and the coolant supply header communicating with each nozzle In a liquid-cooled semiconductor device including a refrigerant return header provided adjacent to, a wall thickness t of a refrigerant jet port located at the tip of the nozzle, and a distance between the refrigerant jet port and the semiconductor element surface. The liquid cooling semiconductor device is characterized in that H has a relationship with the refrigerant outlet diameter D of t> D / 2, H <D / 4 (Equation 1).
【請求項9】請求項8において、前記冷媒噴出口部分に
冷媒流路を急縮小する絞り部材を設けた液冷半導体装
置。
9. The liquid-cooled semiconductor device according to claim 8, wherein a throttle member that sharply reduces the refrigerant flow path is provided at the refrigerant outlet portion.
【請求項10】請求項8において、前記冷媒噴出口の壁
の肉厚がノズル全体を通して実質的に同じである液冷半
導体装置。
10. The liquid-cooled semiconductor device according to claim 8, wherein the wall thickness of the refrigerant ejection port is substantially the same throughout the entire nozzle.
【請求項11】請求項8において、前記冷媒噴出口の壁
の肉厚が冷媒噴出口部分のみ所定の肉厚である液冷半導
体装置。
11. The liquid-cooled semiconductor device according to claim 8, wherein a wall thickness of the refrigerant ejection port has a predetermined thickness only in a refrigerant ejection port portion.
【請求項12】基板上に配列された複数の半導体素子
と、前記半導体素子に冷媒を供給する冷媒供給ヘッダ
と、前記冷媒供給ヘッダに突設されそれぞれの前記半導
体素子上面に前記冷媒を噴出する少なくとも一本のノズ
ルと、それぞれのノズルと連通しかつ前記冷媒供給ヘッ
ダに隣接して設けられた冷媒戻りヘッダとよりなる液冷
半導体装置において、前記ノズルの前記半導体素子側端
面に少なくとも一個以上の冷媒噴出口があけられた穴開
き板が密着して設けられていることを特徴とする液冷半
導体装置。
12. A plurality of semiconductor elements arranged on a substrate, a refrigerant supply header for supplying a refrigerant to the semiconductor element, and a refrigerant projected on the refrigerant supply header and ejecting the refrigerant on an upper surface of each semiconductor element. In a liquid-cooled semiconductor device comprising at least one nozzle and a refrigerant return header which communicates with each nozzle and is provided adjacent to the refrigerant supply header, at least one or more nozzles are provided on an end face of the nozzle on the semiconductor element side. A liquid-cooled semiconductor device, wherein a perforated plate having a refrigerant outlet is provided in close contact therewith.
JP5131659A 1993-06-02 1993-06-02 Liquid-cooled semiconductor device Pending JPH06342862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5131659A JPH06342862A (en) 1993-06-02 1993-06-02 Liquid-cooled semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5131659A JPH06342862A (en) 1993-06-02 1993-06-02 Liquid-cooled semiconductor device

Publications (1)

Publication Number Publication Date
JPH06342862A true JPH06342862A (en) 1994-12-13

Family

ID=15063228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5131659A Pending JPH06342862A (en) 1993-06-02 1993-06-02 Liquid-cooled semiconductor device

Country Status (1)

Country Link
JP (1) JPH06342862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220363A (en) * 2014-05-19 2015-12-07 富士通株式会社 Evaporator, cooling apparatus and electronic apparatus
JP2020529725A (en) * 2017-08-08 2020-10-08 ダイナックス セミコンダクター インコーポレイテッドDynax Semiconductor,Inc. Heat dissipation structure of semiconductor device and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220363A (en) * 2014-05-19 2015-12-07 富士通株式会社 Evaporator, cooling apparatus and electronic apparatus
JP2020529725A (en) * 2017-08-08 2020-10-08 ダイナックス セミコンダクター インコーポレイテッドDynax Semiconductor,Inc. Heat dissipation structure of semiconductor device and semiconductor device

Similar Documents

Publication Publication Date Title
US6519151B2 (en) Conic-sectioned plate and jet nozzle assembly for use in cooling an electronic module, and methods of fabrication thereof
US5349831A (en) Apparatus for cooling heat generating members
US5270572A (en) Liquid impingement cooling module for semiconductor devices
CN100399556C (en) Cooling assembly comprising micro-jets
US20040069451A1 (en) Apparatus for heat transfer and critical heat flux enhancement
JPH05109954A (en) Cooling structure for integrated circuit package
JP2007538384A (en) No hotspot spray cooling (relevant application) (Federal sponsored research or development statement) This invention was made with government support under # F33615-03-M-2316 contract ordered by the Air Force Institute . The government has certain rights in the invention.
JP3857060B2 (en) Heating element cooling device
JPH0745762A (en) Semiconductor device cooling device
WO2006062624A1 (en) Spray cooling with spray deflection
US20140284029A1 (en) Cooler
JPH06112385A (en) Cooling structure of semiconductor element
JP2015076575A (en) Cooler
JPH06342862A (en) Liquid-cooled semiconductor device
JP2005045027A (en) Cooling device of semiconductor element
KR200443396Y1 (en) Nozzle for spraying-type cooling tower
JP2007165582A (en) Heat sink
JPH05283573A (en) Semiconductor cooling mechanism
CN214592573U (en) Jet cooling module
JPH0766339A (en) Semiconductor cooling device
EP2878011B1 (en) Heat exchanging apparatus and method for transferring heat
CN114501945A (en) Spraying liquid cooling phase change module for server, control method and manufacturing method thereof
CN218526659U (en) Electronic device and cooling module thereof
US20220142002A1 (en) Fluid cooling device
CN115426842A (en) High-power blade server for parallel flow enhanced gas atomization cooling