JP4336166B2 - Electronic endoscope device with autofocus function - Google Patents

Electronic endoscope device with autofocus function Download PDF

Info

Publication number
JP4336166B2
JP4336166B2 JP2003309764A JP2003309764A JP4336166B2 JP 4336166 B2 JP4336166 B2 JP 4336166B2 JP 2003309764 A JP2003309764 A JP 2003309764A JP 2003309764 A JP2003309764 A JP 2003309764A JP 4336166 B2 JP4336166 B2 JP 4336166B2
Authority
JP
Japan
Prior art keywords
distance
observed
electronic endoscope
light
movable lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003309764A
Other languages
Japanese (ja)
Other versions
JP2005074056A (en
Inventor
逸司 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2003309764A priority Critical patent/JP4336166B2/en
Publication of JP2005074056A publication Critical patent/JP2005074056A/en
Application granted granted Critical
Publication of JP4336166B2 publication Critical patent/JP4336166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)

Description

本発明はオートフォーカス機能を備えた電子内視鏡装置、特に対物光学系に設けた可動レンズによって光学的に拡大した被観察体像を撮像すると共に、オートフォーカス制御を行う電子内視鏡装置の構成に関する。   The present invention relates to an electronic endoscope apparatus having an autofocus function, and more particularly to an electronic endoscope apparatus that captures an optically enlarged object image by a movable lens provided in an objective optical system and performs autofocus control. Concerning configuration.

電子内視鏡装置は、固体撮像素子であるCCD(Charge Coupled Device)等を電子内視鏡(電子スコープ)の先端部に搭載し、光源装置からの光を照明することにより被観察体を撮像し、またこの電子内視鏡で得られたCCDの撮像信号をプロセッサ装置へ出力し、このプロセッサ装置で映像処理を施すことにより、被観察体の映像をモニタへ表示するものである。   An electronic endoscope device mounts a CCD (Charge Coupled Device) or the like, which is a solid-state image sensor, on the tip of an electronic endoscope (electronic scope), and illuminates light from the light source device to image the object to be observed. In addition, a CCD image signal obtained by the electronic endoscope is output to a processor device, and an image of the object to be observed is displayed on a monitor by performing image processing on the processor device.

図7には、この種の電子内視鏡において、特開2001−100114号公報等に示されるような対物レンズ移動機構付き内視鏡の先端部の構成が示されている。図7において、内視鏡先端部1の支持部2の先端面には、観察窓(レンズ)3が設けられ、この観察窓3の光路の後側に、プリズム4、カバーガラス5を介して固体撮像素子であるCCD6が配置される。このCCD6は、回路基板7を介して信号線8に接続されており、この信号線8を介してCCD6で撮像された信号はプロセッサ装置へ供給される。   FIG. 7 shows the configuration of the distal end portion of an endoscope with an objective lens moving mechanism as disclosed in Japanese Patent Application Laid-Open No. 2001-100114 in this type of electronic endoscope. In FIG. 7, an observation window (lens) 3 is provided on the distal end surface of the support portion 2 of the endoscope distal end portion 1, and a prism 4 and a cover glass 5 are disposed behind the optical path of the observation window 3. A CCD 6 that is a solid-state image sensor is disposed. The CCD 6 is connected to a signal line 8 via a circuit board 7, and a signal imaged by the CCD 6 via the signal line 8 is supplied to the processor device.

上記観察窓3とプリズム4との間には、対物光学系を構成する第1可動レンズ10及び第2可動レンズ11が配置され、この第1可動レンズ10の保持枠12と第2可動レンズ11の保持枠13は、その係合孔12Aと13Aが円柱状のカム軸14の外周に嵌合することにより、当該カム軸14に取り付けられる。また、上記の係合孔12Aにはカムピン16、係合孔13Aにはカムピン17が突出形成され、一方のカム軸14には、その軸線に対して傾斜角度の異なるカム溝18,19が形成されており、このカム溝18に上記カムピン16、カム溝19に上記カムピン17が係合することになる。   A first movable lens 10 and a second movable lens 11 constituting an objective optical system are disposed between the observation window 3 and the prism 4, and the holding frame 12 and the second movable lens 11 of the first movable lens 10. The holding frame 13 is attached to the camshaft 14 by engaging the engagement holes 12A and 13A with the outer periphery of the cylindrical camshaft 14. A cam pin 16 protrudes from the engagement hole 12A, and a cam pin 17 protrudes from the engagement hole 13A. Cam grooves 18 and 19 having different inclination angles with respect to the axis of the cam shaft 14 are formed. Thus, the cam pin 16 is engaged with the cam groove 18, and the cam pin 17 is engaged with the cam groove 19.

そして、上記カム軸14には、モータ20の軸20Zが取り付けられる。従って、モータ20の回転制御によってカム軸14を回転させれば、カム溝18,19とカムピン16,17の係合によって第1可動レンズ10、第2可動レンズ11が光軸方向に前後移動(異なる量の移動)し、これによって光学的変倍(拡大)等が行われる。   A shaft 20Z of the motor 20 is attached to the cam shaft 14. Therefore, if the cam shaft 14 is rotated by rotation control of the motor 20, the first movable lens 10 and the second movable lens 11 are moved back and forth in the optical axis direction by the engagement of the cam grooves 18 and 19 and the cam pins 16 and 17 ( A different amount of movement) is performed, and optical scaling (enlargement) is performed.

