JPH06338653A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH06338653A
JPH06338653A JP12722093A JP12722093A JPH06338653A JP H06338653 A JPH06338653 A JP H06338653A JP 12722093 A JP12722093 A JP 12722093A JP 12722093 A JP12722093 A JP 12722093A JP H06338653 A JPH06338653 A JP H06338653A
Authority
JP
Japan
Prior art keywords
layer
angle
semiconductor laser
photoresist
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12722093A
Other languages
Japanese (ja)
Other versions
JP2546134B2 (en
Inventor
Tetsuro Okuda
哲朗 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5127220A priority Critical patent/JP2546134B2/en
Publication of JPH06338653A publication Critical patent/JPH06338653A/en
Application granted granted Critical
Publication of JP2546134B2 publication Critical patent/JP2546134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the uniformity of a field strength distribution in the interior of the resonator of a semiconductor laser by a method wherein diffraction gratings are provided at an angle of roughly 45 deg. to the axes of optical waveguides and at an angle of roughly 45 deg. to the end face of the resonator, interposing the optical waveguides between them. CONSTITUTION:An N-type InP buffer layer 11 is formed on an N-type InP substrate 10, a DBR layer 12, which is formed by forming alternately an N-type InGaAsP layer and an N-type InP layer in one period, is formed and an InGaAsP active layer 13, a P-type DBR layer 14 and a P-type InGaAs cap layer 15 are grown. Then, a photoresist 16 is applied and surfaces 17 at an angle of 45 deg. to the end face of a resonator are formed by exposure, developing and etching. Moreover, after a photoresist 18 is applied and the photoresist 18 is exposed and developed in such a way that it is left only on the parts of the surface at an angle of 45 deg., a P side electrode 19 and an N side electrode 20 are deposited. Then, parts, which are deposited on the surfaces at an angle of 45 deg., of the electrode 19 are removed by a lift-off method and diffraction gratings 22 are formed using again a photoresist 21 left on the surface at an angle of 45 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザに関し、特
に相互変調歪特性に優れる半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser, and more particularly to a semiconductor laser having excellent intermodulation distortion characteristics.

【0002】[0002]

【従来の技術】サブキャリア多重光伝送方式などに用い
られるアナログ変調用光源には、高効率で相互変調歪の
小さい単一軸モード半導体レーザが要求されている。例
えば移動通信システム用では3次相互変調歪(3rd
intermodulation distortio
n;IMD3 )が十分に小さい素子が要求されている。
分布帰還型半導体レーザ(DFBレーザ)は単一モード
性が良好であり、アナログ変調用光源に用いられつつあ
るが、通常のDFBレーザでは共振器方向のキャリアお
よび電界強度分布不均一のために電流−光出力(I−
L)特性の線形性が不十分で相互変調歪特性も優れたも
のではなかった。
2. Description of the Related Art As a light source for analog modulation used in a subcarrier multiplex optical transmission system or the like, a single-axis mode semiconductor laser with high efficiency and small intermodulation distortion is required. For example, in a mobile communication system, third-order intermodulation distortion (3rd
intermodulation distortio
A device having a sufficiently small n; IMD 3 ) is required.
The distributed feedback semiconductor laser (DFB laser) has a good single-mode property and is being used as a light source for analog modulation. However, in a normal DFB laser, the carrier and electric field strength distribution in the cavity direction are non-uniform, so -Light output (I-
L) The linearity of the characteristic was insufficient and the intermodulation distortion characteristic was not excellent either.

【0003】ところで、平成4年秋季第53回応用物理
学会学術講演会16p−V−1では、45°の反射面と
半導体多層膜を用いた面発光レーザが小川らにより発表
されている。これは、2つの45°の反射面と活性層と
分布反射器から形成され、基板側からレーザ光が出射さ
れる構造である。
By the way, at the 53rd Autumn Meeting of Applied Physics of Japan, 1992, 16p-V-1, Ogawa et al. Announced a surface emitting laser using a reflecting surface of 45 ° and a semiconductor multilayer film. This is a structure in which two 45 ° reflecting surfaces, an active layer, and a distributed reflector are formed, and laser light is emitted from the substrate side.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の半導体
レーザは面発光を目的としたものであり、光通信および
アナログ変調を目的としたものではなかった。
However, the conventional semiconductor laser is intended for surface emission, not for optical communication and analog modulation.

【0005】本発明の目的は、単一軸モード性を損なう
ことなく半導体レーザの共振器内部の電界強度分布の均
一性を向上させ、電流−光出力特性の線形性および変調
歪特性を改善することにある。
An object of the present invention is to improve the uniformity of the electric field intensity distribution inside the resonator of a semiconductor laser without impairing the uniaxial mode property, and to improve the linearity of the current-optical output characteristic and the modulation distortion characteristic. It is in.

【0006】[0006]

【課題を解決するための手段】本発明のアナログ変調用
半導体レーザは、半導体基板上に形成されたと活性層と
この活性層を挟むクラッド層とからなる光導波路と、前
記光導波路の軸に対してほぼ90°の角度をなすように
形成された端面と、前記光導波路の軸に対してほぼ45
°の角度をなすように設けられ、該光導波路を間に挟ん
で前記端面にほぼ45°の角度をなして設けられている
回折格子とから構成されることを特徴とする。
The semiconductor laser for analog modulation of the present invention comprises an optical waveguide comprising an active layer formed on a semiconductor substrate and a cladding layer sandwiching the active layer, and an axis of the optical waveguide. End face formed to form an angle of about 90 ° with respect to the axis of the optical waveguide.
And a diffraction grating which is provided so as to form an angle of 45 ° and is formed at an angle of approximately 45 ° on the end face with the optical waveguide interposed therebetween.

【0007】また、基板側の電極が少なくとも2つの部
分に分割して形成されていることを特徴とする。
Further, it is characterized in that the electrode on the substrate side is divided into at least two parts.

【0008】また、前記クラッド層を半導体多層膜によ
り構成したことを特徴とする。
Further, the clad layer is composed of a semiconductor multilayer film.

【0009】さらに、前記端面に低反射率のコーティン
グを施したことを特徴とする。
Further, it is characterized in that the end face is coated with a low reflectance.

【0010】[0010]

【作用】図面を参照して本発明の原理を説明する。The principle of the present invention will be described with reference to the drawings.

【0011】図1は本発明になる半導体レーザの構造の
一例を示す図である。図1において、共振器は端面5と
回折格子6と電極7で構成され、レーザ光は端面5から
出力される。
FIG. 1 is a diagram showing an example of the structure of a semiconductor laser according to the present invention. In FIG. 1, the resonator is composed of an end face 5, a diffraction grating 6 and an electrode 7, and laser light is output from the end face 5.

【0012】このような構造にすると回折格子6から基
板側電極7に垂直に反射される波長で単一軸モード発振
をする。
With such a structure, single-axis mode oscillation is performed at a wavelength that is reflected vertically from the diffraction grating 6 to the substrate-side electrode 7.

【0013】また、光導波路と半導体多層膜の結合に回
折格子を用いているから、従来の半導体レーザのように
45°の面を用いるのと比較すると反射光の広がりが小
さくなる。したがって、本発明の構造の半導体レーザで
は、共振器の損失が小さくなり閾値電流が低減される。
Further, since the diffraction grating is used for coupling the optical waveguide and the semiconductor multi-layer film, the spread of the reflected light becomes smaller than that in the case where the surface of 45 ° is used as in the conventional semiconductor laser. Therefore, in the semiconductor laser having the structure of the present invention, the loss of the resonator is reduced and the threshold current is reduced.

【0014】図2は本発明の半導体レーザと通常のDF
Bレーザの共振器内部の電界強度の分布を示したもので
ある。
FIG. 2 shows a semiconductor laser of the present invention and a conventional DF.
6 shows a distribution of electric field strength inside a resonator of a B laser.

【0015】通常のDFBレーザの場合、図2(b)の
ように共振器方向の電界強度が不均一である。これに対
し、本発明の半導体レーザでは図2(a)に示すように
共振器内部の電界強度分布の均一性が改善される。した
がって、本発明の半導体レーザにおいては電流−光出力
特性の線形性が向上し、変調歪が低減される。
In the case of a normal DFB laser, the electric field strength in the cavity direction is non-uniform as shown in FIG. On the other hand, in the semiconductor laser of the present invention, the uniformity of the electric field intensity distribution inside the resonator is improved as shown in FIG. Therefore, in the semiconductor laser of the present invention, the linearity of the current-optical output characteristic is improved and the modulation distortion is reduced.

【0016】また、電極7を基板1の一部分だけに形成
すれば発振波長の選択性が強くなり、単一モード性が向
上する。
Further, if the electrode 7 is formed only on a part of the substrate 1, the oscillation wavelength selectivity becomes strong and the single mode property is improved.

【0017】また、基板側1のクラッド層2を半導体多
層膜層にすることによっても波長の選択性が強くなり単
一軸モード性が向上する。
Also, by making the cladding layer 2 on the substrate side 1 a semiconductor multilayer film layer, the wavelength selectivity is enhanced and the uniaxial mode property is improved.

【0018】さらに、他方のクラッド層4を半導体多層
膜により構成することにより、活性層3で発生した自然
放出光が活性層3に戻される効果(フォトンリサイクリ
ング効果)により発振閾値電流が低減される。
Further, by forming the other clad layer 4 from a semiconductor multilayer film, the spontaneous emission light generated in the active layer 3 is returned to the active layer 3 (photon recycling effect) to reduce the oscillation threshold current. It

【0019】また、回折格子6を形成しない方の端面5
に低反射率のコーティングを施すことにより効率が改善
される。
In addition, the end face 5 on which the diffraction grating 6 is not formed
Efficiency is improved by applying a low reflectance coating to the.

【0020】[0020]

【実施例】以下に、本発明の一実施例である1.3μm
帯半導体レーザを図面を参照して説明する。
EXAMPLE The following is an example of the present invention of 1.3 μm.
The band semiconductor laser will be described with reference to the drawings.

【0021】図3は第1の実施例の製造工程を示す図で
ある。
FIG. 3 is a diagram showing the manufacturing process of the first embodiment.

【0022】図3(a)に示すように、n−InP基板
10上にMOVPE法によりn−InPバッファ層11
を2000Åの厚さに形成し、1.2μm波長組成のn
−InGaAsP(厚さ1024Å)とn−InP(1
024Å)とを1周期とするDBR層12を約3μm形
成し、1.3μm波長組成のInGaAsP活性層1
3、さらにp型のDBR層14を約2μm、p−InG
aAsキャップ層15を2000Å成長する。
As shown in FIG. 3A, the n-InP buffer layer 11 is formed on the n-InP substrate 10 by MOVPE.
Is formed to a thickness of 2000Å, and n of 1.2 μm wavelength composition is formed.
-InGaAsP (thickness 1024Å) and n-InP (1
024Å) as one cycle, and the DBR layer 12 is formed to have a thickness of about 3 μm, and the InGaAsP active layer 1 having a 1.3 μm wavelength composition is formed.
3, and the p-type DBR layer 14 with a thickness of about 2 μm and p-InG
The aAs cap layer 15 is grown to 2000 Å.

【0023】次いで、図3(b)に示すようにホトレジ
スト16を塗布し、露光、現像、エッチングにより45
°の面17を形成する。
Next, as shown in FIG. 3B, a photoresist 16 is applied and exposed to light, developed, and etched to 45.
Forming a 17 ° surface 17.

【0024】さらに、図3(c)に示すように、ホトレ
ジスト18を塗布し、45°の面の部分だけにホトレジ
ストが残るように露光、現像した後、p側電極19及び
n側電極20を蒸着する。
Further, as shown in FIG. 3C, a photoresist 18 is applied and exposed and developed so that the photoresist remains only on the surface of 45 °, and then the p-side electrode 19 and the n-side electrode 20 are formed. Vapor deposition.

【0025】次に、図3(d)に示すように、リフトオ
フにより45°の面の電極を除去し、再び45°の面に
残ったホトレジスト21を用い、干渉露光法により回折
格子のパターンを形成する。
Next, as shown in FIG. 3D, the electrodes on the 45 ° surface are removed by lift-off, and the photoresist 21 remaining on the 45 ° surface is used again to form a diffraction grating pattern by the interference exposure method. Form.

【0026】この後、図3(e)に示すようにエッチン
グにより回折格子22を形成する。さらに、全面を露
光、現像し残ったホトレジストを除去する。
After this, as shown in FIG. 3E, the diffraction grating 22 is formed by etching. Further, the entire surface is exposed and developed, and the remaining photoresist is removed.

【0027】この後、図3(e)の点線で示す部分で素
子を劈開する。
After that, the element is cleaved at the portion shown by the dotted line in FIG.

【0028】この素子は1.31μmで発振し、試作し
た素子をモジュール化し、2信号で3次相互変調歪を測
定した結果、平均ファイバー出力5mW、変調度20%
で−80dBcと良好な歪特性を得ることができた。
This device oscillates at 1.31 μm, the prototype device is modularized, and the third-order intermodulation distortion is measured with two signals. As a result, the average fiber output is 5 mW and the modulation degree is 20%.
It was possible to obtain a good strain characteristic of -80 dBc.

【0029】この素子の端面に1%以下の反射率のコー
ティングを施した場合、効率が従来の半導体レーザの2
0%以上改善された。
When the end face of this element is coated with a reflectance of 1% or less, the efficiency is 2 times that of the conventional semiconductor laser.
It was improved by 0% or more.

【0030】次に第2の実施例について図4を参照して
説明する。
Next, a second embodiment will be described with reference to FIG.

【0031】図4は基板1側の電極37を2つの部分か
ら構成し、電極37を基板1の一部分だけに構成し、光
の反射に寄与する部分を狭くした構造である。このよう
な素子を図3に示した第一の実施例の場合と同様にして
作製したところ、従来の半導体レーザの場合、副モード
抑圧比が25dBcであったのに対して30dBcとな
り、発振の単一モード性が改善された。
FIG. 4 shows a structure in which the electrode 37 on the substrate 1 side is composed of two parts, the electrode 37 is formed only on a part of the substrate 1, and the part contributing to the reflection of light is narrowed. When such an element was manufactured in the same manner as in the case of the first embodiment shown in FIG. 3, in the case of the conventional semiconductor laser, the submode suppression ratio was 30 dBc, while it was 25 dBc, and the oscillation Unimodality was improved.

【0032】さらに、図5に本発明の第3の実施例を示
す。これは、活性層3より基板1側のクラッド層42を
半導体多層膜にした構造である。この素子の副モード抑
圧比を測定したところ28dBcであり、従来の半導体
レーザよりも単一モード性が向上した。
Furthermore, FIG. 5 shows a third embodiment of the present invention. This is a structure in which the clad layer 42 on the substrate 1 side of the active layer 3 is a semiconductor multilayer film. The submode suppression ratio of this device was measured to be 28 dBc, which was an improvement in single-mode property over the conventional semiconductor laser.

【0033】また、図6に本発明の第4の実施例を示
す。これは、活性層3の両側のクラッド層42,43を
半導体多層膜にした構造である。このような素子を作製
したところ、発振閾値電流が20%低減された。また、
副モード抑圧比は30dBcとなった。
FIG. 6 shows a fourth embodiment of the present invention. This is a structure in which the cladding layers 42 and 43 on both sides of the active layer 3 are semiconductor multilayer films. When such a device was manufactured, the oscillation threshold current was reduced by 20%. Also,
The secondary mode suppression ratio was 30 dBc.

【0034】[0034]

【発明の効果】本発明によれば、低歪のアナログ変調用
半導体レーザを提供することが可能となる。
According to the present invention, it is possible to provide a low distortion analog modulation semiconductor laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる半導体レーザの原理的構造を示す
図。
FIG. 1 is a diagram showing a principle structure of a semiconductor laser according to the present invention.

【図2】本発明になるレーザと従来のレーザとの電界強
度分布を示す図。
FIG. 2 is a diagram showing electric field intensity distributions of a laser according to the present invention and a conventional laser.

【図3】本発明の第1の実施例の製造工程を説明するた
めの図。
FIG. 3 is a view for explaining the manufacturing process of the first embodiment of the present invention.

【図4】本発明の第2の実施例の構造を模式的に示す断
面図。
FIG. 4 is a sectional view schematically showing the structure of the second embodiment of the present invention.

【図5】本発明の第3の実施例の構造を模式的に示す断
面図。
FIG. 5 is a sectional view schematically showing the structure of the third embodiment of the present invention.

【図6】本発明の第4の実施例の構造を模式的に示す断
面図。
FIG. 6 is a sectional view schematically showing the structure of the fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 クラッド層(基板側) 3 活性層 4 クラッド層(成長層側) 5 導波路の軸に垂直な端面 6 導波路の軸に45°の角度をなす面に形成された
回折格子 7 基板側電極 8 成長側電極 10 n−InP基板 11 n−InPバッファ層 12 n−InPクラッド層 13 InGaAsP活性層 14 p−InPクラッド層 15 p−InGaAsキャップ層 16 ホトレジスト 17 45°の面 18 ホトレジスト 19 電極 20 電極 21 ホトレジスト 22 回折格子 31 n−InP基板 32 n−InPクラッド層 33 InGaAsP活性層 34 p−InPクラッド層 35 端面 36 回折格子 37 電極 38 電極 42 n型DBR層 43 p型DBR層
1 substrate 2 clad layer (substrate side) 3 active layer 4 clad layer (growth layer side) 5 end face perpendicular to the axis of the waveguide 6 diffraction grating formed on a surface forming an angle of 45 ° with the axis of the waveguide 7 substrate Side electrode 8 Growth side electrode 10 n-InP substrate 11 n-InP buffer layer 12 n-InP clad layer 13 InGaAsP active layer 14 p-InP clad layer 15 p-InGaAs cap layer 16 photoresist 17 45 ° surface 18 photoresist 19 electrode 20 Electrode 21 Photoresist 22 Diffraction Grating 31 n-InP Substrate 32 n-InP Clad Layer 33 InGaAsP Active Layer 34 p-InP Clad Layer 35 End Face 36 Diffraction Grating 37 Electrode 38 Electrode 42 n-type DBR Layer 43 p-type DBR Layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成された活性層とこの
活性層を挟むクラッド層とからなる光導波路と、前記光
導波路の軸に対してほぼ90°の角度をなすように形成
された端面と、前記光導波路の軸に対してほぼ45°の
角度をなすように設けられ、該光導波路を間に挟んで前
記端面にほぼ45°の角度をなして設けられている回折
格子とから構成されることを特徴とする半導体レーザ。
1. An optical waveguide comprising an active layer formed on a semiconductor substrate and a clad layer sandwiching the active layer, and an end face formed at an angle of about 90 ° with respect to the axis of the optical waveguide. And a diffraction grating which is provided so as to form an angle of approximately 45 ° with respect to the axis of the optical waveguide, and which is provided at the end face with an angle of approximately 45 ° with the optical waveguide interposed therebetween. A semiconductor laser characterized by being processed.
【請求項2】 基板側の電極が少なくとも2つの部分に
分割して形成されていることを特徴とする請求項1に記
載の半導体レーザ。
2. The semiconductor laser according to claim 1, wherein the electrode on the substrate side is divided into at least two parts.
【請求項3】 前記クラッド層を半導体多層膜により構
成したことを特徴とする請求項1または請求項2に記載
の半導体レーザ。
3. The semiconductor laser according to claim 1, wherein the clad layer is composed of a semiconductor multilayer film.
【請求項4】 前記端面に低反射率のコーティングを施
したことを特徴とする請求項1乃至3に記載の半導体レ
ーザ。
4. The semiconductor laser according to claim 1, wherein the end face is coated with a low reflectance.
JP5127220A 1993-05-28 1993-05-28 Semiconductor laser Expired - Lifetime JP2546134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5127220A JP2546134B2 (en) 1993-05-28 1993-05-28 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5127220A JP2546134B2 (en) 1993-05-28 1993-05-28 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH06338653A true JPH06338653A (en) 1994-12-06
JP2546134B2 JP2546134B2 (en) 1996-10-23

Family

ID=14954701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5127220A Expired - Lifetime JP2546134B2 (en) 1993-05-28 1993-05-28 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2546134B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158701B2 (en) * 2001-02-21 2007-01-02 Shipley Company, L.L.C. Method for making optical devices with a moving mask and optical devices made thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238180A (en) * 1988-03-18 1989-09-22 Fujitsu Ltd Manufacture of semiconductor laser and semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238180A (en) * 1988-03-18 1989-09-22 Fujitsu Ltd Manufacture of semiconductor laser and semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158701B2 (en) * 2001-02-21 2007-01-02 Shipley Company, L.L.C. Method for making optical devices with a moving mask and optical devices made thereby

Also Published As

Publication number Publication date
JP2546134B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
JP3140788B2 (en) Semiconductor laser device
US6577660B1 (en) Distributed feedback type semiconductor laser device having gradually-changed coupling coefficient
US7680169B2 (en) Self-mode locked multi-section semiconductor laser diode
JP2982422B2 (en) Semiconductor laser and method of manufacturing the same
JP2536390B2 (en) Semiconductor laser and manufacturing method thereof
US20020037024A1 (en) Distributed feedback semiconductor laser
JP3354106B2 (en) Semiconductor laser device and method of manufacturing the same
US6259718B1 (en) Distributed feedback laser device high in coupling efficiency with optical fiber
JPS60124887A (en) Distributed feedback type semiconductor laser
JP2546134B2 (en) Semiconductor laser
JPH09129971A (en) Semiconductor laser
JP2000277851A (en) Distributed feedback semiconductor laser
JP4243506B2 (en) Semiconductor laser and optical module using the same
JPH0983059A (en) Semiconductor laser
JPS6362917B2 (en)
JPS63228795A (en) Distributed feedback type semiconductor laser
JP3595677B2 (en) Optical isolator, distributed feedback laser and optical integrated device
JP2600490B2 (en) Distributed feedback semiconductor laser
JP2002057405A (en) Semiconductor laser device and its manufacturing method
JP2002026461A (en) Optical semiconductor device, its manufacturing method, optical device module with optical semiconductor device and optical communication apparatus
JPH07118568B2 (en) Distributed feedback semiconductor laser
JP3239387B2 (en) Semiconductor laser and method of manufacturing the same
JP2004356571A (en) Distributed feedback semiconductor laser device
JPH0677583A (en) Integrated light source with semiconductor laser and optical modulator
JP3166236B2 (en) Semiconductor laser and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960611