JPH0634073B2 - Simulated fuel assembly - Google Patents

Simulated fuel assembly

Info

Publication number
JPH0634073B2
JPH0634073B2 JP60208853A JP20885385A JPH0634073B2 JP H0634073 B2 JPH0634073 B2 JP H0634073B2 JP 60208853 A JP60208853 A JP 60208853A JP 20885385 A JP20885385 A JP 20885385A JP H0634073 B2 JPH0634073 B2 JP H0634073B2
Authority
JP
Japan
Prior art keywords
simulated
rod
water rod
fuel assembly
simulated fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60208853A
Other languages
Japanese (ja)
Other versions
JPS6269200A (en
Inventor
明彦 星出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60208853A priority Critical patent/JPH0634073B2/en
Publication of JPS6269200A publication Critical patent/JPS6269200A/en
Publication of JPH0634073B2 publication Critical patent/JPH0634073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子炉用の燃料集合体の炉外熱水力試験に用い
る電気加熱方式の模擬燃料集合体に係り、特に、模擬ウ
ォータロッドを改良した模擬燃料集合体に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to an electric heating type simulated fuel assembly used for an out-of-reactor thermal hydraulic test of a fuel assembly for a nuclear reactor, and in particular, to an improved simulated water rod. The simulated fuel assembly.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、原子炉用の燃料集合体は、安全性および性能を
確認するために、核的、熱的、機械的信頼性についての
多くの試験が実施されている。これら試験の中には、実
際の原子炉の使用済核燃料を検査分析する方法がある。
しかし、燃料集合体の熱水力試験、例えば燃料集合体内
を冷却材が流れるときに生じる燃料集合体各部の圧力損
失や、核燃料の発熱により加熱された冷却材が沸騰しな
がら流れるときの水−蒸気の体積割合や、核燃料の最大
熱出力の測定等は、実際の原子炉で行なうには、技術的
に難しく、また、核燃料の破損等の危険を伴う。
In general, a fuel assembly for a nuclear reactor has been subjected to many tests for nuclear, thermal and mechanical reliability in order to confirm safety and performance. Among these tests is the method of inspecting and analyzing the spent nuclear fuel of the actual nuclear reactor.
However, a thermal hydraulic test of a fuel assembly, for example, a pressure loss of each part of the fuel assembly that occurs when the coolant flows in the fuel assembly, or a water flow when the coolant heated by the heat generation of the nuclear fuel flows while boiling- It is technically difficult to measure the volume ratio of steam and the maximum heat output of nuclear fuel in an actual nuclear reactor, and there is a risk of damage to nuclear fuel.

そこで、このような熱水力試験は、通常、寸法および形
状だけ実際の燃料集合体を模擬し、通電した際に生じる
ジュール熱による発熱する発熱棒を燃料棒に模擬した模
擬燃料集合体を用いている。
Therefore, such a thermal-hydraulic test usually simulates an actual fuel assembly only in size and shape, and uses a simulated fuel assembly that simulates a heating rod that generates heat due to Joule heat generated when electricity is applied. ing.

第6図は沸騰水型原子炉の炉心に実際に装荷される実機
の燃料集合体Aの一例を示しており、これは角筒状のチ
ャンネルボックス1内に複数の燃料棒2とウォータロッ
ド3とをスペーサ4により束状に結束して収容してい
る。これら燃料棒2およびウォータロッド3の上端部は
上部タイプレート5に、下端部は下部タイプレート6に
よりそれぞれ支持している。
FIG. 6 shows an example of an actual fuel assembly A that is actually loaded in the core of a boiling water reactor. This is a plurality of fuel rods 2 and water rods 3 in a rectangular channel box 1. And are bundled by the spacer 4 and housed. The upper ends of the fuel rods 2 and the water rods 3 are supported by the upper tie plate 5, and the lower ends thereof are supported by the lower tie plate 6.

このように構成された実機の燃料集合体Aを模擬した模
擬燃料集合体Bは、例えば第7図(A)(B)に示すよ
うに構成され、格子状に配列された複数本の模擬燃料棒
2Bの中央部に1本もしくは複数本、例えば2本の模擬
ウォータロッド3Bを配置し、これら2B,3Bを実機
Aで使用されているスペーサ4により束状に結束し、そ
の上端部を上部タイプレート5を模擬した上部電極5B
に、その下端部を下部タイプレート6を模擬した下部電
極6Bによりそれぞれ支持している。これら上部、下部
電極5B,6Bには直流電源7を接続しており、各模擬
燃料棒2Bには直流電源電圧が印加される。このように
構成された模擬燃料棒2B等はチャンネルボックス1を
模擬した矩形流路(図示省略)内に収容される。
The simulated fuel assembly B simulating the actual fuel assembly A configured as described above is configured, for example, as shown in FIGS. 7A and 7B, and includes a plurality of simulated fuels arranged in a lattice. One or a plurality of, for example, two simulated water rods 3B are arranged in the central portion of the rod 2B, these 2B and 3B are bound into a bundle by the spacer 4 used in the actual machine A, and the upper end portion thereof is placed at the upper part. Upper electrode 5B simulating tie plate 5
Further, the lower ends thereof are supported by lower electrodes 6B simulating the lower tie plate 6, respectively. A DC power supply 7 is connected to the upper and lower electrodes 5B and 6B, and a DC power supply voltage is applied to each simulated fuel rod 2B. The simulated fuel rod 2B and the like configured as described above are housed in a rectangular flow path (not shown) simulating the channel box 1.

模擬燃料棒2Bは第8図に示すように構成され、軸部の
軸方向中間部を電気抵抗の大きいステンレス鋼製管から
なる発熱部2Bに形成している。この発熱部2B
上端と下端には抵抗の小さい鋼製管からなる非発熱部2
をそれぞれ一体ないし一体的に結合しており、両電
極5B,6Bを介して直流電圧を印加することにより、
発熱部2Bを発熱させる。
The simulated fuel rod 2B is configured as shown in FIG. 8, and the axial intermediate portion of the shaft portion is formed in the heat generating portion 2B 1 made of a stainless steel pipe having a large electric resistance. Non-heat generating portion 2 consisting of a small resistance steel tube at the top and bottom of the heating portion 2B 1
B 2 are integrally or integrally connected to each other, and by applying a DC voltage through both electrodes 5B and 6B,
The heat generating part 2B 1 is caused to generate heat.

一方、従来の模擬ウォータロッド3Bは第9図に示すよ
うに構成され、非発熱の中空管3Bの上端に結合され
た取付部3Bおよび絶縁体3Bを介して上部電極5
Bに電気的に絶縁されて固定されている。中空管3B
は水等の冷却材を図中矢印で示すように管内に導入する
ための導入孔3Bを下端部に、管内を昇流する冷却材
を管外に案内するための横孔3Bを上端部にそれぞれ
穿設している。
On the other hand, the conventional simulated water rod 3B is configured as shown in FIG. 9 and has the upper electrode 5 via the attachment portion 3B 2 and the insulator 3B 3 coupled to the upper end of the non-heat generating hollow tube 3B 1.
It is electrically insulated and fixed to B. Hollow tube 3B 1
Is the lower end of the introduction hole 3B 4 for introducing the coolant such as water into the pipe as shown by the arrow in the figure, and the upper end is the horizontal hole 3B 5 for guiding the coolant flowing in the pipe to the outside of the pipe. It is drilled in each part.

しかしながら、このように構成された従来の模擬ウォー
タロッド3Bでは、中空管3Bの外周面が電気的にほ
ぼ全長に亘って導通する1本の導電路に形成されている
ので、模擬燃料集合体Bに組み立てられた模擬ウォータ
ロッド3Bと模擬燃料棒2Bとの間には、これらの間隙
を流れる水等の冷却材を通して第10図に示す等価回路
が形成される。
However, in the conventional simulated water rod 3B configured in this way, the outer peripheral surface of the hollow tube 3B 1 is formed into one electrically conductive path that electrically conducts over substantially the entire length, so that the simulated fuel assembly is formed. An equivalent circuit shown in FIG. 10 is formed between the simulated water rod 3B assembled to the body B and the simulated fuel rod 2B through a coolant such as water flowing through these gaps.

すなわち、直流電源7に電気的に接続された模擬燃料棒
2Bに、模擬ウォータロッド3Bが炉水(W)を介して
電気的に接続される。しかも、模擬ウォータロッド3B
の外周面は第11図(A)に示すように上端から下端ま
でほぼ全長に亘って1本の導電路に形成されているの
で、模擬燃料棒2Bからの漏洩電流iが冷却材Wを介し
て模擬ウォータロッド3Bの上部に流入し、この上部か
ら外周面の導電路を通して下部へ軸方向に沿って流れ、
その下部から再び冷却材Wを介して模擬燃料棒2Bの下
部へ還流される。したがって、模擬ウォータロッド3B
と模擬燃料棒2Bとの間には第11図(B)にて平行横
線で示すような比較的大きな電位差が発生し、電解作用
が生ずる。すなわち、ファラデーの法則に従って高電位
の部位から低電位の部位へ向けて金属が解け出す電解が
発生し、このために模擬燃料棒2Bや模擬ウォータロッ
ド3B等を腐食させて減肉させる。
That is, the simulated water rod 3B is electrically connected to the simulated fuel rod 2B electrically connected to the DC power source 7 via the reactor water (W). Moreover, the simulated water rod 3B
As shown in FIG. 11 (A), the outer peripheral surface of is formed as a single conductive path over the entire length from the upper end to the lower end. Therefore, the leakage current i from the simulated fuel rod 2B passes through the coolant W. Flow into the upper portion of the simulated water rod 3B, flow from the upper portion through the conductive paths on the outer peripheral surface to the lower portion in the axial direction,
It is recirculated from the lower part to the lower part of the simulated fuel rod 2B via the coolant W again. Therefore, the simulated water rod 3B
A relatively large potential difference as shown by the parallel horizontal lines in FIG. 11 (B) occurs between and the simulated fuel rod 2B, and electrolysis occurs. That is, according to Faraday's law, electrolysis occurs in which the metal dissolves from the high-potential portion toward the low-potential portion, so that the simulated fuel rod 2B, the simulated water rod 3B, etc. are corroded to reduce the wall thickness.

また、模擬ウォータロッド3B等のステンレス鋼部分で
は電解作用により、そのステンレス成分が冷却材W中の
マグネシウム(Mg)、アルミニウム(Al)等の他の
元素と化合して、外周面に付着するという問題点があっ
た。
Further, in the stainless steel portion such as the simulated water rod 3B, the stainless component is combined with other elements such as magnesium (Mg) and aluminum (Al) in the coolant W by the electrolytic action and adheres to the outer peripheral surface. There was a problem.

〔発明の目的〕[Object of the Invention]

本発明は蒸気事情に鑑みてなされたもので、その目的は
腐食の少ない模擬燃料集合体を提供することにある。
The present invention has been made in view of the steam situation, and an object thereof is to provide a simulated fuel assembly with less corrosion.

〔発明の概要〕[Outline of Invention]

上記目的を達成するために本発明は、通電により発熱す
る発熱棒を燃料棒とした模擬燃料棒と、非発熱棒をウォ
ータロッドとした模擬ウォータロッドとを束状に結束し
た模擬燃料集合体において、上記模擬ウォータロッドに
電気絶縁体を軸直角方向に介在させて、その軸方向の導
電路を複数個に電気的に分断したことに特徴がある。
In order to achieve the above object, the present invention provides a simulated fuel assembly in which a simulated fuel rod that uses a heating rod that generates heat by energization as a fuel rod and a simulated water rod that uses a non-heating rod as a water rod are bundled together. It is characterized in that an electric insulator is interposed in the simulated water rod in the direction perpendicular to the axis, and the axial conductive path is electrically divided into a plurality of parts.

〔発明の実施例〕Example of Invention

以下、本発明の実施例について第1図〜第5図を参照し
て説明する。なお、第6図〜第11図に共通する部分に
は同一符号が付してある。
An embodiment of the present invention will be described below with reference to FIGS. In addition, the same reference numerals are given to the portions common to FIGS. 6 to 11.

第1図は本発明に係る模擬燃料集合体の一実施例に組み
込まれる模擬ウォータロッド10の縦断面を一部切欠い
て示しており、中空の外管11の上端に非発熱の取付部
12を接合している。
FIG. 1 shows a vertical cross-section of a simulated water rod 10 incorporated in an embodiment of a simulated fuel assembly according to the present invention with a part thereof cut away. A non-heat-generating mounting portion 12 is provided at the upper end of a hollow outer tube 11. It is joined.

取付部12はその下部の中空部に横孔12aを穿設する
一方、その上部の中実部を絶縁体12bを介して上部電
極5Bに電気的に絶縁した状態で固定している。
The mounting portion 12 has a horizontal hole 12a formed in the lower hollow portion thereof, while the solid portion of the upper portion is fixed to the upper electrode 5B via an insulator 12b in an electrically insulated state.

模擬ウォータロッド10の外管11は、その内部に所要
の間隙をおいて内管13を同軸状に収容して2重管に構
成されており、内管13は1本の管体に横孔13aを軸
方向に所要の間隔をおいて穿設している。
The outer pipe 11 of the simulated water rod 10 is configured as a double pipe by coaxially accommodating the inner pipe 13 with a required gap inside, and the inner pipe 13 is a single tubular body with a horizontal hole. 13a are bored at required intervals in the axial direction.

一方、外管11は所要長さの外管ピース11aの複数本
を軸方向に順次接続すると共に、逆円錐状の下部外管ピ
ース11bを下端に接続して構成される。これら外管ピ
ース11a相互間には電気絶縁体14を介在している。
On the other hand, the outer pipe 11 is configured by sequentially connecting a plurality of outer pipe pieces 11a having a required length in the axial direction and connecting a lower outer pipe piece 11b having an inverted conical shape to a lower end. An electrical insulator 14 is interposed between these outer tube pieces 11a.

電気絶縁体14は電気絶縁材によりほぼ中空円筒状に形
成され、この円筒体の軸方向中間部にて外側方に突出す
る凸状部を一体に連成してなり、内管13の外周に密に
外嵌される。これにより、外管11と内管13とを電気
的に絶縁する。また、電気絶縁体14の凸状部を各外管
ピース11相互間に介在させて、複数本の外管11a
相互を電気的に絶縁した状態で接続しており、その接続
部の外周面は面一に形成される。したがって、模擬ウォ
ータロッド10の外周面は平滑な円周面に形成されると
共に、その導電路は電気絶縁体14により外管ピース1
1aの接続本数に対応する数に軸方向に電気的に分断さ
れる。
The electric insulator 14 is formed of an electric insulating material into a substantially hollow cylindrical shape, and an axially intermediate portion of the cylindrical body is integrally formed with a protruding portion that protrudes outward. It is closely fitted. Thereby, the outer pipe 11 and the inner pipe 13 are electrically insulated. In addition, the convex portion of the electric insulator 14 is interposed between the outer pipe pieces 11 a to form a plurality of outer pipes 11 a.
They are connected to each other in an electrically insulated state, and the outer peripheral surfaces of the connecting portions are formed flush with each other. Therefore, the outer peripheral surface of the simulated water rod 10 is formed into a smooth circumferential surface, and the conductive path of the simulated water rod 10 is formed by the electric insulator 14.
It is electrically divided in the axial direction into a number corresponding to the number of connections of 1a.

また、電気絶縁体14は最上段に配設される外管ピース
11a1の上端と取付部12の下端との間に介在されるほ
か、最下段に配設される下部外管ピース11bの上端と
の間に介在され、電気的に絶縁した状態で両者を結合し
ている。
Further, in addition electrical insulator 14 is interposed between the lower end of the upper mounting portion 12 of the outer tube piece 11 a1 disposed at the top, the upper end of the lower outer tube piece 11b disposed at the bottom It is interposed between and, and they are coupled in an electrically insulated state.

下部外管ピース11bは内管13の下端部に接続された
小管13bを固定部13cを介して固定しており、小管
13bの下端開口に連通する横孔11cを中空上部に穿
設しており、この横孔11cを介して冷却材を下部外管
ピース11b内に導入し、小管13bを通して内管13
内へ案内する。
The lower outer pipe piece 11b has a small pipe 13b connected to the lower end of the inner pipe 13 fixed thereto via a fixing portion 13c, and a horizontal hole 11c communicating with the lower end opening of the small pipe 13b is bored in the hollow upper portion. , The coolant is introduced into the lower outer pipe piece 11b through the lateral hole 11c, and the inner pipe 13 is passed through the small pipe 13b.
I will guide you inside.

上記内管13の外周には、電気絶縁材により円筒状に形
成された絶縁スペーサ15を密に外嵌しており、内管1
3を外管11に電気的に絶縁した状態で固定している。
絶縁スペーサ15は内管13の軸方向に所要の間隔をお
いて複数個配設され、電気絶縁体14と軸方向に交互に
配設されている。
A cylindrical insulating spacer 15 made of an electrically insulating material is tightly fitted around the outer circumference of the inner pipe 13.
3 is fixed to the outer tube 11 in an electrically insulated state.
A plurality of insulating spacers 15 are arranged in the axial direction of the inner tube 13 at a required interval, and are arranged alternately with the electric insulator 14 in the axial direction.

このように構成された模擬ウォータロッド10は第7図
で示す従来例とほぼ同様に模擬燃料集合体に組み立てら
れる。
The simulated water rod 10 thus constructed is assembled into a simulated fuel assembly in the same manner as in the conventional example shown in FIG.

次に本実施例の作用について述べる。Next, the operation of this embodiment will be described.

模擬ウォータロッド10を模擬燃料集合体に組み立てた
場合の等価回路を第2図に示す。模擬ウォータロッド1
0は第2図に示すように導電路が電気絶縁体14により
軸方向に複数個、例えば5個に電気的に分断されるの
で、模擬燃料棒2B(第8図参照)とは冷却材Wおよび
各導電路を介してそれぞれ閉路が形成され、模擬ウォー
タロッド10と模擬燃料棒2Bの電位は第3図に示すよ
うに分布する。すなわち、模擬ウォータロッド10の電
位10Eは軸方向上端より下端へ向けて段階的に漸次低
くなっており、しかも、模擬燃料棒2Bの電位2BEと
の電位差が全長に亘って著しく低減させている。
FIG. 2 shows an equivalent circuit when the simulated water rod 10 is assembled into a simulated fuel assembly. Simulated water rod 1
As shown in FIG. 2, the conductive path 0 is electrically divided into a plurality of, for example, five, electrically conductive paths in the axial direction by the electric insulator 14, so that the coolant W is not connected to the simulated fuel rod 2B (see FIG. 8). Also, a closed circuit is formed through each of the conductive paths, and the potentials of the simulated water rod 10 and the simulated fuel rod 2B are distributed as shown in FIG. That is, the potential 10E of the simulated water rod 10 gradually decreases from the upper end in the axial direction toward the lower end, and the potential difference from the potential 2BE of the simulated fuel rod 2B is significantly reduced over the entire length.

したがって、金属間の電位差に起因する電解作用が大幅
に抑制され、電解作用による模擬燃料棒2Bと模擬ウォ
ータロッド10等の腐食が抑制され、腐食による金属部
材の減肉や金属部材表面への付着物の付着量の低減を図
ることができる。
Therefore, the electrolytic action due to the potential difference between the metals is significantly suppressed, the corrosion of the simulated fuel rod 2B and the simulated water rod 10 due to the electrolytic action is suppressed, and the metal member is thinned due to the corrosion and the metal member surface is attached. The amount of attached kimono can be reduced.

また、模擬ウォータロッド10の外管11内を貫通する
内管13は1本からなるので、外管11の強度の補強を
図ることができる。
Moreover, since the inner pipe 13 that penetrates the outer pipe 11 of the simulated water rod 10 is composed of one piece, the strength of the outer pipe 11 can be reinforced.

さらに、1つの外管ピース11aの管長を一層短くし
て、模擬ウォータロッド10の単位導電路長を短くする
ことにより、模擬ウォータロッド10と模擬燃料棒2B
との電位差の一層の低減を図ることができる。
Furthermore, the pipe length of one outer pipe piece 11a is further shortened, and the unit conductive path length of the simulated water rod 10 is shortened, so that the simulated water rod 10 and the simulated fuel rod 2B.
It is possible to further reduce the potential difference between and.

なお、第3図中破線は第9図で示す従来の模擬ウォータ
ロッド3Bの予想される電位3BEの軸方向分布を示し
ている。
The broken line in FIG. 3 indicates the axial distribution of the expected potential 3BE of the conventional simulated water rod 3B shown in FIG.

本発明の第2の実施例を第4図に示す。A second embodiment of the present invention is shown in FIG.

この実施例のウォータロッド20が第1図で示すウォー
タロッド10と相違する主要な点は、内管13の下端部
に連結された小管13bを、ばね21を介して最下段の
下部外管ピース11bに固定し、外管11と内管13と
の熱膨張による伸び差をばね21に吸収させるように構
成したことにある。すなわち、ばね21は小管13bの
下部外周に同軸状に外嵌されて、下端を小管13bの下
部外周壁に固定部13cにより固着し、その上端を下部
外管ピース11bの上端に結合された電気絶縁体14b
の下端に固着している。
The main difference of the water rod 20 of this embodiment from the water rod 10 shown in FIG. 1 is that a small pipe 13b connected to the lower end of the inner pipe 13 is connected to a lower outer pipe piece at the lowermost stage via a spring 21. This is because the spring 21 absorbs the difference in expansion between the outer tube 11 and the inner tube 13 due to thermal expansion. That is, the spring 21 is coaxially fitted onto the outer circumference of the lower portion of the small tube 13b, the lower end is fixed to the lower outer peripheral wall of the small tube 13b by the fixing portion 13c, and the upper end thereof is connected to the upper end of the lower outer tube piece 11b. Insulator 14b
Stuck to the bottom edge of.

したがって、本実施例のウォータロッド20によれば、
外管11と内管13との熱膨張により伸び差を生じた場
合には、この伸び差をばね21に吸収させることがで
き、両管11,13の健全性を保持することができる。
Therefore, according to the water rod 20 of this embodiment,
When a difference in expansion occurs due to thermal expansion between the outer pipe 11 and the inner pipe 13, the difference in expansion can be absorbed by the spring 21, and the soundness of both pipes 11 and 13 can be maintained.

本発明の第3の実施例を第5図に示す。A third embodiment of the present invention is shown in FIG.

本実施例のウォータロッド30は第1図で示すウォータ
ロッド10の内管13、絶縁スペーサ15および小管1
3b等を主に省略して構成の簡単化を図ったものであ
り、外管ピース11a相互を電気的に絶縁して接続する
電気絶縁体15aの中心孔15bを冷却材を図中矢印方
向に流通させるために流通孔に形成したことにある。こ
のために、電気絶縁体15aは耐熱性と電気絶縁性に優
れたセラミックもしくは硬質テフロン等からなる。ま
た、模擬ウォータロッド30の最上段に配設される外管
ピース11a1に横孔11a2を複数個穿設しており、これ
ら横孔11a2を通して模擬ウォータロッド30内を昇流
した冷却材を外部へ流出するようになっている。
The water rod 30 of this embodiment is the inner pipe 13, the insulating spacer 15 and the small pipe 1 of the water rod 10 shown in FIG.
3b etc. are mainly omitted to simplify the configuration, and the central hole 15b of the electric insulator 15a for electrically insulating and connecting the outer pipe pieces 11a to each other is provided with a coolant in a direction of an arrow in the figure. It is formed in the circulation hole for circulation. For this reason, the electric insulator 15a is made of ceramic or hard Teflon having excellent heat resistance and electric insulation. Further, a plurality of lateral holes 11 a2 are bored in the outer pipe piece 11 a1 arranged at the uppermost stage of the simulated water rod 30, and the coolant that has flowed through the simulated water rod 30 through these lateral holes 11 a2. Is to be leaked to the outside.

したがって、本実施例のウォータロッド30によれば下
部外管ピース11bの構成の簡素化を図ることができ、
コスト低減を図ることができる。
Therefore, according to the water rod 30 of the present embodiment, the structure of the lower outer pipe piece 11b can be simplified,
The cost can be reduced.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、通電により発熱する発熱
棒を燃料棒とした模擬燃料棒と、非発熱棒をウォータロ
ッドとした模擬ウォータロッドとを束状に結束した模擬
燃料集合体において、上記模擬ウォータロッドに電気絶
縁体を軸直角方向に介在させて、その軸方向の導電路を
複数個に電気的に分断した。
As described above, the present invention provides a simulated fuel assembly in which a simulated fuel rod, which uses a heating rod that generates heat when energized as a fuel rod, and a simulated water rod, which uses a non-heating rod as a water rod, are bound into a bundle. An electrical insulator was interposed in the simulated water rod in a direction perpendicular to the axis, and the conductive path in the axial direction was electrically divided into a plurality of parts.

したがって、本発明によれば、模擬ウォータロッドの導
電路の軸方向を電気的に複数個に分断することができる
ので、模擬ウォータロッドと模擬燃料棒との電位差を低
減することができ、電位差に起因する電解作用を抑制し
て、腐食および腐食に伴う減肉や付着物の付着量の低減
を図ることができる。
Therefore, according to the present invention, the axial direction of the conductive path of the simulated water rod can be electrically divided into a plurality of parts, so that the potential difference between the simulated water rod and the simulated fuel rod can be reduced and the potential difference can be reduced. It is possible to suppress the electrolytic action caused by the corrosion, and to reduce the corrosion and the wall thickness accompanying the corrosion and the amount of adhered substances.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る模擬燃料集合体の第1の実施例の
模擬ウォータロッドを一部切欠いて示す縦断面図、第2
図は第1図で示す実施例の等価電気回路図、第3図は第
1図で示す模擬ウォータロッドの軸方向電位分布図、第
4図は本発明の第2の実施例の模擬ウォータロッドを一
部切欠いて示す縦断面図、第5図は本発明の第3の実施
例の模擬ウォータロッドを一部切欠いて示す縦断面図、
第6図は一般的な燃料集合体の実機を一部破断して示す
斜視図、第7図は一般的な模擬燃料集合体の要部を示し
ており、(A)は(B)におけるA−A線断面図、
(B)は(A)におけるB−B線断面図、第8図は従来
の模擬燃料棒の縦断面図、第9図は従来の模擬ウォータ
ロッドの縦断面図、第10図は従来例の等価電気回路
図、第11図は従来の模擬燃料集合体における模擬燃料
棒と模擬ウォータロッドとの間に生じる電位差と電解の
発生する位置を示しており、(A)は模式図、(B)は
グラフである。 2B……模擬燃料棒、3B,10,20,30……模擬
ウォータロッド、11……外管、13……内管、14…
…電気絶縁体、15……絶縁スペーサ。
FIG. 1 is a longitudinal sectional view showing a simulated water rod of a first embodiment of a simulated fuel assembly according to the present invention with a part cut away,
1 is an equivalent electric circuit diagram of the embodiment shown in FIG. 1, FIG. 3 is an axial potential distribution diagram of the simulated water rod shown in FIG. 1, and FIG. 4 is a simulated water rod of the second embodiment of the present invention. FIG. 5 is a vertical cross-sectional view showing a partial cutaway of a simulated water rod according to a third embodiment of the present invention.
FIG. 6 is a perspective view showing an actual machine of a general fuel assembly partially broken away, and FIG. 7 shows an essential part of a general simulated fuel assembly. (A) shows A in (B). -A line sectional view,
(B) is a sectional view taken along line BB in (A), FIG. 8 is a longitudinal sectional view of a conventional simulated fuel rod, FIG. 9 is a longitudinal sectional view of a conventional simulated water rod, and FIG. 10 is a conventional example. An equivalent electric circuit diagram, FIG. 11 shows a potential difference generated between a simulated fuel rod and a simulated water rod in a conventional simulated fuel assembly and a position where electrolysis is generated. (A) is a schematic diagram, (B) Is a graph. 2B ... Simulated fuel rod, 3B, 10, 20, 30 ... Simulated water rod, 11 ... Outer tube, 13 ... Inner tube, 14 ...
… Electrical insulator, 15 …… Insulating spacer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】通電により発熱する発熱棒を燃料棒とした
模擬燃料棒と、非発熱棒をウォータロッドとした模擬ウ
ォータロッドとを束状に結束した模擬燃料集合体におい
て、上記模擬ウォータロッドに電気絶縁体を軸直角方向
に介在させて、その軸方向の導電路を複数個に電気的に
分断したことを特徴とする模擬燃料集合体。
Claim: What is claimed is: 1. A simulated fuel assembly in which a simulated fuel rod that uses a heating rod as a fuel rod to generate heat when energized and a simulated water rod that uses a non-heating rod as a water rod are bundled to form a simulated fuel rod. A simulated fuel assembly characterized in that an electrical insulator is interposed in the direction perpendicular to the axis, and the axial conductive path is electrically divided into a plurality of parts.
【請求項2】電気絶縁体は、模擬ウォータロッドの軸方
向に所要の間隔をおいて複数個並設されている特許請求
の範囲第1項に記載の模擬燃料集合体。
2. The simulated fuel assembly according to claim 1, wherein a plurality of electrical insulators are arranged in parallel at a required interval in the axial direction of the simulated water rod.
JP60208853A 1985-09-24 1985-09-24 Simulated fuel assembly Expired - Lifetime JPH0634073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60208853A JPH0634073B2 (en) 1985-09-24 1985-09-24 Simulated fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60208853A JPH0634073B2 (en) 1985-09-24 1985-09-24 Simulated fuel assembly

Publications (2)

Publication Number Publication Date
JPS6269200A JPS6269200A (en) 1987-03-30
JPH0634073B2 true JPH0634073B2 (en) 1994-05-02

Family

ID=16563194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60208853A Expired - Lifetime JPH0634073B2 (en) 1985-09-24 1985-09-24 Simulated fuel assembly

Country Status (1)

Country Link
JP (1) JPH0634073B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006009502B3 (en) * 2006-02-27 2007-08-30 Framatome Anp Gmbh Method for testing a fuel rod cladding tube and associated device
JP6369856B2 (en) * 2014-04-25 2018-08-08 一般財団法人電力中央研究所 Impedance measuring device

Also Published As

Publication number Publication date
JPS6269200A (en) 1987-03-30

Similar Documents

Publication Publication Date Title
CN104078087B (en) A kind of cluster testpieces of simulating Supercritical-Pressure Light Water Cooled Reactor fuel element
JP4987397B2 (en) Simulated fuel rod for nuclear reactor
JPH0634073B2 (en) Simulated fuel assembly
US4687418A (en) Device for making a fluid having electrical conductivity flow
US3201619A (en) Nuclear thermionic converter
CN112118648B (en) Small-size annular heating rod with high heating power
CN112382421B (en) Test device for simulating nuclear reactor fuel rod
US3510700A (en) Device for feeding coolant to hollow conductors of stator bar winding in electric machines
US4237336A (en) Device for passing electrical and power installation conductors through protective shell separating clean zone from contaminated one and method of assembling same
US20200402678A1 (en) Resistance heater rod and method of making
CN202662300U (en) Electrical penetration assembly in nuclear reactor
US20220104314A1 (en) Coupling box hairpin replacement for high voltage heating element
CN114916101A (en) Heating rod and heating rod bundle device
US20220390630A1 (en) Self-powered excore detector arrangement for measuring flux of a nuclear reactor core
US3254320A (en) Electric heaters
US3430082A (en) Composite-structure electrode for open-cycle magnetohydrodynamic generator
CN217008658U (en) Built-in electric heating rod suitable for close arrangement installation of nuclear reactor simulation test
SU890087A1 (en) Column for carrying out thermal tests
CN217157842U (en) Double-string insulator applied to automatic temperature rise and corona rise
JP2768951B2 (en) Tritium Breeding Blanket Structure
Streckert et al. Design of conductively coupled multi-cell thermionic fuel element
RU2168776C1 (en) Nuclear reactor fuel element simulator
JPS6039839Y2 (en) simulated nuclear reactor
McNutt A proposed functional life test model for power transformers
US4465106A (en) Warm damper for a superconducting rotor