JPH06342122A - Endoscope provided with focusing function - Google Patents
Endoscope provided with focusing functionInfo
- Publication number
- JPH06342122A JPH06342122A JP5130774A JP13077493A JPH06342122A JP H06342122 A JPH06342122 A JP H06342122A JP 5130774 A JP5130774 A JP 5130774A JP 13077493 A JP13077493 A JP 13077493A JP H06342122 A JPH06342122 A JP H06342122A
- Authority
- JP
- Japan
- Prior art keywords
- focus
- endoscope
- distance
- focusing
- image pickup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Endoscopes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、フォーカス機能を有し
た内視鏡に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an endoscope having a focusing function.
【0002】[0002]
【従来の技術】従来の内視鏡においては、手術中の繁雑
さを避けるために光学系のピント,絞り,焦点距離等を
一切変えずに使用するものが主流となっている。そのた
め、最低限必要な遠点物点(数10mm)と近点物点が観
察できるように明るさ絞りを予め絞ってかなり広い範囲
の被写界深度を確保し、実用されている。しかしなが
ら、明るさと被写界深度とは相反する関係にあり、更に
広い深度を得ようとすると明るさが減少し、明るさを増
せば深度が不足するという問題が生じる。2. Description of the Related Art In conventional endoscopes, in order to avoid complexity during surgery, the one that is used without changing the focus, aperture, focal length, etc. of an optical system is mainly used. Therefore, the aperture stop is previously narrowed down so that the minimum required far point object (several tens of mm) and the near point object point can be observed, and a considerably wide range of depth of field is secured, which is in practical use. However, the brightness and the depth of field have a contradictory relationship, and the brightness decreases when trying to obtain a wider depth, and the depth becomes insufficient when the brightness increases.
【0003】又、近年、固体撮像素子(以下、CCDと
称す)を用いた電子内視鏡では、更なる高画質化が望ま
れ、多画素化の方向に進んでいる。しかし、内視鏡の場
合、先端部に設けるCCDの大きさには制約があり、画
素数を増やすためには、一画素当たりの単位面積を減ら
さなくてはならない。そして、画素を小さくすると、C
CDの感度が低下し暗くなってしまうし、又、光学的に
は、許容錯乱円径が小さくなる程深度が浅くなってしま
うという、二重の欠点が浮き彫りにされる。つまり、高
画質で且つ実用上問題とならない明るさを確保し得る内
視鏡を得るためには、フォーカス機能を持った光学系が
必要不可欠となる。そこで、特開昭62−229112
号公報ではフォーカスレンズを光軸に対し前後に移動さ
せる方法、又、特開平2−18513号公報ではCCD
ユニットを前後に移動させてフォーカシングを行う方法
が開示されている。Further, in recent years, in electronic endoscopes using a solid-state image pickup device (hereinafter referred to as CCD), further improvement in image quality is desired, and the number of pixels is increasing. However, in the case of an endoscope, there is a limitation on the size of the CCD provided at the distal end portion, and in order to increase the number of pixels, the unit area per pixel must be reduced. Then, if the pixel is made smaller, C
The CD has a double defect that the sensitivity of the CD is lowered and the CD becomes darker, and the optical depth is shallower as the diameter of the circle of confusion is smaller. That is, an optical system having a focus function is indispensable in order to obtain an endoscope capable of ensuring high image quality and brightness that does not pose a practical problem. Then, JP-A-62-229112
In Japanese Patent Application Laid-Open No. 2-18513, a method of moving a focus lens back and forth with respect to an optical axis is disclosed.
A method of focusing by moving the unit back and forth is disclosed.
【0004】一方、ビデオカメラやスチールカメラのよ
うに、内視鏡にも、被写体の距離に応じたピント合わせ
を自動的に行い得うるオートフォーカス機能を設けるこ
とも考えられる。このときの代表的な被写体の距離を求
める焦点検出手段として、赤外線や超音波等を被写体へ
向けてカメラ側から射出しその反射光(波)を利用して
距離を測定する方法(アクティブ型)と、被写体から放
出される自然光だけを捉えて測定する方法(パッシブ
型)との2つに大別される。しかし、前者の方法は、先
端部に赤外線等の発生装置と受光素子とが必要とされる
ため、内視鏡としては実用的ではない。一方、後者の方
法でも、被写体を撮像するCCDとは別にラインセンサ
の如きオートフォーカス用の別センサを組み込む三角測
量方式であるため、やはり前者同様実用的であるとは云
えない。On the other hand, it is conceivable that an endoscope, such as a video camera or a still camera, may be provided with an autofocus function capable of automatically focusing according to the distance of a subject. As a focus detection means for obtaining the distance to a typical subject at this time, a method of emitting infrared rays or ultrasonic waves toward the subject from the camera side and measuring the distance using the reflected light (wave) (active type) And a method of measuring by capturing only natural light emitted from a subject (passive type). However, the former method is not practical as an endoscope because it requires an infrared ray generating device and a light receiving element at the tip. On the other hand, even in the latter method, since it is a triangulation method in which another sensor for autofocusing such as a line sensor is incorporated in addition to the CCD for picking up an image of a subject, it cannot be said to be practical as in the former method.
【0005】そこで、内視鏡等の場合には、映像信号か
ら直接焦点情報を得てオートフォーカスを実行する映像
信号利用方式(所謂山登りサーボ方式)を採用するの
が、先端部を最もコンパクトにまとめられるため最適で
ある。この方式は、図9に示すように、映像信号の高域
成分の電圧レベルが再生画像の精細度に対応しているこ
と、即ち、合焦点において映像信号の高域出力が最大と
なることに着目して、前記映像信号の高域出力が最大レ
ベルとなるように、レンズ位置等を調整してフォーカシ
ングが行われるものである。尚、図9には、異なる被写
体についてのデフォーカス量(ピントのずれ量)と映像
信号高域出力との関係を示している。又、図示されたよ
うに、一般的に被写体によって前記高域出力の曲線は変
化する。Therefore, in the case of an endoscope or the like, a video signal utilizing system (so-called hill climbing servo system) that directly obtains focus information from a video signal and executes autofocus is adopted, so that the tip portion is the most compact. It is optimal because it can be put together. In this method, as shown in FIG. 9, the voltage level of the high frequency component of the video signal corresponds to the definition of the reproduced image, that is, the high frequency output of the video signal becomes maximum at the in-focus point. Focusing attention, focusing is performed by adjusting the lens position and the like so that the high frequency output of the video signal becomes the maximum level. Note that FIG. 9 shows the relationship between the defocus amount (focus shift amount) and the video signal high-frequency output for different subjects. Further, as shown in the figure, the curve of the high frequency output generally changes depending on the subject.
【0006】[0006]
【発明が解決しようとする課題】ところで、通常のオー
トフォーカスでは、焦点検出は当該画面の中央部で行っ
ている。なぜなら、ビデオカメラ等で撮影を行う際、被
写体は画面の中央部に位置するように設定されるのが普
通であり、従って、画面中央部での焦点検出さえ行え
ば、必要な部分にピントの合った画像を得られるためで
ある。しかし、内視鏡の場合、対象となる被写体は平面
とは限らず、特に、大腸や気管支等では管腔状をなして
いる。よって、画面の中央部で測距を実行してしまうと
実際に観察したい部分が画面中央から外れている場合に
は遠方にピントを合わせてしまうことになり、正確な観
察ができなくなるという問題が生じてしまう。By the way, in normal autofocus, focus detection is performed at the center of the screen. This is because, when shooting with a video camera or the like, the subject is usually set so as to be positioned in the center of the screen. Therefore, if focus detection is performed in the center of the screen, the necessary part will be in focus. This is because a matching image can be obtained. However, in the case of an endoscope, the target subject is not limited to a flat surface, and particularly, the large intestine, the bronchus, and the like have a luminal shape. Therefore, if distance measurement is performed in the center of the screen, if the part you actually want to observe is out of the center of the screen, you will be focused far away, which will prevent accurate observation. Will occur.
【0007】又、従来のフォーカス付き内視鏡の場合、
前述のように、単にフォーカスレンズ若しくはCCDユ
ニットの移動によるピント調整であるため、明るさ絞り
の径は変わらずFno. は一定である。そのため、近点側
にピントを合わせると被写界深度が浅くなってしまい、
観察範囲が狭くなる。更に、体腔内は常に動いており、
被写界深度が狭いとたちどころに画像がボケてしまうた
め、診断や処置等で非常に使いにくいものであった。In the case of a conventional endoscope with focus,
As described above, since the focus adjustment is simply performed by moving the focus lens or the CCD unit, the diameter of the aperture stop does not change and F no. Is constant. Therefore, if you focus on the near point side, the depth of field will become shallow,
The observation range becomes narrow. In addition, the body cavity is constantly moving,
If the depth of field is narrow, the image will be blurred instantly, which is very difficult to use for diagnosis and treatment.
【0008】そこで、特開昭63−78119号公報で
は、対物光学系内の明るさ絞り近傍のレンズにレンズ面
内で焦点距離が複数状態に変化するように異なった曲率
を有する面を設け、更に、可変の明るさ絞りを設けるこ
とで、明るさ絞りを絞ったときにベスト距離(正確にピ
ントが合っている物体距離)も近点側へシフトする光学
系が示されている。この光学系を用いれば、近点観察時
はFno. が大きくなり被写界深度が深くなるため、従来
のフォーカス式内視鏡に較べて近接時の観察での不具合
は軽減される。しかし、絞りを開いた遠点観察時に球面
収差が悪化しないようにするためには、遠点観察時と近
点観察時双方の被写界深度の遠点側物体距離を予め合わ
せておく必要がある。そのため、むやみに2つの焦点距
離を離すことができず、フォーカス可能な物体距離の幅
を拡げることが難しい。又、近点観察時の被写界深度を
非常に深くしなければならないため、明るさ絞りの絞り
込み量が大きくなる。その結果、ピントは合っていても
遠方は暗くて観察できないという問題が生じる。Therefore, in Japanese Patent Laid-Open No. 63-78119, a lens near the aperture stop in the objective optical system is provided with a surface having different curvatures so that the focal length changes in a plurality of states in the lens surface. Further, there is shown an optical system in which the best distance (the object distance in focus accurately) is shifted to the near point side by providing a variable aperture stop when the aperture stop is stopped down. When this optical system is used, F no. Becomes large and the depth of field becomes deep during near-point observation, so that the inconvenience in close-up observation is reduced as compared with the conventional focus endoscope. However, in order to prevent the spherical aberration from deteriorating during the far point observation with the diaphragm open, it is necessary to previously match the far point side object distances of the depth of field during both the far point observation and the near point observation. is there. Therefore, the two focal lengths cannot be unnecessarily separated from each other, and it is difficult to widen the width of the focusable object distance. Further, since the depth of field at the time of near point observation must be made very deep, the amount of narrowing down of the aperture stop becomes large. As a result, there is a problem that even if the subject is in focus, the distance is too dark to observe.
【0009】本発明は、上記のような従来技術の有する
問題点に鑑み、フォーカス機能と絞り動作とを適切に連
動させることにより、被写界深度の範囲を無駄なく観察
できる内視鏡を提供することを目的とする。In view of the above problems of the prior art, the present invention provides an endoscope in which the range of depth of field can be observed without waste by appropriately interlocking the focus function and the diaphragm operation. The purpose is to do.
【0010】[0010]
【課題を解決するための手段及び作用】上記目的を達成
するために、本発明による内視鏡は、被写体までの物体
距離の変動に伴い合焦位置を調整できるフォーカス機能
と光学系の明るさ調整できる可変明るさ絞りとを有し、
任意の物体距離での合焦位置にある物体のピント調整が
可能な内視鏡において、被写体までの距離の変動に伴う
フォーカスレンズ若しくは撮像ユニットの変動量を検出
するフォーカス位置検出手段と、その検出手段により検
出された値に基づいてその時の被写界深度の最遠点の明
るさが常に一定となるように明るさ絞りを調整する駆動
装置を備え、又、フォーカシングと同時にFナンバー
が、条件式 0.9A≦Fno. ’≦1.2A を満足するようにしたことを特徴としている。但し、 A=Fno. ×{(fl 2 −ΔxB ’・xB0)/fl 2 } であり、 又、 fl :内視鏡光学系全系の焦点距離 ΔxB ’:物体距離の変化に伴うガウス像面のシフト量 xB0 :前側焦点位置fF からフォーカス前のベスト
物点までの距離(XB0<0) Fno. :フォーカス前のFナンバー Fno. ’:フォーカス後のFナンバー である。In order to achieve the above object, the endoscope according to the present invention has a focus function capable of adjusting a focus position according to a change of an object distance to a subject and a brightness of an optical system. With adjustable brightness diaphragm,
In an endoscope capable of adjusting the focus of an object at a focus position at an arbitrary object distance, focus position detection means for detecting a variation amount of a focus lens or an image pickup unit due to variation of a distance to a subject, and the detection thereof. Based on the value detected by the means, a driving device is provided for adjusting the aperture stop so that the brightness of the farthest point of the depth of field at that time is always constant, and the F-number is set at the same time as the focusing. It is characterized in that the expression 0.9A ≦ F no. '≦ 1.2A is satisfied. However, A = F no 'is {(· x B0 / f l 2, also, f l: focal length of the endoscope optical system as a whole system Δx B × f l 2 -Δx B )}':. Object distance Gaussian image plane shift amount due to change of x x B0 : Distance from front focus position f F to best object point before focus (X B0 <0) F no . : F number before focus F no. ': After focus It is the F number of.
【0011】更に、本発明による装置は、撮像手段に固
体撮像素子を用いたフォーカス機能を有する内視鏡にお
いて、固体撮像素子から得られた映像信号の特定周波数
を抽出し、その抽出周波数成分の電圧レベルを撮像面全
域で積分し、その積分値が最大となるようにフォーカシ
ングを行うオートフォーカス機能を設けたことを特徴と
している。Further, in the apparatus according to the present invention, in an endoscope having a focusing function using a solid-state image pickup device as an image pickup means, a specific frequency of a video signal obtained from the solid-state image pickup device is extracted, and the extracted frequency component of the extracted frequency component is extracted. It is characterized by providing an autofocus function for integrating the voltage level over the entire imaging surface and performing focusing so that the integrated value becomes maximum.
【0012】以下、作用を述べる。先ず、被写界深度と
Fno. との関係式を以下に示す。 (1/xF0)−(1/xB0)=φ(Fno. /fl 2 ) ・・・(1) (1/xB0)−(1/xN0)=φ(Fno. /fl 2 ) ・・・(2) 但し、xB0:前側焦点位置からベスト物点までの距離
(xB <0) xF0:前側焦点位置から被写界深度の最遠点までの距離
(xF <0) xN0:前側焦点位置から被写界深度の最近点までの距離
(xN <0) fl :焦点距離 φ :許容錯乱円径 である。上記式(1),(2)の概念図を図8に示す
(符号の向きは右向きが正)。図中、(a)はベスト物
点,(b)は近点,(c)は遠点での光学系の状態を夫
々示し、61は前側焦点位置,62は対物レンズ,63
は後側焦点位置,64は評価面である。ここで、フォー
カシングにより前側焦点位置から被写界深度の最遠点
(遠点物点)までの距離xF0がxF に変化したとき、以
下の関係式が成立するものとする。 xF =kxF0(k:係数) ・・・(3) 前側焦点位置は内視鏡の場合ではほぼ0と考えられるの
で、対物レンズから遠点物点までの距離の変化量(比)
をそのままkとおける。つまり、前側焦点から物点まで
の距離と物体距離とを同一視することができる。従っ
て、被写体が同一であると仮定すると、フォーカス変更
後の遠点物点距離xF で変更前の遠点物点距離xF0と同
じ明るさを得るには、物体距離とFno. との間には反比
例の関係があるため Fno. ’=(xF0/xF )Fno. =(1/k)Fno. (Fno. ’:フォーカス変更後のFナンバー) ・・・(4) の関係が成立するようにすればよい。The operation will be described below. First, the relational expression between the depth of field and F no. Is shown below. (1 / x F0) - ( 1 / x B0) = φ (F no / f l 2.) ··· (1) (1 / x B0) - (1 / x N0) = φ (F no /. f l 2 ) (2) where x B0 : distance from the front focus position to the best object point (x B <0) x F0 : distance from the front focus position to the farthest point of the depth of field ( x F <0) x N0 : Distance from the front focus position to the closest point of the depth of field (x N <0) f l : Focal length φ: Allowable circle of confusion. A conceptual diagram of the above formulas (1) and (2) is shown in FIG. 8 (the direction of the reference sign is positive to the right). In the figure, (a) shows the state of the optical system at the best object point, (b) shows the near point, and (c) shows the state of the far point, respectively, 61 is the front focal position, 62 is the objective lens, and 63 is the objective lens.
Is the rear focal position, and 64 is the evaluation surface. Here, when the distance x F0 from the front focus position to the farthest point (far point object point) of the depth of field due to focusing changes to x F , the following relational expression holds. x F = kx F0 (k: coefficient) (3) Since the front focus position is considered to be almost 0 in the case of an endoscope, the amount of change in the distance from the objective lens to the far point object point (ratio)
Can be written as k. That is, it is possible to identify the distance from the front focus to the object point and the object distance. Therefore, assuming that the object is identical, to obtain the same brightness as the far point object point distance x F0 before change in far point object point distance x F after the focus change object distance and F no. And the Since there is an inverse proportional relationship between them, F no. '= (X F0 / x F ) F no. = (1 / k) F no. (F no. ': F number after focus change) ・ ・ ・ ( The relationship of 4) should be established.
【0013】このとき、フォーカス変更後の前側焦点位
置からベスト物点までの距離xB 及び被写界深度の最近
点(近点物点)までの距離xN は、上記式(1)乃至
(4)より (1/xF )−(1/xB )=φ(Fno. ’/fl 2 ) =φ(Fno. /k/f1 2) =(1/k)(1/xF0−1/xB0) =(1/xF )−(1/xB0) ∴1/xB =1/kxB0 ∴xB =kxB0 ・・・(5) 同様に xN =kxN0 ・・・(6) の関係が導かれる。以上をまとめると、 Fno. ’=(1/k)Fno. のとき xN =kxN0,xB =kxB0,xF =kxF0 ・・・(7) の関係が成立し、フォーカシングの前後で被写界深度の
遠点側の明るさの一致する光学系が得られる。At this time, the distance x B from the front focus position after focus change to the best object point and the distance x N to the closest point (near object point) of the depth of field are expressed by the above equations (1) to (1). 4) from the (1 / x F) -. . (1 / x B) = φ (F no '/ f l 2) = φ (F no / k / f 1 2) = (1 / k) (1 / x F0 −1 / x B0 ) = (1 / x F ) − (1 / x B0 ) ∴1 / x B = 1 / kx B0 ∴x B = kx B0 (5) Similarly, x N = kx The relationship of N0 ... (6) is derived. Summarizing the above, when F no. '= (1 / k) F no. , The relationship of x N = kx N0 , x B = kx B0 , x F = kx F0 (7) holds, and focusing is performed. An optical system in which the brightness on the far side of the depth of field matches before and after is obtained.
【0014】ここで、ベスト距離の変化に伴うガウス像
面のシフト量の関係式を求める。前側焦点位置からベス
ト物点までの距離xB に対する後側焦点位置からガウス
像面までの距離をxB ’とすると xB ・xB ’=−fl 2 となり、又、フォーカス変更後のガウス像面のシフト量
をΔxB ’とすると ΔxB ’=−fl 2 {(1/xB )−(1/xB0)} =−(fl 2 /xB0){(1/k)−1} ・・・(8) となる。これより、 k=fl 2 /(fl 2 −ΔxB ’・xB0) ・・・(9) という関係式が求まる。Here, the relational expression of the shift amount of the Gaussian image plane due to the change of the best distance is obtained. Distance x B 'to the x B · x B' = -f l 2 next to the rear side focal point position to the Gaussian image plane with respect to the distance x B from the front focal position to the best object point, also Gaussian after focus change Letting the shift amount of the image plane be Δx B ′, Δx B ′ = −f l 2 {(1 / x B ) − (1 / x B0 )} = − (f l 2 / x B0 ) {(1 / k) −1} (8) From this, k = f l 2 / ( f l 2 -Δx B '· x B0) relational expression (9) is obtained.
【0015】式(9)より、フォーカシングにより像面
が移動しても被写界深度の遠点の明るさを一定にするた
めには、 Fno. ’=Fno. (fl 2 −ΔxB ’・xB0)/fl 2 ・・・(10) となるように内視鏡対物系のフォーカス調整とFナンバ
ー変更との関係を設定することが望ましい。但し、実際
にはFno. ’とFno. との関係は厳密に式(10)を満
足しなければならないのではなく、 Fno. (fl 2 −ΔxB ’・xB0)/fl 2 =A とすると、Fno. ’が 0.9A≦Fno. ’≦1.2A の範囲であれば実用上問題となることはない。この範囲
を外れると深度が浅くなり観察範囲が狭くなったり、又
暗くなり過ぎたりして遠点が見えない等の不具合が生じ
ることになる。[0015] Equation (9), in order to make constant the brightness of the far point of even moves the image surface depth of field by focusing, F no. '= F no . (F l 2 -Δx It is desirable to set the relationship between the focus adjustment of the endoscope objective system and the F-number change so that B ′ · x B0 ) / fl 2 (10). However, actually F no. 'And F no. Relationship with strictly rather than having to satisfy Equation (10), F no. ( F l 2 -Δx B' · x B0) / f When l 2 = A, there is no practical problem if F no. 'is in the range of 0.9 A ≤ F no. ' ≤ 1.2 A. Outside this range, the depth becomes shallow and the observation range becomes narrow, or it becomes too dark, and problems such as inability to see far points occur.
【0016】ここで、フォーカシングから明るさ絞りの
駆動までの処理を行う回路の概要を図7に示す。図中、
1は対物レンズ、2は明るさ絞り、3はCCD、71は
フォーカス駆動及びフォーカス位置検出手段、72は演
算・制御手段、73は明るさ絞り駆動手段、74は映像
信号処理手段である。図示しない物体は、対物レンズ1
によりCCD3上に結像される。CCD3の出力信号は
映像信号処理手段74による所定の処理を経て図示しな
いモニター手段に表示される。又、映像信号の一部は演
算・制御手段72に供給される。演算・制御手段72で
はこの映像信号に基づいて焦点検出が行われ、その結果
がフォーカス駆動・フォーカス位置検出手段71に供給
されて、CCD3を前後に移動させることによりフォー
カシングが行われる。このCCD3の移動はフォーカス
駆動・フォーカス位置検出手段71により検出され、フ
ォーカス位置を示す信号が演算・制御手段72に供給さ
れる。演算・制御手段72では、この信号に基づいて遠
点の明るさを一定にするためのFナンバーを算出する。
明るさ絞り駆動手段73では、この信号を受けて明るさ
絞り2の開口を所定の大きさに変更する。尚、ここでは
フォーカシングを自動的に行うようにしてあるが、必ず
しもオートフォーカス機能は必要ではなく、手動により
フォーカス調整をしてもよい。又、CCD3の代わりに
対物レンズ全体又はその一部のレンズを移動させてフォ
ーカシングしてもよいことは云までもない。FIG. 7 shows an outline of a circuit for performing processing from focusing to driving the aperture stop. In the figure,
Reference numeral 1 is an objective lens, 2 is an aperture stop, 3 is a CCD, 71 is a focus drive and focus position detection means, 72 is a calculation / control means, 73 is an aperture stop drive means, and 74 is a video signal processing means. The object not shown is the objective lens 1.
An image is formed on the CCD 3 by. The output signal of the CCD 3 is displayed on a monitor means (not shown) through a predetermined process by the video signal processing means 74. A part of the video signal is supplied to the arithmetic / control means 72. The focus detection is performed by the calculation / control means 72 based on this video signal, and the result is supplied to the focus drive / focus position detection means 71, and the focusing is performed by moving the CCD 3 back and forth. The movement of the CCD 3 is detected by the focus drive / focus position detection means 71, and a signal indicating the focus position is supplied to the calculation / control means 72. The calculation / control means 72 calculates an F number for keeping the brightness of the far point constant based on this signal.
In response to this signal, the aperture stop driving means 73 changes the aperture of the aperture stop 2 to a predetermined size. Although the focusing is automatically performed here, the autofocus function is not always necessary, and the focus may be manually adjusted. Needless to say, instead of the CCD 3, the whole objective lens or a part of the objective lens may be moved for focusing.
【0017】[0017]
【実施例】以下、本発明の実施例を説明する。先ず、図
1,2に基づいてオートフォーカスシステムについて説
明する。内視鏡においては、図面全体の広い範囲が鮮明
に見えないと、診断に時間を要したり、治療の際に誤っ
た場所を傷つけたりする等の不具合が生じやすい。この
ため、観察対象物が画面のどの位置にあっても対応可能
なように測距範囲を撮像面全域とし、そこから得られた
映像信号の高域成分の電圧レベルを撮像面全域で積分
し、その値が最大となるようにレンズ(若しくはCC
D)の位置等を調整してフォーカシングを行うことが好
ましい。このような制御を行う回路の概要を図1に示
す。図中、81はプリアンプ,82はCCD3から得ら
れた映像信号を色差信号と輝度信号Yとに分離する色分
離部,83は色差プロセス部,84は輝度信号Yプロセ
ス部,85はNTSCエンコーダ,86は水平走査線毎
に輝度信号波形のエッジ検出を行う微分回路,87は微
分回路86で得られた映像信号の高域成分の電圧レベル
を撮像面全域での積分を行う積分回路,88はシステム
全体を制御する制御部である。更に、89はCCD3を
駆動する駆動手段である。EXAMPLES Examples of the present invention will be described below. First, the autofocus system will be described with reference to FIGS. In an endoscope, if a wide area of the entire drawing cannot be clearly seen, it may take time to make a diagnosis, and a problem such as damage to an erroneous place during treatment is likely to occur. For this reason, the distance measuring range is set to the entire image pickup surface so that the observation target can correspond to any position on the screen, and the voltage level of the high frequency component of the video signal obtained therefrom is integrated over the entire image pickup surface. , The lens (or CC
Focusing is preferably performed by adjusting the position of D). FIG. 1 shows an outline of a circuit that performs such control. In the figure, 81 is a preamplifier, 82 is a color separation unit that separates a video signal obtained from the CCD 3 into a color difference signal and a luminance signal Y, 83 is a color difference process unit, 84 is a luminance signal Y process unit, and 85 is an NTSC encoder. Reference numeral 86 is a differentiating circuit that detects the edge of the luminance signal waveform for each horizontal scanning line, 87 is an integrating circuit that integrates the voltage level of the high frequency component of the video signal obtained by the differentiating circuit 86 over the entire imaging surface, and 88 is A control unit that controls the entire system. Further, 89 is a driving means for driving the CCD 3.
【0018】上記において、図示しない物体は対物レン
ズ1によりCCD3上に結像される。CCD3の出力信
号はプリアンプ81で増幅された後、色分離部82で輝
度信号Yと色信号Cに分離される。そして色信号Cは色
差プロセス部83で信号処理された後、NTSCエンコ
ーダ85に供給される。一方、輝度信号Yはプロセス部
84で信号処理された後、NTSCエンコーダ85に供
給され、色差信号Y,同期信号等と合成されてNTSC
映像信号となり、図示しないモニターTVに供給され
る。又、輝度信号Yの一部はプロセス部84で処理され
た後微分回路86に供給され、ここでエッヂ検出、即ち
輝度信号中の高域成分の検出が行われる。積分回路87
は画面内でピントが合っている部分が最も広くなるよう
にするために、画面全体にわたって微分回路86の出力
信号を積分する。即ち、シャープにピントが合っている
ところでは物体の輪郭が明瞭に現れるため、エッヂ信号
が大きい程ピントが合っている部分が多いことになるの
である。更に、積分出力は制御部88に供給される。In the above, an object (not shown) is imaged on the CCD 3 by the objective lens 1. The output signal of the CCD 3 is amplified by the preamplifier 81 and then separated into a luminance signal Y and a color signal C by the color separation section 82. Then, the color signal C is subjected to signal processing by the color difference processing unit 83 and then supplied to the NTSC encoder 85. On the other hand, the luminance signal Y is subjected to signal processing by the process unit 84, then supplied to the NTSC encoder 85, and combined with the color difference signal Y, the synchronizing signal, etc.
It becomes a video signal and is supplied to a monitor TV (not shown). A part of the luminance signal Y is processed by the process unit 84 and then supplied to the differentiating circuit 86, where the edge detection, that is, the high frequency component in the luminance signal is detected. Integrating circuit 87
Integrates the output signal of the differentiating circuit 86 over the entire screen so that the in-focus portion of the screen becomes the widest. That is, since the outline of the object appears clearly in a sharply focused area, the larger the edge signal, the more the area in focus. Further, the integrated output is supplied to the control unit 88.
【0019】次に、制御部88からの制御信号を受け
て、駆動手段89はCCD3をその可動範囲全体にわた
って移動せさる。移動とともに上記の動作を行わせる
と、制御部88において積分出力信号の大きさとレンズ
位置との関係を検知することができる。従って、可動範
囲全体の移動が終了した後改めてCCD3を積分出力が
ピークとなった位置まで移動させれば、画面の広いピン
トが合う位置へとオートフォーカス調整を行うことがで
きる。Next, in response to the control signal from the control unit 88, the driving means 89 moves the CCD 3 over its entire movable range. When the above operation is performed along with the movement, the control unit 88 can detect the relationship between the magnitude of the integrated output signal and the lens position. Therefore, if the CCD 3 is moved again to the position where the integrated output reaches the peak after the movement of the entire movable range is completed, the autofocus adjustment can be performed to a position where the wide screen is in focus.
【0020】しかし、上記撮像面全域で測距を行いフォ
ーカシングをする方法にも欠点が存在する。それは、近
点側にフォーカスを合わせたときと遠点側にフォーカス
を合わせたときで、高域成分の電圧レベルの積分値が同
値になってしまう場合である。つまり、内視鏡対物光学
系では、基本的には被写界深度が広いため深度内に被写
体が存在する場合に、その範囲内での積分値は同じ値に
なってしまうのである。こうなると、フォーカス位置を
どこに設定したらよいか求まらず、その設定可能な範囲
内をフォーカスレンズが前後に動き続けることになる。
更に、フォーカスと明るさ絞りとの間には上記式(1
0)の関係が成立しているため、絞りの開閉も前記フォ
ーカスレンズ同様動き続け、画面の明るさが変化し続け
観察しにくいものとなる。However, there is a drawback in the method of performing focusing by performing distance measurement on the entire image pickup surface. That is, the integrated value of the voltage level of the high frequency component becomes the same value when the near point side is focused and when the far point side is focused. That is, in the endoscope objective optical system, since the depth of field is basically wide, when a subject exists within the depth, the integrated value within that range becomes the same value. In this case, it is not possible to determine where to set the focus position, and the focus lens continues to move back and forth within the settable range.
Further, between the focus and the aperture stop, the above formula (1
Since the relationship of 0) is established, opening and closing of the diaphragm continues to move similarly to the focus lens, and the brightness of the screen continues to change, making it difficult to observe.
【0021】そこで、上記のような状態の場合には、遠
点側にフォーカスを合わせるようにオートフォーカスの
駆動装置を設定しておくとよい。これは、特にCCDを
用いた内視鏡において、CCDの感度が低いために絶対
的な明るさ不足の解消に効果を有する。即ち、フォーカ
スを遠点側に合わせるようにフォーカシングを行うこと
によってFno. が小さくなり、従って、明るい観察像が
得られるのである。しかし、常に遠点側にピントを会わ
せていれば良いとは限らない。例えば、大腸等に存在す
るポリープと呼ばれる突起物の表面を観察しようとする
場合、フォーカスを遠点側にシフトするオートフォーカ
スでは、見たい部分の面積が小さいためピントを合わせ
にくいということが発生する虞がある。Therefore, in the case of the above-mentioned state, it is advisable to set the autofocus drive device so as to focus on the far point side. This is particularly effective for an endoscope using a CCD, because it has a low sensitivity of the CCD, and thus an absolute lack of brightness is eliminated. That is, F no. Is reduced by performing focusing so that the focus is on the far point side, and therefore a bright observation image can be obtained. However, it is not always sufficient to focus on the far point side. For example, when trying to observe the surface of a protrusion called a polyp that exists in the large intestine or the like, it may be difficult to focus with autofocus, which shifts the focus to the far point side, because the area of the part you want to see is small. There is a risk.
【0022】そこで、通常は遠点側へのフォーカシング
設定をしておき、マニュアルの微調整ツマミを設け、フ
ォーカス駆動装置を手動で任意に調整できる機構を設け
ることによって近点側へ合焦範囲を任意にシフトできる
ようになる。内視鏡にとっては、従来のオートフォーカ
スの如き完全自動化よりも、任意に微調整が可能なシス
テムが必要とされるのである。Therefore, normally, focusing is set to the far point side, a manual fine adjustment knob is provided, and a mechanism capable of manually adjusting the focus drive device is provided to adjust the focusing range to the near point side. You will be able to shift arbitrarily. For endoscopes, a system capable of arbitrarily fine-tuning is required rather than full automation such as conventional autofocus.
【0023】図2は、本発明の第一実施例による内視鏡
先端部の対物光学系部分であり、(a)は後述する初期
状態(Fno. 2.7)、(b)はFno. 10.8の状態
の光学系を夫々示している。このとき、対物レンズ1中
に絞り径が可変で可動の明るさ絞り2と、対物レンズ1
の後に、CCD3,水晶フィルタ5,色温度補正フィル
タ4を有する撮像ユニット6とが配設されている。又、
対物レンズ1は5つのレンズ成分から構成され、前の2
つ(前群)のレンズはレンズ保持部材10に、又、後の
3つ(後群)のレンズはレンズ保持部材11に夫々取り
付けられている。そして、これらレンズ保持部材は、図
示しない内視鏡本体に固定されている。更に、撮像ユニ
ット6には、光軸7に対し平行して図の矢印の方向に移
動可能な圧電素子8が設けられており、図示しない駆動
装置によりフォーカシングが行われるように構成されて
いる。圧電素子8へ供給する電圧は、図1に示した制御
部88によって決定される。前記駆動装置としては、ワ
イヤによるもの,モータによるもの等様々あるが、特に
駆動の応答性やコンパクト性を考慮して、本実施例で
は、複数個の圧電素子を光軸方向に積層してなる積層圧
電素子を用いている。従って、圧電素子8は駆動電圧が
印加されると光軸方向に伸縮し、撮像ユニット6の位置
を変化させフォーカシングが行われる。圧電素子8の変
化量は印加電圧により決定されるため、フォーカシング
による撮像ユニット6の位置変化ΔxB’(式(8)に
よって示される)は、印加電圧の変化を換算することに
よって求めることができる。更に、それから上記式(1
0)にΔxB ’の値を代入してF no. の変化量を求め、
図示しない駆動回路によって可変明るさ絞り2の絞り径
が調整される。FIG. 2 is an endoscope according to the first embodiment of the present invention.
The objective optical system portion at the tip, (a) is an initial stage described later
State (Fno.2.7) and (b) are Fno.10.8 condition
The respective optical systems are shown. At this time, in the objective lens 1
A variable aperture diaphragm with a variable aperture diameter and an objective lens 1
After CCD 3, crystal filter 5, color temperature correction fill
And an image pickup unit 6 having a camera 4. or,
The objective lens 1 is composed of five lens components,
One lens (front group) is attached to the lens holding member 10, and
The three (rear group) lenses are mounted on the lens holding member 11 respectively.
It is attached. And these lens holding members are
It is fixed to the endoscope body not shown. In addition, the imaging unit
The lens 6 is moved parallel to the optical axis 7 in the direction of the arrow in the figure.
A movable piezoelectric element 8 is provided, and driving (not shown)
Is configured to be focused by the device
There is. The voltage supplied to the piezoelectric element 8 is controlled by the control shown in FIG.
Determined by section 88. As the drive device,
There are various things such as those by ear, those by motor, but especially
In consideration of drive response and compactness,
Is the stacking pressure formed by stacking multiple piezoelectric elements in the optical axis direction.
An electric element is used. Therefore, the driving voltage of the piezoelectric element 8 is
When applied, it expands and contracts in the direction of the optical axis, and the position of the imaging unit 6
Focusing is performed by changing. Change of piezoelectric element 8
Since the amount of charge is determined by the applied voltage, focusing
Change in position of the image pickup unit 6 due to ΔxB’(Equation (8)
Therefore, is to convert the change in applied voltage
Therefore, it can be obtained. Further, from the above formula (1
Δx to 0)BSubstitute the value of ' no.The amount of change in
Aperture diameter of the variable aperture stop 2 by a drive circuit (not shown)
Is adjusted.
【0024】尚、明るさ絞り2としては、カメラ等で周
知のアイリス絞りを使用できる。更に、液晶,エレクト
ロクロミック素子等を利用した電気光学絞りも用いるこ
とが可能で、これらは機械的な移動部分がないため好都
合でもある。又、Fno. を求める演算及び明るさ絞り2
の制御は、何れも制御部88によって制御される。As the aperture stop 2, an iris stop well known in cameras and the like can be used. Further, an electro-optical diaphragm using a liquid crystal, an electrochromic element or the like can be used, which is convenient because there is no mechanical moving part. Also, the calculation for obtaining F no. And the aperture stop 2
The control of each is controlled by the control unit 88.
【0025】ここで、Fno. 2.7で遠点深度1000
mmを初期状態としたときのΔxB’とFno. ,被写界
深度との関係を次の表1に示す。 許容錯乱円径 φ=10μm 焦点距離 fl =1.0 前側焦点位置 fF =0.438 xB0=−(初期状態のベスト距離)−(前側焦点位置) =−35.277−0.438 =−35.718(mm) Here, at F no. 2.7, the far point depth is 1000
Table 1 below shows the relationship between Δx B 'and F no. and depth of field when mm is the initial state. Permissible circle of confusion diameter phi = 10 [mu] m focal length f l = 1.0 front focal point f F = 0.438 x B0 = - (Best Distance initial state) - (the front focal point) = -35.277-0.438 = -35.718 (mm)
【0026】表1において、遠点深度の変化とFno. の
変化との間には式(4)の関係が成立しているため、遠
点での明るさは常に一定であることが分かる。更に本装
置では、前述したようなCCD3から得られた映像信号
の高域成分の電圧レベルを撮像面全域で積分し、その取
り得る値が最大となる撮像ユニット6の位置を求める焦
点検出回路に圧電素子8に駆動電圧を送出する回路を含
めることで、オートフォーカスが可能となる。In Table 1, it can be seen that the brightness at the far point is always constant because the relationship of the equation (4) is established between the change in the far point depth and the change in F no. . Further, in this apparatus, a focus detection circuit for integrating the voltage level of the high frequency component of the video signal obtained from the CCD 3 as described above over the entire image pickup surface and finding the position of the image pickup unit 6 where the value that can be taken is the maximum is provided. By including a circuit for sending the driving voltage to the piezoelectric element 8, autofocusing becomes possible.
【0027】以下、本実施例における初期状態のレンズ
データを示す。 r1 =9999.0000 d1 =0.2538 n1 =1.69680 ν1 =55.52 r2 =0.6493 d2 =0.2115 n2 =1.00000 ν2 =0.00 r3 =1.2525 d3 =0.2221 n3 =1.80518 ν3 =25.43 r4 =-2.7483 d4 =0.1058 n4 =1.53172 ν4 =48.90 r5 =0.8388 d5 =0.2602 n5 =1.00000 ν5 =0.00 r6 =9999.0000 d6 =0.0212 n5 =1.00000 ν6 =0.00 r7 =3.0571 d7 =0.8101 n7 =1.72916 ν7 =54.68 r8 =-1.1269 d8 =0.0254 n8 =1.00000 ν8 =0.00 r9 =-5.3369 d9 =0.1058 n9 =1.84666 ν9 =23.78 r10=1.2443 d10=0.5753 n10=1.51633 ν10=64.15The lens data in the initial state in this embodiment will be shown below. r 1 = 9999.0000 d 1 = 0.2538 n 1 = 1.69680 ν 1 = 55.52 r 2 = 0.6493 d 2 = 0.2115 n 2 = 1.00000 ν 2 = 0.00 r 3 = 1.2525 d 3 = 0.2221 n 3 = 1.80518 ν 3 = 25.43 r 4 = -2.7483 d 4 = 0.1058 n 4 = 1.53172 ν 4 = 48.90 r 5 = 0.8388 d 5 = 0.2602 n 5 = 1.00000 ν 5 = 0.00 r 6 = 9999.0000 d 6 = 0.0212 n 5 = 1.0000 ν 6 = 0.00 r 7 = 3.0571 d 7 = 0.8101 n 7 = 1.72916 ν 7 = 54.68 r 8 = -1.1269 d 8 = 0.0254 n 8 = 1.00000 ν 8 = 0.00 r 9 = -5.3369 d 9 = 0.1058 n 9 = 1.84666 ν 9 = 23.78 r 10 = 1.2443 d 10 = 0.5753 n 10 = 1.51633 ν 10 = 64.15
【0028】r11=-1.5550 d11=0.4547 n11=1.00000 ν11=0.00 r12=1.7422 d12=0.6345 n12=1.58913 ν12=60.97 r13=9999.0000 d13=0.6607 n13=1.00000 ν13=0.00 r14=9999.0000 d14=0.3137 n14=1.52000 ν14=74.00 r15=9999.0000 d15=0.5436 n15=1.54869 ν15=45.55 r16=9999.0000 d16=0.1058 n16=1.51633 ν16=64.15 r17=9999.0000 d17=0.0000 n17=1.00000 ν17=0.00R 11 = -1.5550 d 11 = 0.4547 n 11 = 1.00000 ν 11 = 0.00 r 12 = 1.7422 d 12 = 0.6345 n 12 = 1.58913 ν 12 = 60.97 r 13 = 9999.0000 d 13 = 0.6607 n 13 = 1.0000 ν 13 = 0.00 r 14 = 9999.0000 d 14 = 0.3137 n 14 = 1.52000 ν 14 = 74.00 r 15 = 9999.0000 d 15 = 0.5436 n 15 = 1.54869 ν 15 = 45.55 r 16 = 9999.0000 d 16 = 0.1058 n 16 = 1.51633 ν 16 = 64.15 r 17 = 9999.0000 d 17 = 0.0000 n 17 = 1.00000 ν 17 = 0.00
【0029】次に、図3,4に基づいて本発明による第
二実施例を説明する。本実施例は、映像信号の高域成分
の電圧レベルがある一定値以上である領域を取り出し、
当該領域の面積が一番広くなるようにフォーカシングを
行うものである。図3において、CCD3から得られた
映像信号は色分離部82により色差信号と輝度信号Yに
分離され、更に、微分回路86により水平走査線毎に輝
度信号波形(図3中のA)のエッジ検出(ΔY=dY/
dt)が行われる。ここで得られた信号波形(図3中の
B)をリミッタ回路91にて低出力レベル(図3中のvi
の波形に相当)をカットした信号波形(図3中のC)を
出力させ、これをカウンタ92により検出する。このラ
インの場合、 となり、これを1フィールドについて行う。即ち、 を求め、この値が最大となるようにレンズ1(若しくは
CCD3)を駆動させるものである。Next, a second embodiment according to the present invention will be described with reference to FIGS. In this embodiment, an area in which the voltage level of the high frequency component of the video signal is a certain value or more is taken out,
Focusing is performed so that the area of the region becomes the largest. In FIG. 3, a video signal obtained from the CCD 3 is separated into a color difference signal and a luminance signal Y by a color separation section 82, and further, a differentiation circuit 86 separates an edge of a luminance signal waveform (A in FIG. 3) for each horizontal scanning line. Detection (ΔY = dY /
dt) is performed. The signal waveform (B in FIG. 3) obtained here is output to a low output level (vi in FIG. 3) by the limiter circuit 91.
A signal waveform (C in FIG. 3) obtained by cutting (corresponding to the waveform of 1) is output, and this is detected by the counter 92. For this line, And this is done for one field. That is, And the lens 1 (or CCD 3) is driven so that this value becomes maximum.
【0030】図4は、本発明による第二実施例における
硬性鏡光学系21(途中リレー系の図は省略)の後に外
付けテレビカメラ23を配設した光学系を示している。
又、図5は、硬性鏡接眼レンズ22の後に配設された外
付けテレビカメラ23の部分だけを抜き出して示したも
のであり、図中、(a)は後述する初期状態(F
no.6.3)、(b)はFno. 12.5での近点側へフ
ォーカスされた状態の光学系を夫々示している。外付け
テレビカメラ23は、可変絞り2を含む結像光学系9と
CCD3,水晶フィルタ5,色温度補正フィルタ4を有
する撮像ユニット6とにより構成されている。本来、硬
性鏡側には明るさ絞りは存在せず、リレー光学系の径に
よって明るさが決定されるため、外付けカメラ側に明る
さ絞りの代用となり得る可変絞り2を結像光学系9の瞳
位置の近傍に配設している。この位置に絞りを配設する
ことで、絞りを開閉しても周辺の光量は変わらず、中心
から周辺にかけて一様に絞り込むことが可能となる。
尚、撮像ユニット6の駆動装置,その他の方式等は第一
実施例に示したものと同様である。FIG. 4 shows an optical system in which an external television camera 23 is provided after the rigid mirror optical system 21 (the intermediate relay system is not shown) in the second embodiment of the present invention.
Further, FIG. 5 shows only an external television camera 23 disposed after the rigid endoscope eyepiece 22, and (a) in the drawing shows an initial state (F
Nos. 6.3) and (b) show the optical systems focused on the near point side in F no. 12.5, respectively. The external television camera 23 is composed of an imaging optical system 9 including a variable diaphragm 2, and an image pickup unit 6 having a CCD 3, a crystal filter 5, and a color temperature correction filter 4. Originally, there is no aperture stop on the rigid endoscope side, and the brightness is determined by the diameter of the relay optical system. Therefore, the variable aperture stop 2 that can be used as a substitute for the aperture stop on the external camera side is provided with the imaging optical system 9. It is arranged near the pupil position. By disposing the diaphragm at this position, the amount of light in the periphery does not change even when the diaphragm is opened and closed, and it becomes possible to uniformly contract from the center to the periphery.
The driving device of the image pickup unit 6 and other methods are the same as those shown in the first embodiment.
【0031】ここで、Fno. 6.3で遠点深度200m
mを初期状態としたときのΔxB ’とFno. ,被写界深
度との関係を次の表2に示す。 許容錯乱円径 φ=10μm 焦点距離 fl =1.0 前側焦点位置 fF =0.47 xB0=−14.71(mm) At F no. 6.3, the far point depth is 200 m.
The following Table 2 shows the relationship between Δx B ', F no. and depth of field when m is the initial state. Permissible circle of confusion diameter phi = 10 [mu] m focal length f l = 1.0 front focal point f F = 0.47 x B0 = -14.71 (mm)
【0032】以下、本実施例における初期状態のレンズ
データを示す。 (硬性鏡) r1 =9999.0000 d1 =0.1069 n1 =1.51633 ν1 =64.15 r2 =9999.0000 d2 =0.0428 n2 =1.00000 ν2 =0.00 r3 =9999.0000 d3 =0.2352 n3 =1.78472 ν3 =25.71 r4 =-1.7539 d4 =0.0855 n4 =1.69350 ν4 =53.23 r5 =0.3846 d5 =0.2352 n5 =1.00000 ν5 =0.00 r6 =9999.0000 d6 =1.3962 n5 =1.78800 ν6 =47.43 r7 =9999.0000 d7 =0.0747 n7 =1.80610 ν7 =40.95 r8 =9999.0000 d8 =0.5475 n8 =1.80610 ν8 =40.95 r9 =-1.0616 d9 =0.1411 n9 =1.00000 ν9 =0.00 r10=5.4691 d10=0.6778 n10=1.65844 ν10=50.86The lens data in the initial state in this embodiment will be shown below. (Rigid endoscope) r 1 = 9999.0000 d 1 = 0.1069 n 1 = 1.51633 ν 1 = 64.15 r 2 = 9999.0000 d 2 = 0.0428 n 2 = 1.00000 ν 2 = 0.00 r 3 = 9999.0000 d 3 = 0.2352 n 3 = 1.78472 ν 3 = 25.71 r 4 = -1.7539 d 4 = 0.0855 n 4 = 1.69350 ν 4 = 53.23 r 5 = 0.3846 d 5 = 0.2352 n 5 = 1.0000 ν 5 = 0.00 r 6 = 9999.0000 d 6 = 1.3962 n 5 = 1.78800 ν 6 = 47.43 r 7 = 9999.0000 d 7 = 0.0747 n 7 = 1.80610 ν 7 = 40.95 r 8 = 9999.0000 d 8 = 0.5475 n 8 = 1.80610 ν 8 = 40.95 r 9 = -1.0616 d 9 = 0.1411 n 9 = 1.00000 ν 9 = 0.00 r 10 = 5.4691 d 10 = 0.6778 n 10 = 1.65844 ν 10 = 50.86
【0033】r11=-0.6367 d11=0.1668 n11=1.80518 ν11=25.43 r12=-4.4618 d12=1.7682 n12=1.00000 ν12=0.00 r13=2.6427 d13=2.3284 n13=1.62004 ν13=36.25 r14=-2.6427 d14=0.2437 n14=1.00000 ν14=0.00 r15=9999.0000 d15=9.1298 n15=1.62004 ν15=36.25 r16=9999.0000 d16=0.5516 n16=1.00000 ν16=0.00 r17=3.0205 d17=0.2138 n17=1.80610 ν17=40.95 r18=1.3799 d18=0.6414 n18=1.65160 ν18=58.67 r19=-5.4050 d19=0.3849 n19=1.00000 ν19=0.00 r20=9999.0000 d20=9.3436 n20=1.62004 ν20=36.25R 11 = -0.6367 d 11 = 0.1668 n 11 = 1.80518 ν 11 = 25.43 r 12 = -4.4618 d 12 = 1.7682 n 12 = 1.00000 ν 12 = 0.00 r 13 = 2.6427 d 13 = 2.3284 n 13 = 1.62004 ν 13 = 36.25 r 14 = -2.6427 d 14 = 0.2437 n 14 = 1.00000 ν 14 = 0.00 r 15 = 9999.0000 d 15 = 9.1298 n 15 = 1.62004 ν 15 = 36.25 r 16 = 9999.0000 d 16 = 0.5516 n 16 = 1.00000 ν 16 = 0.00 r 17 = 3.0205 d 17 = 0.2138 n 17 = 1.80610 ν 17 = 40.95 r 18 = 1.3799 d 18 = 0.6414 n 18 = 1.65160 ν 18 = 58.67 r 19 = -5.4050 d 19 = 0.3849 n 19 = 1.00000 ν 19 = 0.00 r 20 = 9999.0000 d 20 = 9.3436 n 20 = 1.62004 ν 20 = 36.25
【0034】r21=-4.0473 d21=1.7105 n21=1.00000 ν21=0.00 r22=4.0473 d22=9.3436 n22=1.62004 ν22=36.25 r23=9999.0000 d23=0.5516 n23=1.00000 ν23=0.00 r24=3.0205 d24=0.2138 n24=1.80610 ν24=40.95 r25=1.3799 d25=0.6414 n25=1.65160 ν25=58.67 r26=-5.4050 d26=0.3849 n26=1.00000 ν26=0.00 r27=9999.0000 d27=9.3436 n27=1.62004 ν27=36.25 r28=-4.0473 d28=1.7105 n28=1.00000 ν28=0.00 r29=4.0473 d29=9.3436 n29=1.62004 ν29=36.25 r30=9999.0000 d30=0.5516 n30=1.00000 ν30=0.00R 21 = -4.0473 d 21 = 1.7105 n 21 = 1.00000 v 21 = 0.00 r 22 = 4.0473 d 22 = 9.3436 n 22 = 1.62004 v 22 = 36.25 r 23 = 9999.0000 d 23 = 0.5516 n 23 = 1.00000 v 23 = 0.00 r 24 = 3.0205 d 24 = 0.2138 n 24 = 1.80610 ν 24 = 40.95 r 25 = 1.3799 d 25 = 0.6414 n 25 = 1.65160 ν 25 = 58.67 r 26 = -5.4050 d 26 = 0.3849 n 26 = 1.00000 ν 26 = 0.00 r 27 = 9999.0000 d 27 = 9.3436 n 27 = 1.62004 v 27 = 36.25 r 28 = -4.0473 d 28 = 1.7105 n 28 = 1.00000 v 28 = 0.00 r 29 = 4.0473 d 29 = 9.3436 n 29 = 1.62004 v 29 = 36.25 r 30 = 9999.0000 d 30 = 0.5516 n 30 = 1.0000 ν 30 = 0.00
【0035】r31=3.0205 d31=0.2138 n31=1.80610 ν31=40.95 r32=1.3799 d32=0.6414 n32=1.65160 ν32=58.67 r33=-5.4050 d33=0.3849 n33=1.00000 ν33=0.00 r34=9999.0000 d34=9.3436 n34=1.62004 ν34=36.25 r35=-3.0205 d35=5.2897 n35=1.00000 ν35=0.00 r36=6.9773 d36=0.1860 n36=1.78472 ν36=25.71 r37=2.3519 d37=0.3891 n37=1.67003 ν37=47.25 r38=-4.5914 d38=0.4276 n38=1.00000 ν38=0.00 r39=9999.0000 d39=0.2138 n39=1.51633 ν39=64.15 r40=9999.0000 d40=1.2380 n40=1.00000 ν40=0.00R 31 = 3.0205 d 31 = 0.2138 n 31 = 1.80610 ν 31 = 40.95 r 32 = 1.37799 d 32 = 0.6414 n 32 = 1.65160 ν 32 = 58.67 r 33 = -5.4050 d 33 = 0.3849 n 33 = 1.0000 ν 33 = 0.00 r 34 = 9999.0000 d 34 = 9.3436 n 34 = 1.62004 ν 34 = 36.25 r 35 = -3.0205 d 35 = 5.2897 n 35 = 1.00000 ν 35 = 0.00 r 36 = 6.9773 d 36 = 0.1860 n 36 = 1.78472 ν 36 = 25.71 r 37 = 2.3519 d 37 = 0.3891 n 37 = 1.67003 ν 37 = 47.25 r 38 = -4.5914 d 38 = 0.4276 n 38 = 1.00000 ν 38 = 0.00 r 39 = 9999.0000 d 39 = 0.2138 n 39 = 1.51633 ν 39 = 64.15 r 40 = 9999.0000 d 40 = 1.2380 n 40 = 1.0000 ν 40 = 0.00
【0036】(以下、外付けテレビカメラ) r41=9999.0000 d41=0.2138 n41=1.51633 ν41=64.15 r42=9999.0000 d42=0.6719 n42=1.00000 ν42=0.00 r43=1.2463 d43=0.4854 n43=1.71300 ν43=53.84 r44=-23.0552 d44=0.3806 n44=1.00000 ν44=0.00 r45=-1.7967 d45=0.3143 n45=1.75520 ν45=27.51 r46=1.0802 d46=0.7056 n46=1.00000 ν46=0.00 r47=6.3720 d47=0.4062 n47=1.59270 ν47=35.29 r48=-2.1668 d48=1.8068 n48=1.00000 ν48=0.00 r49=9999.0000 d49=0.2138 n49=1.51633 ν49=64.15 r50=9999.0000 d50=0.1710 n50=1.00000 ν50=0.00(Hereinafter, external TV camera) r 41 = 9999.0000 d 41 = 0.2138 n 41 = 1.51633 ν 41 = 64.15 r 42 = 9999.0000 d 42 = 0.6719 n 42 = 1.0000 ν 42 = 0.00 r 43 = 1.463 d 43 = 0.4854 n 43 = 1.71300 ν 43 = 53.84 r 44 = -23.0552 d 44 = 0.3806 n 44 = 1.00000 ν 44 = 0.00 r 45 = -1.7967 d 45 = 0.3143 n 45 = 1.75520 ν 45 = 27.51 r 46 = 1.0802 d 46 = 0.7056 n 46 = 1.00000 ν 46 = 0.00 r 47 = 6.3720 d 47 = 0.4062 n 47 = 1.59270 ν 47 = 35.29 r 48 = -2.1668 d 48 = 1.8068 n 48 = 1.0000 ν 48 = 0.00 r 49 = 9999.0000 d 49 = 0.2138 n 49 = 1.51633 ν 49 = 64.15 r 50 = 9999.0000 d 50 = 0.1710 n 50 = 1.0000 ν 50 = 0.00
【0037】r51=9999.0000 d51=1.9179 n51=1.54869 ν51=45.55 r52=9999.0000 d52=0.2138 n52=1.52630 ν52=51.17 r53=9999.0000 d53=0.0855 n53=1.51633 ν53=64.15 r54=9999.0000 d54=0.0000 n54=1.00000 ν54=0.00R 51 = 9999.0000 d 51 = 1.9179 n 51 = 1.54869 v 51 = 45.55 r 52 = 9999.0000 d 52 = 0.2138 n 52 = 1.52630 ν 52 = 51.17 r 53 = 9999.0000 d 53 = 0.0855 n 53 = 1.51633 ν 53 = 64.15 r 54 = 9999.0000 d 54 = 0.0000 n 54 = 1.0000 ν 54 = 0.00
【0038】図6は、本発明の第三実施例であり、プリ
ズム32,33を用いてCCD3を斜めに配設した光学
系を示している。図中、(a)は後述する初期状態(F
NO.5.0)、(b)はFno. 20.0でフォーカスレ
ンズスニット31を近点側へフォーカスした状態の光学
系を夫々示している。これは、大きいCCDを使用する
ときに用いられる構成である。しかし、この場合、撮像
ユニットとしてCCD3を光軸方向に移動させることは
困難であるため、フォーカスレンズとしての光学系の焦
点距離fl は殆ど変化せずフォーカス位置のみ変えるこ
とのできるレンズユニット31を光軸方向に対して前後
に駆動させてフォーカシングを行う。CCDを移動させ
てフォーカシングを行う場合とは異なり、レンズユニッ
トによってフォーカシングをする場合は、ベスト距離の
変化に伴うガウス像面の変位量ΔxB ’とレンズユニッ
ト31の変位量ΔxB2’とは符号が逆になる。よって、
近点側へフォーカスする際、CCDユニットを動かす場
合には物体側から離れる方向(+方向)へ移動させる
が、レンズユニットを動かす場合には物体側(−方向)
へ移動させてフォーカシングを行うことになる。尚、フ
ォーカスレンズユニット31の駆動方法その他オートフ
ォーカスについては、第一実施例と同様である。FIG. 6 is a third embodiment of the present invention and shows an optical system in which the CCD 3 is obliquely arranged using prisms 32 and 33. In the figure, (a) is an initial state (F
No. 5.0) and (b) show the optical systems in the state where the focus lens unit 31 is focused to the near point side with F no. 20.0. This is the configuration used when using a large CCD. However, in this case, since it is difficult to move the CCD 3 as the image pickup unit in the optical axis direction, the lens unit 31 capable of changing only the focus position without substantially changing the focal length f l of the optical system as the focus lens. Focusing is performed by driving it back and forth with respect to the optical axis direction. Unlike the case where the CCD is moved for focusing, when the focusing is performed by the lens unit, the displacement amount Δx B 'of the Gaussian image plane and the displacement amount Δx B2 ' of the lens unit 31 due to the change of the best distance are the same. Is reversed. Therefore,
When focusing on the near point side, when moving the CCD unit, it is moved away from the object side (+ direction), but when moving the lens unit, the object side (-direction).
To move to and focus. The driving method of the focus lens unit 31 and other autofocus are the same as those in the first embodiment.
【0039】ここで、Fno. 5.0で遠点深度200m
mを初期状態としたときのΔxB ’,ΔxB2’,
Fno. ,被写界深度夫々の関係を次の表3に示す。 許容錯乱円径 φ=10μm 焦点距離 fl =1.0 前側焦点位置 fF =0.433 xB0=−18.186(mm) Here, at F no. 5.0, the far point depth is 200 m.
Δx B ', Δx B2 ' when m is the initial state,
The relationship between F no. And depth of field is shown in Table 3 below. Allowable circle of confusion φ = 10 μm Focal length f l = 1.0 Front focus position f F = 0.433 x B0 = -18.186 (mm)
【0040】以下、本実施例における初期状態のレンズ
データを示す。 r1 =9999.0000 d1 =0.1836 n1 =1.88300 ν1 =40.78 r2 =0.7810 d2 =1.1854 n2 =1.00000 ν2 =0.00 r3 =11.7498 d3 =0.3698 n3 =1.78590 ν3 =44.18 r4 =1.2730 d4 =0.9179 n4 =1.64769 ν4 =33.80 r5 =-1.6084 d5 =0.2439 n5 =1.00000 ν5 =0.00 r6 =9999.0000 d6 =0.1311 n5 =1.51633 ν6 =64.15 r7 =9999.0000 d7 =0.4373 n7 =1.00000 ν7 =0.00 r8 =4.0241 d8 =0.3672 n8 =1.53256 ν8 =45.91 r9 =-0.9415 d9 =0.1311 n9 =1.84666 ν9 =23.78 r10=-1.5783 d10=0.0262 n10=1.00000 ν10=0.00The lens data in the initial state in this embodiment will be shown below. r 1 = 9999.0000 d 1 = 0.1836 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7810 d 2 = 1.1854 n 2 = 1.00000 ν 2 = 0.00 r 3 = 11.7498 d 3 = 0.3698 n 3 = 1.78590 ν 3 = 44.18 r 4 = 1.2730 d 4 = 0.9179 n 4 = 1.64769 ν 4 = 33.80 r 5 = -1.6084 d 5 = 0.2439 n 5 = 1.00000 ν 5 = 0.00 r 6 = 9999.0000 d 6 = 0.1311 n 5 = 1.51633 ν 6 = 64.15 r 7 = 9999.0000 d 7 = 0.4373 n 7 = 1.00000 ν 7 = 0.00 r 8 = 4.0241 d 8 = 0.3672 n 8 = 1.53256 ν 8 = 45.91 r 9 = -0.9415 d 9 = 0.1311 n 9 = 1.84666 ν 9 = 23.78 r 10 = - 1.5783 d 10 = 0.0262 n 10 = 1.00000 ν 10 = 0.00
【0041】r11=1.8500 d11=0.4144 n11=1.72916 ν11=54.68 r12=-1.8500 d12=0.1311 n12=1.72825 ν12=28.46 r13=1.2754 d13=0.2656 n13=1.00000 ν13=0.00 r14=9999.0000 d14=0.6740 n14=1.54869 ν14=45.55 r15=9999.0000 d15=0.3934 n15=1.51633 ν15=64.15 r16=9999.0000 d16=2.0241 n16=1.69500 ν16=42.16 r17=9999.0000 d17=0.0003 n17=1.00000 ν17=0.00 r18=9999.0000 d18=0.2838 n18=1.69500 ν18=42.16 r19=9999.0000 d19=0.0004 n19=1.00000 ν19=0.00 r20=9999.0000 d20=0.1311 n20=1.51633 ν20=64.15 r21=9999.0000 d21=0.0000 n21=1.00000 ν21=0.00R 11 = 1.8500 d 11 = 0.4144 n 11 = 1.72916 v 11 = 54.68 r 12 = -1.8500 d 12 = 0.1311 n 12 = 1.72825 v 12 = 28.46 r 13 = 1.2754 d 13 = 0.2656 n 13 = 1.00000 v 13 = 0.00 r 14 = 9999.0000 d 14 = 0.6740 n 14 = 1.54869 ν 14 = 45.55 r 15 = 9999.0000 d 15 = 0.3934 n 15 = 1.51633 ν 15 = 64.15 r 16 = 9999.0000 d 16 = 2.0241 n 16 = 1.69500 ν 16 = 42.16 r 17 = 9999.0000 d 17 = 0.0003 n 17 = 1.00000 ν 17 = 0.00 r 18 = 9999.0000 d 18 = 0.2838 n 18 = 1.69500 ν 18 = 42.16 r 19 = 9999.0000 d 19 = 0.0004 n 19 = 1.00000 ν 19 = 0.00 r 20 = 9999.0000 d 20 = 0.1311 n 20 = 1.51633 ν 20 = 64.15 r 21 = 9999.0000 d 21 = 0.0000 n 21 = 1.00000 ν 21 = 0.00
【0042】但し、上記各実施例中のr1 ,r2 ,・・
・・は各レンズ面の曲率半径、d1,d2 ,・・・・は
各レンズ間の間隔、n1 ,n2 ・・・・は各レンズの屈
折率、ν1 ,ν2 ,・・・・は各レンズのアツベ数であ
る。又、上記各実施例に記載の何れの装置についても、
オートフォーカス装置及び可変絞りを簡略化するために
フォーカシングのステップを荒くする、即ち、2〜4段
階の切換え方式にすることも可能である。その場合、遠
点側での明るさについては、光源側で調光して対応させ
ることになる。However, in the above embodiments, r 1 , r 2 , ...
··· is the radius of curvature of each lens surface, d 1 , d 2 , ··· is the distance between the lenses, n 1 , n 2 ··· is the refractive index of each lens, ν 1 , ν 2 , · · ... is the Abbe number of each lens. Further, for any of the devices described in the above embodiments,
It is also possible to roughen the focusing step in order to simplify the autofocus device and the variable aperture, that is, to adopt a switching system of 2 to 4 steps. In that case, the brightness on the far point side is adjusted by dimming on the light source side.
【0043】[0043]
【発明の効果】本発明は、上述のように構成されている
ので、フォーカシングとFナンバーの制御とを連動させ
ることにより、ピントが合った範囲を無駄なく観察する
ことができるという実用上重要な利点を有する。Since the present invention is constructed as described above, it is practically important that the focusing range can be observed without waste by linking focusing and F number control. Have advantages.
【図1】本発明による第一実施例の回路構成図である。FIG. 1 is a circuit configuration diagram of a first embodiment according to the present invention.
【図2】本発明による第一実施例の光学系の構成を示
し、(a)は初期状態(Fno. 2.7)、(b)はF
no. 10.8で撮像ユニット6が近点側へフォーカスさ
れた状態を夫々示した図である。FIG. 2 shows a configuration of an optical system of a first embodiment according to the present invention, (a) is an initial state (F no. 2.7), and (b) is F.
no. it is a diagram of a state where the imaging unit 6 is focused to the near point side shown respectively at 10.8.
【図3】本発明による第二実施例の回路構成図である。FIG. 3 is a circuit configuration diagram of a second embodiment according to the present invention.
【図4】本発明による第二実施例の光学系の構成を示し
た図である。FIG. 4 is a diagram showing a configuration of an optical system of a second embodiment according to the present invention.
【図5】第二実施例の光学系中の外付けテレビカメラ部
の構成を示し、(a)は初期状態(Fno. 6.3)、
(b)はFno. 12.5で近点側へフォーカスされた状
態を夫々示した図である。FIG. 5 shows a configuration of an external television camera unit in the optical system of the second embodiment, (a) is an initial state (F no. 6.3),
(B) is a figure which respectively showed the state focused on the near point side by F no. 12.5.
【図6】本発明による第三実施例の光学系の構成を示
し、(a)は初期状態(Fno. 5.0)、(b)はF
no. 20.0でフォーカスレンズユニット31を近点側
へフォーカスされた状態を夫々示した図である。FIG. 6 shows a configuration of an optical system of a third embodiment according to the present invention, (a) is an initial state (F no. 5.0), and (b) is F.
no. diagrams focus state the focus lens unit 31 to the near point side shown respectively at 20.0.
【図7】内視鏡光学系において、フォーカシングから明
るさ絞りの駆動までを制御し得る装置の回路構成図であ
る。FIG. 7 is a circuit configuration diagram of an apparatus capable of controlling from focusing to driving an aperture stop in an endoscope optical system.
【図8】式(1),(2)に基づき、(a)はベスト物
点、(b)は近点、(c)は遠点での夫々光学系の状態
を示した図である。FIG. 8 is a diagram showing the states of the optical systems at the best object point, at the near point, and at the far point, respectively, based on the equations (1) and (2).
【図9】異なる被写体についてのデフォーカス量と映像
信号高域出力との関係を示した図である。FIG. 9 is a diagram showing a relationship between a defocus amount and a video signal high frequency output for different subjects.
1 対物レンズ 2 明るさ絞り 3 CCD 4 色温度補正フィルタ 5 水晶フィルタ 6 撮像ユニット 7 光軸 8 圧電素子 9 結像光学系 10,11 レンズ保持部材 21 硬性光学系 22 硬性鏡接眼レンズ 23 外付けテレビカメラ 31 レンズユニット 32,33 プリズム 61 前側焦点位置 62 対物レンズ 63 後側焦点位置 64 評価面 71 フォーカス検出器 72 深度演算回路 73 明るさ絞り 74 映像信号処理手段 81 プリアンプ 82 色分離回路 83 色差プロセス部 84 輝度信号Yプロセス部 85 NTSCエンコーダ 86 微分回路 87 積分回路 88 ピーク検波回路 89 駆動手段 91 リミッタ 92 カウンタ xB0 前側焦点位置からフォーカス前のベスト物
点までの距離 xN0 前側焦点位置から被写界深度の最近点まで
の距離 xF0 前側焦点位置から被写界深度の最遠点まで
の距離 ΔxB ’ ガウス像面の変位量 ΔxB2’ レンズユニット31の変位量 φ 許容錯乱円径1 Objective Lens 2 Brightness Aperture 3 CCD 4 Color Temperature Correction Filter 5 Crystal Filter 6 Imaging Unit 7 Optical Axis 8 Piezoelectric Element 9 Imaging Optical System 10, 11 Lens Holding Member 21 Hard Optical System 22 Hard Mirror Eyepiece 23 External TV Camera 31 Lens unit 32, 33 Prism 61 Front focus position 62 Objective lens 63 Rear focus position 64 Evaluation surface 71 Focus detector 72 Depth calculation circuit 73 Brightness stop 74 Video signal processing means 81 Preamplifier 82 Color separation circuit 83 Color difference process section 84 luminance signal Y process section 85 NTSC encoder 86 differentiation circuit 87 integration circuit 88 peak detection circuit 89 driving means 91 limiter 92 counter x B0 distance from front focus position to best object point before focus x N0 front focus position to object field Distance to the closest point in depth x F0 displacement φ permissible circle of confusion of the lens unit 31 'displacement amount [Delta] x B2 of the Gaussian image plane' distance [Delta] x B from the front focal distance to the farthest point of the depth of field
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年7月13日[Submission date] July 13, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項2[Name of item to be corrected] Claim 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0012[Correction target item name] 0012
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0012】以下、作用を述べる。先ず、被写界深度と
Fno. との関係式を以下に示す。 (1/xF0)−(1/xB0)=φ(Fno. /fl 2 ) ・・・(1) (1/xB0)−(1/xN0)=φ(Fno. /fl 2 ) ・・・(2) 但し、xB0:前側焦点位置からベスト物点までの距離
(xB0<0) xF0:前側焦点位置から被写界深度の最遠点までの距離
(xF0<0) xN0:前側焦点位置から被写界深度の最近点までの距離
(xN0<0) fl :焦点距離 φ :許容錯乱円径 である。上記式(1),(2)の概念図を図8に示す
(符号の向きは右向きが正)。図中、(a)はベスト物
点,(b)は近点,(c)は遠点での光学系の状態を夫
々示し、61は前側焦点位置,62は対物レンズ,63
は後側焦点位置,64は評価面である。ここで、フォー
カシングにより前側焦点位置から被写界深度の最遠点
(遠点物点)までの距離xF0がxF に変化したとき、以
下の関係式が成立するものとする。 xF =kxF0(k:係数) ・・・(3) 前側焦点位置は内視鏡の場合ではほぼ0と考えられるの
で、対物レンズから遠点物点までの距離の変化量(比)
をそのままkとおける。つまり、前側焦点から物点まで
の距離と物体距離とを同一視することができる。従っ
て、被写体が同一であると仮定すると、フォーカス変更
後の遠点物点距離xF で変更前の遠点物点距離xF0と同
じ明るさを得るには、物体距離とFno. との間には反比
例の関係があるため Fno. ’=(xF0/xF )Fno. =(1/k)Fno. (Fno. ’:フォーカス変更後のFナンバー) ・・・(4) の関係が成立するようにすればよい。The operation will be described below. First, the relational expression between the depth of field and F no. Is shown below. (1 / x F0) - ( 1 / x B0) = φ (F no / f l 2.) ··· (1) (1 / x B0) - (1 / x N0) = φ (F no /. f l 2 ) (2) where x B0 : distance from the front focus position to the best object point (x B0 <0) x F0 : distance from the front focus position to the farthest point of the depth of field ( x F0 <0) x N0 : Distance from the front focus position to the closest point of the depth of field (x N0 <0) fl : Focal length φ: Allowable circle of confusion. A conceptual diagram of the above formulas (1) and (2) is shown in FIG. 8 (the direction of the reference sign is positive to the right). In the figure, (a) shows the state of the optical system at the best object point, (b) shows the near point, and (c) shows the state of the far point, respectively, 61 is the front focal position, 62 is the objective lens, and 63 is the objective lens.
Is the rear focal position, and 64 is the evaluation surface. Here, when the distance x F0 from the front focus position to the farthest point (far point object point) of the depth of field due to focusing changes to x F , the following relational expression holds. x F = kx F0 (k: coefficient) (3) Since the front focus position is considered to be almost 0 in the case of an endoscope, the amount of change in the distance from the objective lens to the far point object point (ratio)
Can be written as k. That is, it is possible to identify the distance from the front focus to the object point and the object distance. Therefore, assuming that the object is identical, to obtain the same brightness as the far point object point distance x F0 before change in far point object point distance x F after the focus change object distance and F no. And the Since there is an inverse proportional relationship between them, F no. '= (X F0 / x F ) F no. = (1 / k) F no. (F no. ': F number after focus change) ・ ・ ・ ( The relationship of 4) should be established.
Claims (3)
を調整できるフォーカス機能と、光学系の明るさを調整
できる可変絞りとを有する内視鏡光学系において、 被写体までの物体距離の変動に伴うフォーカスレンズ若
しくは撮像ユニットの変動量を検出するフォーカス位置
検出手段と、該検出手段により検出された値に基づいて
その時の被写界深度の最遠点の明るさが常に一定となる
ように明るさ絞りを調整する駆動手段とを備えたことを
特徴とするフォーカス機能を備えた内視鏡。1. An endoscope optical system having a focus function capable of adjusting a focus position according to a change in a distance to a subject and a variable diaphragm capable of adjusting a brightness of an optical system, wherein a change in an object distance to the subject Focus position detecting means for detecting the amount of fluctuation of the focus lens or the image pickup unit due to, and the brightness at the farthest point of the depth of field at that time is always constant based on the value detected by the detecting means. An endoscope having a focus function, comprising: a drive unit for adjusting a brightness diaphragm.
する内視鏡において、 フォーカス位置とFナンバーとが以下の条件式を満足す
るように変化することを特徴とする請求項1に記載の内
視鏡。 0.9A≦Fno. ’≦1.2A 但し、 A=Fno. ×{(fl 2 −ΔxB ’・xB0)/f2 } であり、又、 fl :内視鏡光学系全系の焦点距離 ΔxB ’:物体までの距離の変化に伴うガウス像面のシ
フト量 xB0 :前側焦点位置からフォーカス調整前のベスト
物点までの距離 Fno. :フォーカス前のFナンバー Fno. ’:フォーカス後のFナンバー である。2. An endoscope having a focus function and a variable brightness diaphragm, wherein the focus position and the F number are changed so as to satisfy the following conditional expression. mirror. . 0.9A ≦ F no '. ≦ 1.2A where, A = F no × {( f l 2 -Δx B' is a · x B0) / f 2} , also, f l: an endoscope optical system Focal length of entire system Δx B ': Gaussian image plane shift amount due to change in distance to object x B0 : Distance from front focus position to best object point before focus adjustment F no . : F number before focus F no. ': F number after focus.
カス機能を備えた内視鏡において、 固体撮像素子から得られた映像信号の特定周波数成分を
抽出し、該抽出周波数成分の電圧レベルを撮像面全域で
積分し、該積分値が最大となるようにフォーカシングを
行うオートフォーカス機能を設けたことを特徴とする請
求項1に記載の内視鏡。3. An endoscope having a focusing function using a solid-state image pickup device as an image pickup means, extracting a specific frequency component of a video signal obtained from the solid-state image pickup device, and imaging the voltage level of the extracted frequency component. The endoscope according to claim 1, further comprising an autofocus function that performs integration over the entire surface and performs focusing so that the integrated value becomes maximum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13077493A JP3186337B2 (en) | 1993-06-01 | 1993-06-01 | Endoscope with focus function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13077493A JP3186337B2 (en) | 1993-06-01 | 1993-06-01 | Endoscope with focus function |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06342122A true JPH06342122A (en) | 1994-12-13 |
JP3186337B2 JP3186337B2 (en) | 2001-07-11 |
Family
ID=15042351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13077493A Expired - Fee Related JP3186337B2 (en) | 1993-06-01 | 1993-06-01 | Endoscope with focus function |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3186337B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999006871A1 (en) * | 1997-07-30 | 1999-02-11 | Rodenstock Präzisionsoptik Gmbh | Camera and, in particular, modular dental camera |
WO2004004554A1 (en) * | 2002-07-03 | 2004-01-15 | Kabushiki Kaisha Shofu | Tooth surface informatin system |
JP2010162166A (en) * | 2009-01-15 | 2010-07-29 | Olympus Corp | Image pickup device and endoscope apparatus using the same |
WO2012029357A1 (en) * | 2010-08-30 | 2012-03-08 | オリンパスメディカルシステムズ株式会社 | Endoscope |
JP2012157416A (en) * | 2011-01-31 | 2012-08-23 | Olympus Corp | Controller, endoscope device, aperture control method, and program |
US9215366B2 (en) | 2010-08-06 | 2015-12-15 | Olympus Corporation | Endoscope system, control method, and imaging device |
US20220026725A1 (en) * | 2019-03-25 | 2022-01-27 | Karl Storz Se & Co. Kg | Imaging Apparatus and Video Endoscope Providing Improved Depth Of Field And Resolution |
CN114326090A (en) * | 2022-02-28 | 2022-04-12 | 山东威高手术机器人有限公司 | Binocular endoscope with expanded depth of field, system and imaging method |
US11307430B2 (en) * | 2016-06-07 | 2022-04-19 | Karl Storz Se & Co. Kg | Optical device and method for providing improved depth of field and resolution modes |
-
1993
- 1993-06-01 JP JP13077493A patent/JP3186337B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999006871A1 (en) * | 1997-07-30 | 1999-02-11 | Rodenstock Präzisionsoptik Gmbh | Camera and, in particular, modular dental camera |
WO2004004554A1 (en) * | 2002-07-03 | 2004-01-15 | Kabushiki Kaisha Shofu | Tooth surface informatin system |
JP2010162166A (en) * | 2009-01-15 | 2010-07-29 | Olympus Corp | Image pickup device and endoscope apparatus using the same |
US9215366B2 (en) | 2010-08-06 | 2015-12-15 | Olympus Corporation | Endoscope system, control method, and imaging device |
WO2012029357A1 (en) * | 2010-08-30 | 2012-03-08 | オリンパスメディカルシステムズ株式会社 | Endoscope |
US20130038708A1 (en) * | 2010-08-30 | 2013-02-14 | Olympus Medical Systems Corp. | Endoscope apparatus |
JP5149467B2 (en) * | 2010-08-30 | 2013-02-20 | オリンパスメディカルシステムズ株式会社 | Endoscope device |
EP2570070A1 (en) * | 2010-08-30 | 2013-03-20 | Olympus Medical Systems Corp. | Endoscope |
CN102984989A (en) * | 2010-08-30 | 2013-03-20 | 奥林巴斯医疗株式会社 | Endoscope |
EP2570070A4 (en) * | 2010-08-30 | 2013-07-31 | Olympus Medical Systems Corp | Endoscope |
US8531510B2 (en) | 2010-08-30 | 2013-09-10 | Olympus Medical Systems Corp. | Endoscope apparatus |
JP2012157416A (en) * | 2011-01-31 | 2012-08-23 | Olympus Corp | Controller, endoscope device, aperture control method, and program |
US11307430B2 (en) * | 2016-06-07 | 2022-04-19 | Karl Storz Se & Co. Kg | Optical device and method for providing improved depth of field and resolution modes |
US20220026725A1 (en) * | 2019-03-25 | 2022-01-27 | Karl Storz Se & Co. Kg | Imaging Apparatus and Video Endoscope Providing Improved Depth Of Field And Resolution |
CN114326090A (en) * | 2022-02-28 | 2022-04-12 | 山东威高手术机器人有限公司 | Binocular endoscope with expanded depth of field, system and imaging method |
CN114326090B (en) * | 2022-02-28 | 2023-12-15 | 山东威高手术机器人有限公司 | Binocular endoscope with extended depth of field, binocular endoscope system and binocular imaging method |
Also Published As
Publication number | Publication date |
---|---|
JP3186337B2 (en) | 2001-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7916194B2 (en) | Image pickup apparatus | |
US7885489B2 (en) | Image pickup apparatus and method and apparatus for manufacturing the same | |
US7944490B2 (en) | Image pickup apparatus and method and apparatus for manufacturing the same | |
EP2042908A2 (en) | Imaging optical system and endoscope imaging apparatus | |
US8134635B2 (en) | Manual focus adjustment assistance apparatus | |
JPH07191265A (en) | Endoscope optical system | |
EP2993506B1 (en) | Interchangeable lens apparatus, image capturing apparatus and system | |
US5712684A (en) | Viewing apparatus with visual axis detector | |
JP2010008873A (en) | Focus detecting device and imaging device | |
JP4804210B2 (en) | Imaging apparatus and control method thereof | |
JP4181886B2 (en) | Zoom lens control device and photographing system | |
JP2001083400A (en) | Image pickup optical system | |
JP3186337B2 (en) | Endoscope with focus function | |
JP3143553B2 (en) | Finder device | |
JP5341214B2 (en) | Camera system | |
JP2004294788A (en) | Electronic endoscope device provided with automatic focusing function | |
JP5450965B2 (en) | Imaging device | |
JPH0980323A (en) | Endoscope device | |
JP4336166B2 (en) | Electronic endoscope device with autofocus function | |
JP2004138884A (en) | Method for automatically focusing endoscope | |
JP2020197685A (en) | Image capturing device, control method therefor, program, and storage medium | |
JPH04236585A (en) | Image pickup optical device | |
CN114859544B (en) | Endoscope focusing control method and system | |
JPH08206081A (en) | Photographing device | |
JP6593496B2 (en) | Interchangeable lens and camera body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010417 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080511 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090511 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100511 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100511 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110511 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |