JPH06341915A - Pulsating pressure generating device - Google Patents

Pulsating pressure generating device

Info

Publication number
JPH06341915A
JPH06341915A JP12877193A JP12877193A JPH06341915A JP H06341915 A JPH06341915 A JP H06341915A JP 12877193 A JP12877193 A JP 12877193A JP 12877193 A JP12877193 A JP 12877193A JP H06341915 A JPH06341915 A JP H06341915A
Authority
JP
Japan
Prior art keywords
pressure
drive
displacement
signal
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12877193A
Other languages
Japanese (ja)
Inventor
Shinichi Murakawa
慎一 村川
Akio Tanaka
昭夫 田中
Masahiro Katayama
雅博 片山
Yuichi Kondo
雄一 近藤
Shigeomi Yoshida
成臣 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12877193A priority Critical patent/JPH06341915A/en
Publication of JPH06341915A publication Critical patent/JPH06341915A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To make a pulsating pressure generating device have a function capable of varying the waveform and frequency of a pressure, in measuring the responsiveness characteristic to the input pressure of a pressure transmitter or differential transmitter. CONSTITUTION:A pulsating pressure generating device is provided with a driving device 2 having a driving shaft 13 reciprocating according to an inputted electric signal, a pressure generating device 1 connected to the driving shaft 13 of the driving device 2 to convert the reciprocation of the driving shaft 13 into a pressure change, a displacement measuring instrument 14 for detecting the displacement of the driving shaft 13, and a drive control device 3 for supplying a control signal to the driving device on the basis of the displacement signal 18 detected by the measuring instrument 14 and a command signal 17 to drive- control the reciprocation of the driving shaft 13 so that the waveform and frequency of the pressure can be changed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば圧力伝送器、差
圧伝送器等の各種伝送器の応答特性試験等に適用して好
適な脈動圧力発生装置に係るもので、特に圧力の波形及
び周波数を可変できる機能を備えた脈動圧力発生装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulsating pressure generator suitable for application to response characteristic tests of various transmitters such as pressure transmitters and differential pressure transmitters, and particularly to pressure waveforms and The present invention relates to a pulsating pressure generator having a function capable of changing a frequency.

【0002】[0002]

【従来の技術】圧力伝送器や差圧伝送器は、プロセスや
配管内に存在する流体や気体の圧力及び流量等を計測す
るために使用されるもので、圧力や流量の変化を計測す
る場合に伝送器の応答特性が関係する。
2. Description of the Related Art Pressure transmitters and differential pressure transmitters are used to measure the pressure and flow rate of fluids and gases existing in processes and pipes, and when measuring changes in pressure and flow rate. Is related to the response characteristics of the transmitter.

【0003】この際の応答特性を計測するための従来の
試験手段を図3を参照して説明する。従来の応答特性試
験は、伝送器5と電磁弁15、及び電磁弁15と圧力供
給源4をそれぞれ配管で接続し、又、電磁弁15と電磁
弁制御装置16をケーブルで接続して実施していた。
A conventional test means for measuring the response characteristic at this time will be described with reference to FIG. The conventional response characteristic test is carried out by connecting the transmitter 5 and the solenoid valve 15, and the solenoid valve 15 and the pressure supply source 4 by pipes respectively, and connecting the solenoid valve 15 and the solenoid valve control device 16 by a cable. Was there.

【0004】圧力供給源4は、伝送器5に供給する圧力
を発生するもので、電磁弁15のオン/オフ(開/閉)
に伴って圧力供給源4から伝送器5への圧力供給がオン
/オフ制御される。
The pressure supply source 4 generates pressure to be supplied to the transmitter 5, and turns on / off (open / closes) the solenoid valve 15.
Accordingly, the pressure supply from the pressure supply source 4 to the transmitter 5 is ON / OFF controlled.

【0005】電磁弁15は、電磁弁制御装置16からの
電気信号により弁がオン/オフ制御される。電磁弁制御
装置16の出力信号がオフのときは、電磁弁15がオフ
状態にあって、圧力供給源4から伝送器5への圧力供給
は行なわれず、電磁弁制御装置16の出力信号がオンに
なることによって電磁弁15がオンになり、圧力供給源
4から伝送器5に圧力が供給される。
The solenoid valve 15 is on / off controlled by an electric signal from a solenoid valve controller 16. When the output signal of the solenoid valve control device 16 is off, the solenoid valve 15 is in the off state, pressure is not supplied from the pressure supply source 4 to the transmitter 5, and the output signal of the solenoid valve control device 16 is on. Then, the solenoid valve 15 is turned on, and pressure is supplied from the pressure supply source 4 to the transmitter 5.

【0006】伝送器5の応答特性の計測は、電磁弁15
をオンにした状態で圧力供給源4から圧力PO を供給し
た後で電磁弁15をオフにし、次に圧力供給源4の出力
圧力をPX に設定した後で電磁弁15をオンする方法で
実施していた。この際の応答特性試験に於ける伝送器5
の入力圧力と出力信号の関係を図4に例示する。
The response characteristic of the transmitter 5 is measured by the solenoid valve 15
With the pressure ON, the solenoid valve 15 is turned off after supplying the pressure PO from the pressure supply source 4, and then the solenoid valve 15 is turned on after the output pressure of the pressure supply source 4 is set to PX. Was. Transmitter 5 in response characteristic test at this time
The relationship between the input pressure and the output signal of is illustrated in FIG.

【0007】[0007]

【発明が解決しようとする課題】上述したように、従来
の応答特性試験手段に於いては、伝送器に入力する圧力
をオン/オフするだけであるため、伝送器の周波数応答
特性や各種の圧力波形に対する応答特性を計測すること
ができないという不都合があった。
As described above, in the conventional response characteristic testing means, since the pressure input to the transmitter is only turned on / off, the frequency response characteristic of the transmitter and various There is an inconvenience that the response characteristic to the pressure waveform cannot be measured.

【0008】本発明は上記実情に鑑みなされたもので、
圧力伝送器や差圧伝送器等の入力圧力に対する応答特性
を計測するための脈動圧力発生装置に於いて、圧力の波
形及び周波数を可変できる機能を備えた脈動圧力発生装
置を提供することを目的とする。
The present invention has been made in view of the above circumstances,
An object of the present invention is to provide a pulsating pressure generating device having a function capable of varying a pressure waveform and frequency in a pulsating pressure generating device for measuring a response characteristic to an input pressure such as a pressure transmitter or a differential pressure transmitter. And

【0009】[0009]

【課題を解決するための手段】本発明による脈動圧力発
生装置は、電気信号に応じて往復運動する駆動軸を備え
た駆動装置と、駆動軸の動きを制御する駆動制御装置
と、駆動装置の駆動軸に接続され往復運動を圧力変化に
変換する圧力発生装置とを備えてなる構成としたことを
特徴とする。
A pulsating pressure generator according to the present invention includes a drive device having a drive shaft that reciprocates in response to an electric signal, a drive control device for controlling the movement of the drive shaft, and a drive device for the drive device. And a pressure generator connected to the drive shaft for converting the reciprocating motion into a pressure change.

【0010】[0010]

【作用】上記構成に於いて、駆動制御装置に入力する電
気信号の波形及び周波数を変化させると、駆動装置の駆
動軸が電気信号に応じた往復運動を行ない、駆動軸の往
復運動を圧力発生装置で圧力の変化に変換することによ
って、圧力の波形及び周波数を変化させることができる
ため、伝送器の周波数応答特性や各種の圧力波形に対す
る応答特性の計測が可能となる。
In the above structure, when the waveform and frequency of the electric signal input to the drive control device are changed, the drive shaft of the drive device reciprocates according to the electric signal, and the reciprocal motion of the drive shaft is generated by pressure. Since the pressure waveform and frequency can be changed by converting the pressure change into pressure change by the device, it is possible to measure the frequency response characteristic of the transmitter and the response characteristic for various pressure waveforms.

【0011】[0011]

【実施例】以下図面を参照して本発明の実施例を説明す
る。図1は本発明の実施例による脈動圧力発生装置の構
成を示すブロック図であり、図2は同実施例の脈動圧力
発生装置を使用した応答特性試験の装置接続を示した図
である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a pulsating pressure generator according to an embodiment of the present invention, and FIG. 2 is a diagram showing a device connection of a response characteristic test using the pulsating pressure generator of the embodiment.

【0012】本発明の実施例による脈動圧力発生装置
は、圧力発生装置1、駆動装置2、及び駆動制御装置3
を備えて構成される。駆動装置2には、駆動軸13の変
位を検出する変位測定器14が設けられ、この変位測定
器14で検出した変位信号が指令信号とともに駆動制御
装置3に供給される。
A pulsating pressure generating device according to an embodiment of the present invention includes a pressure generating device 1, a driving device 2, and a drive control device 3.
It is configured with. The drive device 2 is provided with a displacement measuring device 14 for detecting the displacement of the drive shaft 13, and the displacement signal detected by the displacement measuring device 14 is supplied to the drive control device 3 together with a command signal.

【0013】駆動制御装置3は、指令信号17に比例し
て駆動軸13を駆動させるための制御信号21を発生す
るもので、駆動軸13の変位を検出する変位測定器14
からの変位信号18と上記指令信号17とを比較演算す
ることにより、制御信号21を発生する。
The drive control device 3 generates a control signal 21 for driving the drive shaft 13 in proportion to the command signal 17, and a displacement measuring device 14 for detecting the displacement of the drive shaft 13.
The control signal 21 is generated by comparing and calculating the displacement signal 18 from the command signal 17 and the command signal 17.

【0014】駆動装置2は、駆動制御装置3からの制御
信号21を入力し、弁A11、及び弁B12を制御する
ことにより圧力室A9及び圧力室B10の各圧力を変化
させ駆動軸13を駆動させる。
The drive unit 2 inputs the control signal 21 from the drive control unit 3 and controls the valves A11 and B12 to change the pressures in the pressure chambers A9 and B10 to drive the drive shaft 13. Let

【0015】圧力発生装置1は、駆動軸13の変位をピ
ストン7を介して圧力変化に変換するもので、弁8を開
にして圧力室6に圧力供給装置4から供給する水、油な
どを充満させ、弁8を閉にした状態でピストン7を駆動
させると、圧力室6の圧力がピストンの径、移動量に比
例して変化する。ピストン7の径r及び変位dと圧力発
生装置1の出力圧力Pの関係は次式で表わすことができ
る。
The pressure generator 1 converts the displacement of the drive shaft 13 into a pressure change through the piston 7, and opens the valve 8 to supply water, oil or the like to the pressure chamber 6 from the pressure supply device 4. When the piston 7 is driven with the valve 8 closed and full, the pressure in the pressure chamber 6 changes in proportion to the diameter of the piston and the amount of movement. The relationship between the diameter r and displacement d of the piston 7 and the output pressure P of the pressure generator 1 can be expressed by the following equation.

【0016】P ∝ r・d このように、圧力発生装置1の出力圧力は駆動制御装置
3に入力する指令信号17に応じて変化するため、駆動
制御装置3に、例えば正弦波、三角波、矩形波等、各種
の指令信号17を入力することにより、各種の波形の圧
力を発生でき、また指令信号17の周波数を変化させる
ことにより圧力の周波数を変化させることが可能とな
る。
P ∝ r · d As described above, the output pressure of the pressure generator 1 changes according to the command signal 17 input to the drive control device 3, so that the drive control device 3 receives, for example, a sine wave, a triangular wave, and a rectangular wave. By inputting various command signals 17 such as waves, pressure with various waveforms can be generated, and by changing the frequency of the command signal 17, the frequency of pressure can be changed.

【0017】[0017]

【発明の効果】以上詳記したように本発明の脈動圧力発
生装置によれば、駆動装置に入力する電気信号の波形又
は周波数を変化させるのみで、圧力の波形、周波数を可
変することが可能であり、各種圧力波形に対する伝送器
の応答特性の計測を実現することができる。
As described in detail above, according to the pulsating pressure generating device of the present invention, the waveform and frequency of pressure can be varied only by changing the waveform or frequency of the electric signal input to the drive device. Therefore, it is possible to measure the response characteristics of the transmitter with respect to various pressure waveforms.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による脈動圧力発生装置の構成
を示すブロック図。
FIG. 1 is a block diagram showing the configuration of a pulsating pressure generator according to an embodiment of the present invention.

【図2】同実施例による応答特性試験の装置接続を示す
ブロック図。
FIG. 2 is a block diagram showing device connection for a response characteristic test according to the embodiment.

【図3】従来の応答特性試験時の装置構成を示す図。FIG. 3 is a diagram showing a device configuration during a conventional response characteristic test.

【図4】図3に示す応答特性試験時の伝送器の入力圧力
と出力信号の関係を示す図。
FIG. 4 is a diagram showing a relationship between an input pressure and an output signal of the transmitter during the response characteristic test shown in FIG.

【符号の説明】[Explanation of symbols]

1…圧力発生装置、2…駆動装置、3…駆動制御装置、
4…圧力供給装置、5…伝送器、6…圧力室、7…ピス
トン、8…弁、9…圧力室A、10…圧力室B、11…
弁A、12…弁B、13…駆動軸、14…変位測定器、
15…電磁弁、16…電磁弁制御装置、17…指令信
号、18…変位信号、21…制御信号。
1 ... Pressure generator, 2 ... Drive device, 3 ... Drive control device,
4 ... Pressure supply device, 5 ... Transmitter, 6 ... Pressure chamber, 7 ... Piston, 8 ... Valve, 9 ... Pressure chamber A, 10 ... Pressure chamber B, 11 ...
Valve A, 12 ... Valve B, 13 ... Drive shaft, 14 ... Displacement measuring device,
15 ... Electromagnetic valve, 16 ... Electromagnetic valve control device, 17 ... Command signal, 18 ... Displacement signal, 21 ... Control signal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 雄一 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 吉田 成臣 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuichi Kondo 1-1-1, Wadasaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Shigeomi Yoshida Hyogo-ku, Kobe-shi, Hyogo 1-1-1 Wadazakicho Mitsubishi Heavy Industries Ltd. Kobe Shipyard

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入力された電気信号に応じて往復運動す
る駆動軸を備えた駆動装置と、この駆動装置の駆動軸に
接続され、駆動軸の往復運動を圧力変化に変換する圧力
発生装置と、上記駆動軸の変位を検出する変位測定器
と、同測定器で検出された変位信号と外部指示された指
令信号をもとに上記駆動装置に電気信号を供給し駆動軸
を往復駆動制御する駆動制御装置とを具備してなること
を特徴とする脈動圧力発生装置。
1. A drive device including a drive shaft that reciprocates in response to an input electric signal, and a pressure generator that is connected to the drive shaft of the drive device and converts the reciprocal motion of the drive shaft into a pressure change. A displacement measuring device for detecting the displacement of the drive shaft, and an electric signal is supplied to the drive device based on the displacement signal detected by the measuring device and a command signal externally instructed to control the drive shaft to reciprocate. A pulsating pressure generator comprising a drive controller.
JP12877193A 1993-05-31 1993-05-31 Pulsating pressure generating device Withdrawn JPH06341915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12877193A JPH06341915A (en) 1993-05-31 1993-05-31 Pulsating pressure generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12877193A JPH06341915A (en) 1993-05-31 1993-05-31 Pulsating pressure generating device

Publications (1)

Publication Number Publication Date
JPH06341915A true JPH06341915A (en) 1994-12-13

Family

ID=14993069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12877193A Withdrawn JPH06341915A (en) 1993-05-31 1993-05-31 Pulsating pressure generating device

Country Status (1)

Country Link
JP (1) JPH06341915A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029017A (en) * 2002-06-05 2004-01-29 General Electric Co <Ge> Calibration method and system for dynamic burner sensor
JP2009300383A (en) * 2008-06-17 2009-12-24 Keihin Corp Device and system for evaluating pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029017A (en) * 2002-06-05 2004-01-29 General Electric Co <Ge> Calibration method and system for dynamic burner sensor
JP2009300383A (en) * 2008-06-17 2009-12-24 Keihin Corp Device and system for evaluating pressure sensor

Similar Documents

Publication Publication Date Title
US4966528A (en) Apparatus for controlling the hydraulic circuit of a piston diaphragm pump
Gulati et al. A globally stable, load-independent pressure observer for the servo control of pneumatic actuators
US6494039B2 (en) Force-controlled hydro-elastic actuator
US4813339A (en) Pulse-width-modulation control of parallel three-way valves to supply single-acting quick-response actuator
GB2026729A (en) Apparatus and method for the controlled metering and mixing of two or more gases
CA2537925A1 (en) Metering fuel pump
US4336745A (en) Servovalve flow linearization circuit
US4974617A (en) Process and apparatus for remotely clearing a liquid-filled pipe
CN106089857B (en) The test system and test method of the dynamic pressure feedback effect frequency characteristic of servo valve
JPH06341915A (en) Pulsating pressure generating device
TW336977B (en) A variable displacement metering pump and a method of operating the same
Barth et al. A control design method for switching systems with application to pneumatic servo systems
WO2021070828A1 (en) Hydraulic drive device
GB2100473A (en) Fluid-governed servosystem
US4724532A (en) Vibrator response linearization circuit
JP2023103540A (en) Servo valve evaluation system and method for evaluating servo valve
JP2006515409A (en) Position control system for fluid operated cylinders
JPS61156315A (en) Pressure controller
US3444730A (en) Method and apparatus for indicating and controlling the torque on an internal combustion engine
SU1478049A1 (en) Rig for dynamic graduation of flowmeters
JPH08280088A (en) Underwater sound source controller
EP0118967A1 (en) Apparatus for controlling pressure in a chamber
CA1241199A (en) Pressure controlled pulse generator
CN212455056U (en) Hydraulic high-frequency flow signal generating device
RU2056530C1 (en) Method of transfer of media by means of two- membrane pumps

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801