また、近年では、特開2002-263058号公報に示されるように、内視鏡においてオートフォーカス機構を持つようにしたものが製作されており、このオートフォーカス機構及び制御によれば、従来よりもピント合わせが精密かつ詳細に行われた拡大映像等をモニタに表示し、観察することが可能となる。
特開2001-100114号公報 特開2002-263058号公報 特開平8−334678号公報
In recent years, as shown in Japanese Patent Laid-Open No. 2002-263058, an endoscope having an autofocus mechanism has been manufactured, and according to this autofocus mechanism and control, it is more than conventional. It is possible to display and observe an enlarged image or the like on which the focus is adjusted precisely and in detail on the monitor.
Japanese Patent Laid-Open No. 2001-100114 JP 2002-263058 A JP-A-8-334678

しかしながら、従来の電子内視鏡装置のオートフォーカス制御として、映像信号から抽出された焦点評価信号に基づいて可動レンズ10,11を駆動するパッシブオートフォーカス制御が行われており、このパッシブ方式では、上記焦点評価信号の抽出に時間がかかり、特に拡大した映像においては動きに追従させた迅速な制御ができないという問題があった。即ち、映像信号はフィールド単位で形成されることから、焦点評価信号も例えば1/60秒の1フィールド期間(垂直走査期間)毎に抽出されることになり、また映像はその拡大率が高くなる程、動きの影響が大きくなり、例えば拍動のタイミングで動くような被観察体の場合には、その動きに追従した映像が得られないことになる。   However, as the autofocus control of the conventional electronic endoscope apparatus, passive autofocus control for driving the movable lenses 10 and 11 based on the focus evaluation signal extracted from the video signal is performed. In this passive method, It takes time to extract the focus evaluation signal, and there is a problem in that it is not possible to perform quick control that follows movement, particularly in an enlarged image. That is, since the video signal is formed in units of fields, the focus evaluation signal is also extracted every 1 field period (vertical scanning period) of, for example, 1/60 seconds, and the video has a high magnification rate. As the influence of the movement increases, for example, in the case of an observation object that moves at the timing of pulsation, an image that follows the movement cannot be obtained.

一方、内視鏡ではなく、カメラ等のフォーカス制御として、投光した光の反射光を受光することにより測距(三角側法)を行うアクティブオートフォーカス制御が行われているが、このアクティブオートフォーカスの測距で、遠い距離を測定するためには受光センサの基線長方向の幅を大きくする必要があり、また測距の分解能を高めるためには受光センサ自体が大型化することになる。しかし、細径化される内視鏡の先端部に投光部及び受光部を配置する場合、その配置スペースは限られており、幅の広い大きな受光センサを搭載すれば、細径化が損なわれるという問題がある。   On the other hand, active focus control that performs distance measurement (triangular side method) by receiving the reflected light of the projected light is performed as focus control for cameras and the like, not endoscopes. In order to measure a far distance in focus distance measurement, it is necessary to increase the width of the light receiving sensor in the base line length direction, and in order to increase the distance measurement resolution, the light receiving sensor itself is increased in size. However, when the light projecting portion and the light receiving portion are arranged at the distal end portion of the endoscope to be reduced in diameter, the arrangement space is limited, and if a wide light receiving sensor is mounted, the reduction in diameter is impaired. There is a problem of being.

本発明は上記問題点に鑑みてなされたものであり、その目的は、拡大映像において拍動等の動きに追従した迅速なオートフォーカス制御を行うことができ、またオートフォーカス制御によって内視鏡の細径化が損なわれることのないオートフォーカス機能を備えた電子内視鏡装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to perform quick autofocus control following movement such as pulsation in an enlarged image. An object of the present invention is to provide an electronic endoscope apparatus having an autofocus function that does not impair the reduction in diameter.

上記目的を達成するために、本発明は、光軸方向に移動し観察倍率を可変にする可動レンズを有する対物光学系と、この対物光学系を介して被観察体を撮像する固体撮像素子とを備え、この固体撮像素子の出力から映像信号を形成する電子内視鏡装置において、上記映像信号から合焦評価のための高周波信号を抽出し、この信号に基づいて上記可動レンズを駆動制御するパッシブオートフォーカス制御回路と、被観察体までの距離をアクティブ方式にて計測する測距手段と、この測距手段から出力された測距情報に基づいて上記可動レンズを駆動制御するアクティブオートフォーカス制御回路と、上記可動レンズで設定される所定の最低倍率までは、上記パッシブオートフォーカス制御回路を実行し、上記最低倍率よりも高いとき、上記アクティブオートフォーカス制御回路を実行する切替え制御回路と、を設けたことを特徴とする。   In order to achieve the above object, the present invention provides an objective optical system having a movable lens that moves in the optical axis direction and makes the observation magnification variable, and a solid-state imaging device that images an object to be observed through the objective optical system. A high-frequency signal for focusing evaluation is extracted from the video signal, and the movable lens is driven and controlled based on the signal. Passive autofocus control circuit, distance measuring means for measuring the distance to the object to be observed by an active method, and active autofocus control for driving and controlling the movable lens based on distance measurement information output from the distance measuring means The passive autofocus control circuit is executed up to a predetermined minimum magnification set by the circuit and the movable lens. A switching control circuit to perform the I Bed autofocus control circuit, characterized in that the provided.

請求項2に係る発明は、上記測距手段として、被観察体へ向けて測距光を投光する投光部と、この投光部の投光に基づいた被観察体からの反射光を受光し、測距情報を出力する受光部と、を設けたことを特徴とする。
請求項3に係る発明は、上記測距手段として、被観察体へ向けて超音波を送信すると共にこの送信された超音波の反射波を受信し、測距情報を得る超音波送受信部を設けたことを特徴とする。
In the invention according to claim 2, as the distance measuring means, a light projecting unit that projects distance measuring light toward the object to be observed, and reflected light from the object to be observed based on the light projection of the light projecting unit. A light receiving unit that receives light and outputs distance measurement information.
According to a third aspect of the present invention, there is provided an ultrasonic transmission / reception unit that transmits ultrasonic waves toward the object to be observed and receives reflected waves of the transmitted ultrasonic waves to obtain distance measurement information as the distance measuring means. It is characterized by that.

上記の構成によれば、例えば光学拡大率がa倍のときを境として、これよりも低い倍率のときはパッシブオートフォーカス制御が行われ、このパッシブオートフォーカスでは、映像信号の高周波信号によって焦点が評価され(又はコントラストが評価され)、この焦点評価値が最大となる方向へ可動レンズを山登り動作させることによって合焦状態(ピントの合う状態)が得られる。拡大率が低い場合は、映像表示において動きの影響が小さく、従来と同様にパッシブオートフォーカス制御で十分となる。   According to the above configuration, for example, when the optical magnification ratio is a, the passive autofocus control is performed when the magnification is lower than this. In this passive autofocus, the focus is set by the high frequency signal of the video signal. Evaluation is performed (or contrast is evaluated), and the movable lens is hill-climbed in a direction in which the focus evaluation value is maximized, thereby obtaining an in-focus state (in-focus state). When the enlargement ratio is low, the influence of motion is small in video display, and passive autofocus control is sufficient as in the conventional case.

一方、a倍よりも高い倍率のときはアクティブオートフォーカス制御が行われ、このアクティブオートフォーカス制御では、投光した光の反射光を受光し(又は送信した超音波の反射波を受信し)、その受光位置(受信状態)から被観察体の距離が求められ、この測距情報に基づいて可動レンズが駆動される。拡大率が高い場合は、映像表示において動きの影響が大きいが、1フィールド期間よりも極めて短い時間でオートフォーカス動作が行われるので、例えば拍動のタイミングの動きがある被観察体でも、ブレのない良好な(ピントの合った)映像を得ることができる。   On the other hand, when the magnification is higher than a times, active autofocus control is performed. In this active autofocus control, the reflected light of the projected light is received (or the reflected wave of the transmitted ultrasonic wave is received), The distance of the object to be observed is obtained from the light receiving position (reception state), and the movable lens is driven based on the distance measurement information. When the enlargement ratio is high, the influence of motion is large in video display, but the autofocus operation is performed in an extremely short time than one field period. A good (in-focus) image can be obtained.

本発明の電子内視鏡装置によれば、上述のように、光学拡大率が高い領域で迅速なアクティブオートフォーカス制御を行うので、拡大時においても拍動等の動きに追従した良好な映像を得ることができ、またアクティブオートフォーカスで用いる受光部は、拡大率が高い領域では小さなセンサを用いることができ、内視鏡の細径化が損なわれることもない。内視鏡の変倍機構では、倍率を高くするとピント位置が近距離側へシフトする。即ち、観察距離(スコープ先端から被観察体までの距離)が短くなるので、高い倍率が設定される領域では近距離側の測距を行う小さな受光センサで十分となる。   According to the electronic endoscope apparatus of the present invention, as described above, since rapid active autofocus control is performed in a region where the optical magnification ratio is high, a good image following movement such as pulsation can be obtained even during magnification. In addition, the light receiving unit used in active autofocus can use a small sensor in a region with a high enlargement ratio, and the diameter reduction of the endoscope is not impaired. In the magnification changing mechanism of the endoscope, when the magnification is increased, the focus position is shifted to the near distance side. That is, since the observation distance (distance from the scope tip to the object to be observed) is shortened, a small light receiving sensor that performs distance measurement on the short distance side is sufficient in an area where a high magnification is set.

この発明は、実施例1のように光の投受光で測距を行うものだけでなく、実施例2のように超音波の送受信で測距を行うアクティブオートフォーカスにも適用することができる。   The present invention can be applied not only to performing distance measurement by light projection and reception as in the first embodiment, but also to active autofocus in which distance measurement is performed by transmitting and receiving ultrasonic waves as in the second embodiment.

図1には、実施例1に係るオートフォーカス機能を備えた電子内視鏡装置の構成が示されている。図1において、内視鏡先端部21には、図7の構成と同様に観察窓22の後側に、対物光学系を構成する第1可動レンズ(又は群)23及び第2可動レンズ(又は群)24が配置され、この第2可動レンズ24の後側に、固体撮像素子であるCCD25が配置される。このCCD25で撮像された信号は、回路基板及び信号線を介してプロセッサ装置へ供給される。   FIG. 1 shows the configuration of an electronic endoscope apparatus having an autofocus function according to the first embodiment. In FIG. 1, the endoscope distal end portion 21 has a first movable lens (or group) 23 and a second movable lens (or the rear side of the observation window 22) and the second movable lens (or Group) 24, and a CCD 25, which is a solid-state imaging device, is arranged behind the second movable lens 24. A signal picked up by the CCD 25 is supplied to a processor device via a circuit board and a signal line.

上記第1可動レンズ23と第2可動レンズ24は、それぞれのアクチュエータ26Aと26Bに取り付けられており、これらのアクチュエータ26A,26Bとしては、圧電アクチュエータ、静電アクチュエータ等のリニアアクチュエータや、図7で示したカム機構を可動レンズ23,24のそれぞれに配置し、そのカム軸をモータや線状伝達部材で駆動するもの等が用いられる。これらのアクチュエータ26A,26Bによって上記第1及び第2の可動レンズ23,24が光軸方向に相対的に前後移動することになり、第1可動レンズ23は主にオートフォーカス(ピント合せ)の役目をし、第2可動レンズ24は光学的変倍(観察距離、観察深度、焦点距離等が可変)の役目をするように構成される。   The first movable lens 23 and the second movable lens 24 are attached to respective actuators 26A and 26B. As these actuators 26A and 26B, linear actuators such as piezoelectric actuators and electrostatic actuators, The cam mechanism shown in the figure is disposed in each of the movable lenses 23 and 24, and the cam shaft is driven by a motor or a linear transmission member. The actuators 26A and 26B cause the first and second movable lenses 23 and 24 to move back and forth relatively in the optical axis direction. The first movable lens 23 mainly serves as an autofocus (focusing). The second movable lens 24 is configured to serve as an optical scaling (observation distance, observation depth, focal length, etc. are variable).

そして、この先端部21には、アクティブオートフォーカス制御のために、投光窓27Aから測距光(赤外光等)を投光する投光部27Bと、被観察体からの反射光を受光窓28Aを介して受光する受光部(受光センサ)28Bが設けられる。この受光部28Bのセンサとしては、短い被観察体距離(例えば15mm以下)を計測できる小型のものでよい。   The tip 21 receives a light projecting unit 27B that projects distance measuring light (infrared light or the like) from the light projecting window 27A and a reflected light from the object to be observed for active autofocus control. A light receiving unit (light receiving sensor) 28B that receives light through the window 28A is provided. The sensor of the light receiving unit 28B may be a small sensor that can measure a short object distance (for example, 15 mm or less).

また、当該装置には、上述したCCD25を駆動するためのタイミングジェネレータ(TG)30、このCCD25の出力信号を入力して相関二重サンプリング動作と自動利得制御をするCDS(相関二重サンプリング)/AGC(自動利得制御)回路31が設けられ、このCDS/AGC回路31の後段には、A/D変換器32、各種の映像処理を施すためのDSP(デジタル信号プロセッサ)33、1フレームの映像データを記憶する映像メモリ34、D/A変換器35、プロセッサ装置に接続されるモニタ36が配置される。更に、上記先端部21に配置されたアクチュエータ26A,26Bを駆動するためのアクチュエータ駆動回路38が設けられる。なお、上述したCDS/AGC回路31からアクチュエータ駆動回路38までの回路は、電子内視鏡とプロセッサ装置のいずれかに振り分けられて配置されている。   The apparatus also includes a timing generator (TG) 30 for driving the above-described CCD 25, and a CDS (correlated double sampling) / input of the output signal of the CCD 25 to perform correlated double sampling operation and automatic gain control. An AGC (automatic gain control) circuit 31 is provided, and at the subsequent stage of the CDS / AGC circuit 31, an A / D converter 32, a DSP (digital signal processor) 33 for performing various video processes, and one frame of video A video memory 34 for storing data, a D / A converter 35, and a monitor 36 connected to the processor device are arranged. Further, an actuator drive circuit 38 for driving the actuators 26A and 26B arranged at the tip portion 21 is provided. The above-described circuits from the CDS / AGC circuit 31 to the actuator drive circuit 38 are allocated to either an electronic endoscope or a processor device.

このような電子内視鏡装置において、上記A/D変換器32の出力映像信号を入力し、この映像信号(輝度信号等)の高周波成分を取り出すBPF(帯域通過フィルタ)部40が設けられており、このBPF部40では通過帯域の異なる二つのBPFによって焦点(又はコントラスト)を評価するための二種類の高周波成分(第1と第2の高周波検波信号)を取り出している。また、電子内視鏡又はプロセッサ装置の全体の制御を統括するマイコン42が設けられ、このマイコン42の中に、パッシブオートフォーカス(AF)制御部42A、アクティブオートフォーカス(AF)制御部42B及び切替え制御部42Cが設けられる。   In such an electronic endoscope apparatus, a BPF (band pass filter) unit 40 is provided which inputs an output video signal of the A / D converter 32 and extracts a high frequency component of the video signal (luminance signal or the like). The BPF section 40 extracts two types of high-frequency components (first and second high-frequency detection signals) for evaluating the focus (or contrast) by using two BPFs having different pass bands. In addition, a microcomputer 42 that controls the entire control of the electronic endoscope or the processor device is provided. In the microcomputer 42, a passive autofocus (AF) control unit 42A, an active autofocus (AF) control unit 42B, and a switching are provided. A control unit 42C is provided.

上記パッシブAF制御部42Aは、映像信号から抽出され、かつ上記BPF部40から出力された二つの高周波信号から焦点評価演算を行い、可動レンズ23,24を最大評価点(最大焦点電圧)へ移動させる山登り動作を行う。一方、上記アクティブAF制御部42Bは、上記投光部27Bの投光素子から赤外光を出力させ、上記受光部28Bで受光した光の位置(センサでの位置)の検出信号を測距情報として入力することにより、可動レンズ23,24の移動を制御する。なお、変倍操作のための変倍スイッチ44が電子内視鏡の操作部等に設けられており、この操作信号は上記マイコン42へ供給される。   The passive AF control unit 42A performs focus evaluation calculation from the two high-frequency signals extracted from the video signal and output from the BPF unit 40, and moves the movable lenses 23 and 24 to the maximum evaluation point (maximum focus voltage). Perform hill-climbing movements. On the other hand, the active AF control unit 42B outputs infrared light from the light projecting element of the light projecting unit 27B, and detects the detection signal of the position of light received by the light receiving unit 28B (position at the sensor). To control the movement of the movable lenses 23 and 24. A magnification switch 44 for a magnification operation is provided in an operation unit or the like of the electronic endoscope, and this operation signal is supplied to the microcomputer 42.

図2には、上記パッシブオートフォーカス制御の山登り動作が示されており、この制御では、二つの高周波信号から演算された焦点評価値(焦点電圧)に基づき山登りの方向が決定され、例えば矢示Cのように遠距離(∞)から至近距離へ向けて可動レンズ23,24の位置を動かし、レンズ位置がPからPへ移動して焦点評価値が低下するときを把握すること等により、焦点深度F内に可動レンズ23,24を移動させる。 FIG. 2 shows the hill-climbing operation of the passive autofocus control. In this control, the hill-climbing direction is determined based on a focus evaluation value (focal voltage) calculated from two high-frequency signals. By moving the positions of the movable lenses 23 and 24 from a long distance (∞) to a close distance as in C, and grasping when the lens position moves from P 2 to P 3 and the focus evaluation value decreases, etc. The movable lenses 23 and 24 are moved within the focal depth F.

図3には、実施例1における倍率とベストピントの距離、前側被写界深度(前側ピント位置)及び後側被写界深度(後側ピント位置)の範囲との関係が示されており、上記の可動レンズ23,24の動作では、倍率を高くすればする程、ベストピント位置及びピントが合う範囲が前側(近距離側)へシフトする。このような観察距離を可変にする動作において、実施例では、a(例えば75)倍を境として、倍率がa倍以下のとき(観察距離が遠距離側にあるとき)は、パッシブオートフォーカス制御を行い、倍率がa倍よりも大きいとき(観察距離が近距離側にあるとき)は、アクティブオートフォーカス制御を行うようにする。   FIG. 3 shows the relationship between the magnification and the distance of the best focus, the front depth of field (front focus position), and the rear depth of field (rear focus position) in Example 1. In the operation of the movable lenses 23 and 24, as the magnification is increased, the best focus position and the focused range shift to the front side (short distance side). In such an operation to change the observation distance, in the embodiment, when the magnification is a times or less (when the observation distance is on the far side) with a (for example, 75) times as a boundary, passive autofocus control is performed. When the magnification is larger than a times (when the observation distance is on the short distance side), active autofocus control is performed.

実施例1は以上の構成からなり、その作用を図4の参照の下に説明する。まず、この例の電子内視鏡装置では、図1のCCD25にて被観察体内が撮像され、その後段のCDS/AGC回路31〜D/A変換器35の回路による映像処理を経ることにより、モニタ36の画面に被観察体の映像が表示される。また、変倍スイッチ44が操作されると、可動レンズ23,24が変倍位置及びピントが合う位置に駆動され、光学的に拡大した被観察体像がCCD25で撮像されることになり、モニタ36の画面には拡大した被観察体の映像が表示される。   The first embodiment has the above configuration, and its operation will be described with reference to FIG. First, in the electronic endoscope apparatus of this example, the inside of the observation object is imaged by the CCD 25 in FIG. 1, and after image processing by the circuits of the subsequent CDS / AGC circuits 31 to D / A converter 35, An image of the object to be observed is displayed on the screen of the monitor 36. When the zoom switch 44 is operated, the movable lenses 23 and 24 are driven to the zoom position and the focused position, and the optically enlarged object image is picked up by the CCD 25, and the monitor An enlarged image of the observed object is displayed on the screen 36.

そして、図4のStep101に示されるように、マイコン42にてオートフォーカス動作指示を受けると、Step102では可動レンズ23,24の位置データが読み込まれ、次のstep103では、現在設定されている倍率がa倍よりも高いか否かが判定される。ここで、倍率がa以下(≦a)である場合[N(NO)]は、パッシブAF制御部42Aが実行され、次のStep104にて映像信号がBPF40へ入力され、第1高周波信号の検波(Step105)と第2高周波信号の検波(Step106)が行われ、次のStep107にて、上記二つの高周波信号に基づいた焦点評価演算が行われる。   Then, as shown in Step 101 of FIG. 4, when the microcomputer 42 receives an autofocus operation instruction, in Step 102, the position data of the movable lenses 23 and 24 is read, and in the next Step 103, the currently set magnification is set. It is determined whether it is higher than a times. Here, when the magnification is a or less (≦ a) [N (NO)], the passive AF control unit 42A is executed, and in the next Step 104, the video signal is input to the BPF 40, and the first high-frequency signal is detected. (Step 105) and detection of the second high-frequency signal (Step 106) are performed, and in the next Step 107, focus evaluation calculation based on the two high-frequency signals is performed.

次いで、Step108では、上記の焦点評価演算で得られた焦点評価値に基づいて合焦しているか否かが判定され、Y(YES)のときは元へ戻り、NのときはStep109にて山登り動作方向が決定され、レンズ動作が実行される(Step110)。即ち、遠距離(∞)から至近距離へ向かう方向又は至近距離から遠距離へ向かう方向のいずれかで、焦点評価値が向上する方向を決定し、この決定方向へ向けて可動レンズ23,24を移動させ、Step102へ戻る。このような動作を繰り返すことにより、可動レンズ23,24が最終的に合焦の位置に移動し、この結果、被観察体に良好にピントの合った通常或いは拡大した映像がモニタ36上に表示される。   Next, in Step 108, it is determined whether or not the subject is in focus based on the focus evaluation value obtained by the above-described focus evaluation calculation. When Y (YES), the process returns to the original state. An operation direction is determined and a lens operation is executed (Step 110). That is, the direction in which the focus evaluation value is improved is determined in either the direction from the long distance (∞) to the close distance or the direction from the close distance to the long distance, and the movable lenses 23 and 24 are moved toward the determined direction. Move to step 102. By repeating such an operation, the movable lenses 23 and 24 finally move to the in-focus position, and as a result, a normal or enlarged image that is well focused on the object to be observed is displayed on the monitor 36. Is done.

一方、上記Step103にて、倍率がaよりも高い(>a)の場合(Y)は、アクティブAF制御部42Bが実行され、Step111にて投光部27Bによる投光が行われると共に、Step112にて受光部28Bにより反射光が受光される。そして、受光部28Bからの受光位置出力が制御部42Bに入力されると(Step113)、Step114にて測距が行われた後に、可動レンズ23,24が駆動され(Step115)、これによってピント合わせが行われる。   On the other hand, when the magnification is higher than a (> a) in Step 103 (Y), the active AF control unit 42B is executed, and the light projection by the light projecting unit 27B is performed in Step 111. Thus, the reflected light is received by the light receiving unit 28B. When the light receiving position output from the light receiving unit 28B is input to the control unit 42B (Step 113), after ranging is performed in Step 114, the movable lenses 23 and 24 are driven (Step 115), thereby focusing. Is done.

図5には、映像出力と受光部28Bで用いられるセンサ(フォトダイオード)の動作を比較した図が示されており、1フィールドの映像信号が1/60秒(垂直走査期間)で得られるのに対し、受光部28Bは1/400秒で反射光を受光する。また、アクティブオートフォーカス制御での測距演算からレンズ動作も、パッシブオートフォーカス制御での焦点評価演算からレンズ動作と比較すると、短い時間で行われる。従って、a倍よりも高い倍率で映像が拡大されている状態(観察距離が近距離側の領域)において、拍動のタイミングで被観察体が動くような場合でも、その動きを捉えた良好な映像が撮影されるという利点がある。また、a倍以下(観察距離が遠距離側の領域)ではパッシブオートフォーカス制御によって従来と同様の良好な映像が得られる。   FIG. 5 shows a diagram comparing the video output and the operation of the sensor (photodiode) used in the light receiving unit 28B. A video signal of one field can be obtained in 1/60 second (vertical scanning period). On the other hand, the light receiving unit 28B receives the reflected light in 1/400 seconds. Further, the lens operation from the distance measurement calculation in the active autofocus control is performed in a short time compared to the lens operation from the focus evaluation calculation in the passive autofocus control. Therefore, even when the object to be observed moves at the timing of the pulsation in a state where the image is magnified at a magnification higher than a times (an area where the observation distance is near), it is possible to capture the movement. There is an advantage that a picture is taken. On the other hand, in the case of a times or less (the region where the observation distance is on the far side), a good image similar to the conventional one can be obtained by passive autofocus control.

図6には、実施例2の構成が示されており、この実施例2は測距手段として超音波を送受信するアクティブ方式を適用したものである。図6に示されるように、実施例2では、アクティブな測距手段として、内視鏡先端部21に、超音波と信号の変換をする超音波トランスデューサ46と送受信部47が設けられており、この送受信部47から出力された送信信号に基づき超音波トランスデューサ46から超音波パルスが送信されると、被観察体から反射した反射波の受信信号は超音波トランスデューサ46を介して送受信部47で受信される。この送受信部47では、超音波の送信時間と受信時間の差から被観察体の距離情報が求められる。そして、この距離情報はマイコン42内の上述したアクティブAF制御部42Bへ供給されており、これによって実施例1と同様に、変倍率がa倍よりも高いときのアクティブオートフォーカス制御が行われる。   FIG. 6 shows the configuration of the second embodiment. This second embodiment applies an active method for transmitting and receiving ultrasonic waves as a distance measuring means. As shown in FIG. 6, in the second embodiment, an ultrasonic transducer 46 and a transmission / reception unit 47 for converting an ultrasonic wave and a signal are provided at the endoscope distal end portion 21 as active distance measuring means. When an ultrasonic pulse is transmitted from the ultrasonic transducer 46 based on the transmission signal output from the transmission / reception unit 47, the reception signal of the reflected wave reflected from the observation object is received by the transmission / reception unit 47 via the ultrasonic transducer 46. Is done. In the transmitter / receiver 47, distance information of the object to be observed is obtained from the difference between the transmission time and the reception time of the ultrasonic wave. Then, this distance information is supplied to the above-described active AF control unit 42B in the microcomputer 42, thereby performing active autofocus control when the magnification ratio is higher than a times as in the first embodiment.

本発明の実施例1に係るオートフォーカス機能を備えた電子内視鏡装置の構成を示す回路ブロック図である。1 is a circuit block diagram showing a configuration of an electronic endoscope apparatus having an autofocus function according to Embodiment 1 of the present invention. 実施例のパッシブオートフォーカス制御における山登り動作を示す図である。It is a figure which shows the mountain climbing operation | movement in the passive autofocus control of an Example. 実施例で設定される倍率と観察距離の関係及びパッシブオートフォーカス制御とアクティブオートフォーカス制御の動作範囲を示す図である。It is a figure which shows the relationship between the magnification set in an Example, and observation distance, and the operation | movement range of passive autofocus control and active autofocus control. 実施例のマイコンでの動作を示すフローチャートである。It is a flowchart which shows the operation | movement with the microcomputer of an Example. 実施例の映像出力と受光部のセンサの動作を示す図である。It is a figure which shows the image | video output of an Example, and the operation | movement of the sensor of a light-receiving part. 実施例2のオートフォーカス機能を備えた電子内視鏡装置の先端部の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a distal end portion of an electronic endoscope apparatus having an autofocus function according to a second embodiment. 従来の電子内視鏡先端部の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional electronic endoscope front-end | tip part.

符号の説明Explanation of symbols

1,21…内視鏡先端部、
10,23…第1可動レンズ、
11,24…第2可動レンズ、
26A,26B…アクチュエータ、
27B…投光部、 28B…受光部、
31…CDS/AGC回路、 33…DSP、
38…アクチュエータ駆動回路、
40…BPF部、 42…マイコン、
42A…パッシブAF制御部、
42B…アクティブAF制御部、
42C…切替え制御部、
46…超音波トランスデューサ、 47…送受信部。
1, 21 ... End of endoscope,
10, 23 ... 1st movable lens,
11, 24 ... second movable lens,
26A, 26B ... Actuator,
27B: Light projecting unit, 28B: Light receiving unit,
31 ... CDS / AGC circuit, 33 ... DSP,
38 ... Actuator drive circuit,
40 ... BPF part, 42 ... microcomputer,
42A: Passive AF control unit,
42B ... Active AF control unit,
42C ... switching control unit,
46: Ultrasonic transducer, 47: Transmission / reception unit.

Claims (3)

光軸方向に移動し観察倍率を可変にする可動レンズを有する対物光学系と、この対物光学系を介して被観察体を撮像する固体撮像素子とを備え、この固体撮像素子の出力から映像信号を形成する電子内視鏡装置において、
上記映像信号から合焦評価のための高周波信号を抽出し、この信号に基づいて上記可動レンズを駆動制御するパッシブオートフォーカス制御回路と、
被観察体までの距離をアクティブ方式にて計測する測距手段と、
この測距手段から出力された測距情報に基づいて上記可動レンズを駆動制御するアクティブオートフォーカス制御回路と、
上記可動レンズで設定される所定の最低倍率までは、上記パッシブオートフォーカス制御回路を実行し、上記最低倍率よりも高いとき、上記アクティブオートフォーカス制御回路を実行する切替え制御回路と、を設けたことを特徴とするオートフォーカス機能を備えた電子内視鏡装置。
An objective optical system having a movable lens that moves in the optical axis direction and makes the observation magnification variable, and a solid-state imaging device that images the object to be observed through the objective optical system, and outputs an image signal from the output of the solid-state imaging device In an electronic endoscope device forming
A passive autofocus control circuit that extracts a high-frequency signal for focusing evaluation from the video signal and controls the driving of the movable lens based on the signal;
Distance measuring means for measuring the distance to the object to be observed by an active method;
An active autofocus control circuit that drives and controls the movable lens based on distance measurement information output from the distance measurement means;
A switching control circuit that executes the passive autofocus control circuit up to a predetermined minimum magnification set by the movable lens and executes the active autofocus control circuit when higher than the minimum magnification; An electronic endoscope apparatus equipped with an autofocus function.
上記測距手段として、被観察体へ向けて測距光を投光する投光部と、この投光部の投光に基づいた被観察体からの反射光を受光し、測距情報を出力する受光部と、を設けたことを特徴とする請求項1記載の電子内視鏡装置。   As the distance measuring means, a light projecting unit for projecting distance measuring light toward the object to be observed, and a reflected light from the object to be observed based on the light projection of the light projecting unit are received, and distance measurement information is output. 2. The electronic endoscope apparatus according to claim 1, further comprising a light receiving unit that performs the operation. 上記測距手段として、被観察体へ向けて超音波を送信すると共にこの送信された超音波の反射波を受信し、測距情報を得る超音波送受信部を設けたことを特徴とする請求項1記載の電子内視鏡装置。   The ultrasonic transmission / reception unit that transmits ultrasonic waves toward the object to be observed and receives reflected waves of the transmitted ultrasonic waves to obtain distance measurement information is provided as the distance measuring means. The electronic endoscope apparatus according to 1.
JP2003309764A 2003-09-02 2003-09-02 Electronic endoscope device with autofocus function Expired - Fee Related JP4336166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309764A JP4336166B2 (en) 2003-09-02 2003-09-02 Electronic endoscope device with autofocus function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309764A JP4336166B2 (en) 2003-09-02 2003-09-02 Electronic endoscope device with autofocus function

Publications (2)

Publication Number Publication Date
JP2005074056A JP2005074056A (en) 2005-03-24
JP4336166B2 true JP4336166B2 (en) 2009-09-30

Family

ID=34411823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309764A Expired - Fee Related JP4336166B2 (en) 2003-09-02 2003-09-02 Electronic endoscope device with autofocus function

Country Status (1)

Country Link
JP (1) JP4336166B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093412A1 (en) * 2013-12-16 2015-06-25 オリンパス株式会社 Endoscope device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022772A (en) * 2008-07-24 2010-02-04 Olympus Medical Systems Corp Endoscope and system for in-vivo observation
JP5562808B2 (en) * 2010-11-11 2014-07-30 オリンパス株式会社 Endoscope apparatus and program
JP6232360B2 (en) * 2014-09-12 2017-11-15 富士フイルム株式会社 Endoscope system
JP6349047B1 (en) * 2018-02-19 2018-06-27 京セラ株式会社 Electronic device, program, and control method
KR102258886B1 (en) * 2019-11-28 2021-05-31 재단법인대구경북과학기술원 Horizontal resolution optimization device of endomicroscope, the system and the method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093412A1 (en) * 2013-12-16 2015-06-25 オリンパス株式会社 Endoscope device
JP5881910B2 (en) * 2013-12-16 2016-03-09 オリンパス株式会社 Endoscope device
JPWO2015093412A1 (en) * 2013-12-16 2017-03-16 オリンパス株式会社 Endoscope device
US10070776B2 (en) 2013-12-16 2018-09-11 Olympus Corporation Endoscope device with lens moving unit for changing observation depth based on captured images

Also Published As

Publication number Publication date
JP2005074056A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP4482418B2 (en) Endoscope device
JP4874669B2 (en) Autofocus unit and digital camera
CN100534146C (en) Image-pickup apparatus and focus control method
JP4861057B2 (en) Imaging apparatus and control method thereof
JP4094458B2 (en) Image input device
JP5022580B2 (en) Endoscope device
US7518807B2 (en) Focus adjustment apparatus, image pickup apparatus, and control method
JP2005121819A (en) Imaging apparatus and focus control method therefor
JP2010213038A (en) Imaging apparatus
JP5434503B2 (en) Image composition device and imaging device
JP3927934B2 (en) Imaging device and focus control method of imaging device
JP2004294788A (en) Electronic endoscope device provided with automatic focusing function
JP2007286613A (en) Endoscopic apparatus
JP5206292B2 (en) Imaging apparatus and image recording method
JP4481610B2 (en) Imaging device and focus control method of imaging device
JP4336166B2 (en) Electronic endoscope device with autofocus function
JP4042748B2 (en) Autofocus device
JP5796388B2 (en) Focus detection apparatus and imaging apparatus
JPH07143388A (en) Video camera
JPH1026725A (en) Automatic focusing device
JP4845653B2 (en) Camera system, camera body, interchangeable lens unit, and image blur correction method
JP2005257734A (en) Electronic endoscope device provided with auto-focus function
JP4535462B2 (en) Subject image acquisition device
JP2011112663A (en) Lens barrel and imaging apparatus
JP6747541B2 (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees