JPH06338628A - Optical coupler - Google Patents

Optical coupler

Info

Publication number
JPH06338628A
JPH06338628A JP12720093A JP12720093A JPH06338628A JP H06338628 A JPH06338628 A JP H06338628A JP 12720093 A JP12720093 A JP 12720093A JP 12720093 A JP12720093 A JP 12720093A JP H06338628 A JPH06338628 A JP H06338628A
Authority
JP
Japan
Prior art keywords
light
light emitting
electrode
optical coupler
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12720093A
Other languages
Japanese (ja)
Inventor
Hisao Nagata
久雄 永田
Shuhei Tanaka
修平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP12720093A priority Critical patent/JPH06338628A/en
Publication of JPH06338628A publication Critical patent/JPH06338628A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate an alignment of a light-emitting element with a photodetector by a method wherein an insulating layer consisting of a transparent or semi-transparent material is formed on the semiconductor light-emitting element, the polycrystalline or amorphous semiconductor photodetector is formed on the insulating layer and light emitted when a current is injected in the light- emitting element reaches the photodetector. CONSTITUTION:An N-type GaP film 21 and a P-type GaP film 22 doped with Zn and O are grown on an N-type GaP substrate 20 by a liquid phase method. An N-type electrode 23 having an opening part 24 is formed on the rear of the substrate 20. An SiO2 film 25 is formed on the whole surface of the electrode 23 and a Cr film 26 provided with an opening part 27 is formed as an electrode of a photodiode. Si films 28 to 30, the electrode 26 and the film 25 are etched to form a step 31 for taking out the electrode 23 on the rear of the substrate 20 and the Si layers 28 to 30 are etched to form a step 32 for taking out the electrode 26 under the P-type Si layer 28. Lastly, an N-type electrode 33 and a P-type GaP electrode 34 of the photodiode are deposited and an optical coupler can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気配線の分離等に利
用できる光カプラに関し、特に発光素子と受光素子のア
ライメントが容易な光カプラに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical coupler which can be used for separating electrical wiring and the like, and more particularly to an optical coupler which facilitates alignment between a light emitting element and a light receiving element.

【0002】[0002]

【従来の技術】従来、電気回路内において、ある回路を
電気的に独立させたい場合、光カプラが用いられてき
た。これは図10のように半導体発光素子51と受光素
子52を組み合わせたモジュールで、発光素子51と結
線された第1の回路(図示せず)に電流が流れると素子
が発光し、その光を受光素子52が受光して、それと接
続する第2の回路(図示せず)に電気的な信号が発生す
るものである。第1の回路と第2の回路は光で接続して
いるが、電気的には独立となるため、たとえば第1の回
路で発生した電気的ノイズは第2の回路には伝わらな
い。
2. Description of the Related Art Conventionally, an optical coupler has been used to electrically separate a circuit in an electric circuit. This is a module in which a semiconductor light emitting element 51 and a light receiving element 52 are combined as shown in FIG. 10, and when a current flows through a first circuit (not shown) connected to the light emitting element 51, the element emits light and emits the light. The light receiving element 52 receives light and an electric signal is generated in a second circuit (not shown) connected to the light receiving element 52. Although the first circuit and the second circuit are connected by light, they are electrically independent, so that electrical noise generated in the first circuit, for example, is not transmitted to the second circuit.

【0003】[0003]

【発明が解決しようとする課題】図10に示す発光素子
51および受光素子52は、いずれも単結晶材料で作製
されており、単結晶上にエピタキシャル成長などを用い
て半導体膜を形成して加工し、チップとして切り出され
たものが用いられてきた。さらに従来の光カプラの製造
工程には、このような複雑なプロセスを経て作製された
発光素子51および受光素子52を、発光素子51から
の出射光が受光素子52に結合する位置にアライメント
するという工程が含まれる。このため、光カプラの製造
コストの上昇をもたらしている。そこで、本発明の目的
は、発光素子と受光素子のアライメントを容易にした光
カプラを提供することである。
Both the light emitting element 51 and the light receiving element 52 shown in FIG. 10 are made of a single crystal material, and a semiconductor film is formed on the single crystal by epitaxial growth or the like and processed. , Chips that have been cut out have been used. Further, in the conventional optical coupler manufacturing process, it is said that the light emitting element 51 and the light receiving element 52 manufactured through such a complicated process are aligned at the position where the light emitted from the light emitting element 51 is coupled to the light receiving element 52. The process is included. Therefore, the manufacturing cost of the optical coupler is increased. Therefore, an object of the present invention is to provide an optical coupler that facilitates alignment between a light emitting element and a light receiving element.

【0004】[0004]

【課題を解決するための手段】本発明の上記目的は次の
構成で達成される。すなわち、半導体基板上に形成され
たpn接合またはpin接合に電流を注入して発光させ
る半導体発光素子と、該半導体発光素子上に形成され、
発光素子の発光波長に対して透明あるいは半透明である
材料からなる絶縁層と、該絶縁層上に形成された多結晶
あるいはアモルファス状の半導体で構成された光が入射
するとpn接合あるいはpin接合にキャリアが発生す
る受光素子とからなり、前記発光素子に電流を注入した
ときの発光が受光素子に達する光カプラ、または、半導
体基板上に形成されたpn接合またはpin接合に電流
を注入して発光させる半導体発光素子と、発光素子の発
光波長に対して透明あるいは半透明である半導体基板の
裏面上に形成され、発光素子の発光波長に対して透明あ
るいは半透明である材料からなる絶縁層と、該絶縁層上
に形成された多結晶あるいはアモルファス状の半導体で
構成された光が入射するとpn接合あるいはpin接合
にキャリアが発生する受光素子とからなり、前記発光素
子に電流を注入したときの発光が受光素子に達する光カ
プラである。ここで、発光素子と受光素子とがアレイ
状、あるいは2次元状に配置され、発光素子と受光素子
とが1対1で対応させること、または単一の半導体発光
素子から発せられた光が2個以上の受光素子で受光でき
るように配置すること、または単一の受光素子で2個以
上の発光素子から発せられる光を受光できるように配置
することができる。
The above objects of the present invention can be achieved by the following constitutions. That is, a semiconductor light emitting element that injects a current into a pn junction or a pin junction formed on a semiconductor substrate to emit light, and a semiconductor light emitting element formed on the semiconductor light emitting element,
When a light composed of an insulating layer made of a material transparent or semitransparent to the emission wavelength of the light emitting element and a polycrystalline or amorphous semiconductor formed on the insulating layer enters, a pn junction or a pin junction is formed. An optical coupler which is composed of a light receiving element for generating carriers, and which emits light when a current is injected into the light emitting element reaches the light receiving element, or emits light by injecting a current into a pn junction or a pin junction formed on a semiconductor substrate. A semiconductor light emitting element, and an insulating layer formed on the back surface of a semiconductor substrate that is transparent or semitransparent to the emission wavelength of the light emitting element, and made of a material that is transparent or semitransparent to the emission wavelength of the light emitting element, When light composed of a polycrystalline or amorphous semiconductor formed on the insulating layer enters, carriers are generated in the pn junction or the pin junction. That it consists of a light receiving element, an optical coupler in which light is reaching the light receiving element when a current is injected into the light emitting element. Here, the light emitting elements and the light receiving elements are arranged in an array or two-dimensionally, and the light emitting elements and the light receiving elements are in one-to-one correspondence, or the light emitted from a single semiconductor light emitting element is two. It can be arranged so that it can be received by one or more light receiving elements, or it can be arranged so that a single light receiving element can receive the light emitted from two or more light emitting elements.

【0005】基板としては、GaAs、AlGaAs、
InP、GaP、Si、ZnSeなどの種々の材料があ
げられる。また発光素子を形成する材料としてはGaA
s、AlGaAs、AlInP、GaInP、InGa
As、AlGaAsP、InGaAsP、ZnSe、I
nP、AlInAs、GaAsSb、AlAsSb、I
nGaAsP、GaP、ZnOをはじめ、pn接合また
はpin接合に電流を注入することで発光する材料であ
れば、本発明に用いることができる。発光素子と受光素
子を分離する絶縁膜材料としてはSiO2、Al23
Si34などの絶縁性のものを用いることができるが、
発光素子の発光波長に対して吸収係数が小さな材料であ
るほうが好ましい。また、受光素子としてはSi、Ga
As、AlGaAs、ZnSeなどいかなる材料であっ
ても構わないが、少なくとも集積化する発光素子の発光
波長に相当するエネルギよりも小さなバンドギャップを
有し、ゼロでない分光感度を持たせる必要がある。
As the substrate, GaAs, AlGaAs,
Various materials such as InP, GaP, Si and ZnSe can be given. GaA is used as a material for forming the light emitting element.
s, AlGaAs, AlInP, GaInP, InGa
As, AlGaAsP, InGaAsP, ZnSe, I
nP, AlInAs, GaAsSb, AlAsSb, I
Any material including nGaAsP, GaP, ZnO, and any material that emits light by injecting a current into a pn junction or a pin junction can be used in the present invention. As the insulating film material for separating the light emitting element and the light receiving element, SiO 2 , Al 2 O 3 ,
An insulating material such as Si 3 N 4 can be used,
It is preferable that the material has a small absorption coefficient with respect to the emission wavelength of the light emitting element. Further, as the light receiving element, Si, Ga
Any material such as As, AlGaAs, and ZnSe may be used, but it is necessary to have a band gap smaller than at least the energy corresponding to the emission wavelength of the light emitting element to be integrated and have a non-zero spectral sensitivity.

【0006】[0006]

【実施例】【Example】

実施例1 本実施例の素子の作製工程を図1に示し、作製した素子
の斜視模式図を図2(b)に、デバイスの断面構造を図
3にそれぞれ示す。まず、図1(a)に示すように、n
−GaAs基板1にMOCVD法によりn−GaAsバ
ッファ層2、Al組成比0.4のn−AlGaAs層
3、Al組成比0.4のp−AlGaAs層4、p−A
lGaAsコンタクト層5を作製した。ここで第3族原
料としてトリメチルガリウム、トリメチルアルミニウ
ム、第5族原料としてアルシンを用い、またキャリアガ
スとして水素を用いた。各層の成長で第5族原料/第3
族原料比は40とした。この成長膜上に50μm角の開
口部7を有するSiO2膜6をCVD法により成膜した
(図1(b))。この開口部7はp−AlGaAs層5
に達するものである。さらにSiO2膜6の上に30μ
m角の開口部9を持ったp−AlGaAs層5に対する
p型電極としてCr膜8を形成した(図1(c))。そ
して、再びCVD法で全面にSiO2膜10を成膜し、
上部に形成するフォトダイオードの電極として30μm
角の開口部12を有する電極11を作製した(図2
(a))。ついで、プラズマCVD法でp−Si層1
3、i−Si層14、n−Si層15を成膜した(図2
(b))。そして、図3の断面図に示すように、一部の
Si層13〜15、電極11およびSiO2膜10をエ
ッチングしてAlGaAsの電極8を取り出すためのス
テップ16と、Si層13〜15をエッチングしてSi
層の電極11を取り出すためのステップ17をそれぞれ
作製した。最後にフォトダイオードのn型電極18とn
−GaAs基板1の裏面にn−GaAsの電極19を蒸
着した。
Example 1 FIG. 1 shows a process of manufacturing the element of this example, FIG. 2 (b) is a schematic perspective view of the manufactured element, and FIG. 3 is a sectional structure of the device. First, as shown in FIG.
An n-GaAs buffer layer 2, an n-AlGaAs layer 3 having an Al composition ratio of 0.4, a p-AlGaAs layer 4 having an Al composition ratio of 0.4, and a p-A formed on the -GaAs substrate 1 by MOCVD.
The lGaAs contact layer 5 was produced. Here, trimethylgallium and trimethylaluminum were used as the Group 3 raw material, arsine was used as the Group 5 raw material, and hydrogen was used as the carrier gas. Group 5 raw material / 3rd by growth of each layer
The group material ratio was 40. On this growth film, a SiO 2 film 6 having a 50 μm square opening 7 was formed by the CVD method (FIG. 1B). This opening 7 is a p-AlGaAs layer 5
Will reach. Furthermore, 30μ on the SiO 2 film 6
A Cr film 8 was formed as a p-type electrode for the p-AlGaAs layer 5 having an m-square opening 9 (FIG. 1C). Then, the SiO 2 film 10 is formed again on the entire surface by the CVD method,
30 μm as the electrode of the photodiode formed on top
An electrode 11 having a corner opening 12 was prepared (FIG. 2).
(A)). Then, the p-Si layer 1 is formed by the plasma CVD method.
3, i-Si layer 14, and n-Si layer 15 were formed (FIG. 2).
(B)). Then, as shown in the cross-sectional view of FIG. 3, a step 16 for removing a part of the Si layers 13 to 15, the electrode 11 and the SiO 2 film 10 to take out the AlGaAs electrode 8 and the Si layers 13 to 15 are formed. Etch Si
Each step 17 for taking out the electrode 11 of the layer was produced. Finally, the n-type electrode 18 and n of the photodiode
An n-GaAs electrode 19 was deposited on the back surface of the -GaAs substrate 1.

【0007】電極8〜19間に順方向バイアスを印加す
るとn−AlGaAs層3およびp−AlGaAs層4
により形成されたpn接合で発光した。そのとき、発光
ダイオードの出射光は開口部7、9、12を通ってフォ
トダイオードに達し、電極11〜18間に電圧を発生し
た。以上のことは発光ダイオードとフォトダイオードは
電気的には分離しているが光で接続しており、光カプラ
として機能することを示すものである。
When a forward bias is applied between the electrodes 8 to 19, the n-AlGaAs layer 3 and the p-AlGaAs layer 4 are formed.
Light was emitted from the pn junction formed by. At that time, the emitted light of the light emitting diode reached the photodiode through the openings 7, 9, 12 and generated a voltage between the electrodes 11-18. The above shows that the light emitting diode and the photodiode are electrically separated but connected by light, and thus function as an optical coupler.

【0008】本実施例で示した構造の素子を用い、発光
ダイオードとフォトダイオードの分離で種々の構成が可
能となる。図4に示す例は、発光ダイオード40とフォ
トダイオード41との間にSiO2膜42を配置し、発
光ダイオード40からの出射光を開口部43を介してフ
ォトダイオード41に達するようにすると1対1の結合
になる。また、図5の例では発光ダイオード40からの
出射光が達する開口部43に対応する位置に二つの隣接
するフォトダイオード41の境界部44を配置するもの
で、発光ダイオード40とフォトダイオード41とは1
対2の結合になる。図6の例は二つの発光ダイオード4
0からの出射光をそれぞに対応する開口部43を介して
単一のフォトダイオード41に達するように配置したも
ので、発光ダイオード40とフォトダイオード41とが
2対1の結合を構成している。また、図7に示す構造の
場合、並列配置された複数の発光ダイオード40a〜4
0cから発光した光は開口部43a〜43cから並列配
置された複数のフォトダイオード41a〜41dの境界
部44a〜44cで互いに分離されたフォトダイオード
41a〜41dでそれぞれ受光される。この場合発光ダ
イオード40とフォトダイオード41は1対2の結合に
相当するが、例えば、発光ダイオード40aと40bの
発光は41bでも受光できる。上記実施例では発光ダイ
オード40およびフォトダイオード41を1次元のアレ
イで考えているが、2次元(平面)状に配置しても良
い。さらに基板内に発光ダイオード40およびフォトダ
イオード41を1対1、1対多、多対1などの結合を混
合して設けても問題はない。
By using the element having the structure shown in the present embodiment, the light emitting diode and the photodiode can be separated into various configurations. In the example shown in FIG. 4, when the SiO 2 film 42 is arranged between the light emitting diode 40 and the photodiode 41, and the light emitted from the light emitting diode 40 reaches the photodiode 41 through the opening 43, a pair is formed. It becomes the union of 1. Further, in the example of FIG. 5, the boundary portion 44 between two adjacent photodiodes 41 is arranged at a position corresponding to the opening 43 through which the light emitted from the light emitting diode 40 reaches. The light emitting diode 40 and the photodiode 41 are separated from each other. 1
It becomes a pair 2 bond. The example of FIG. 6 shows two light emitting diodes 4
The light emitted from 0 is arranged so as to reach the single photodiode 41 through the corresponding openings 43, and the light emitting diode 40 and the photodiode 41 form a two-to-one coupling. There is. Further, in the case of the structure shown in FIG. 7, a plurality of light emitting diodes 40a-4a arranged in parallel
The light emitted from the light source 0c is received by the photodiodes 41a to 41d, which are separated from each other by the boundary portions 44a to 44c of the plurality of photodiodes 41a to 41d arranged in parallel from the openings 43a to 43c. In this case, the light emitting diode 40 and the photodiode 41 correspond to one-to-two coupling, but for example, the light emission of the light emitting diodes 40a and 40b can be received by 41b. Although the light emitting diodes 40 and the photodiodes 41 are considered as a one-dimensional array in the above embodiment, they may be arranged in a two-dimensional (planar) shape. Further, there is no problem even if the light emitting diode 40 and the photodiode 41 are provided in the substrate by mixing the couplings such as one-to-one, one-to-many, and many-to-one.

【0009】実施例2 本発明の他の実施例として、GaP発光ダイオードとフ
ォトダイオードを組み合わせた例について図8と図9を
用いて説明する。図8に示すように、n−GaP基板2
0に液相法によりn−GaP21、ZnおよびOをドー
プしたp−GaP22を成長させた基板を用いた。本素
子に電流を注入すると発光ダイオードとして作用し、7
00nmをピークとして発光する。基板20であるGa
P層は室温で2.261eV(約550nm)のバンド
ギャップを持つため、700nmの発光は基板20を通
して裏面にも達する。そこでn−GaP基板20の裏面
に30μm角の開口部24を有するn型電極23を成膜
する。そしてn型電極23上に全面にSiO2膜25を
成膜し、フォトダイオードの電極として30μm角の開
口部27を設けたCr膜26を成膜する。続いてプラズ
マCVD法でp−Si層28、i−Si層29、n−S
i層30を順次成膜する。
Embodiment 2 As another embodiment of the present invention, an example in which a GaP light emitting diode and a photodiode are combined will be described with reference to FIGS. 8 and 9. As shown in FIG. 8, the n-GaP substrate 2
A substrate on which n-GaP21, p-GaP22 doped with Zn and O was grown by a liquid phase method was used. When current is injected into this element, it acts as a light emitting diode.
It emits light with a peak of 00 nm. Ga that is the substrate 20
Since the P layer has a band gap of 2.261 eV (about 550 nm) at room temperature, light emission of 700 nm reaches the back surface through the substrate 20. Therefore, an n-type electrode 23 having a 30 μm square opening 24 is formed on the back surface of the n-GaP substrate 20. Then, an SiO 2 film 25 is formed on the entire surface of the n-type electrode 23, and a Cr film 26 having an opening 27 of 30 μm square is formed as an electrode of the photodiode. Then, a p-Si layer 28, an i-Si layer 29, and an n-S layer are formed by plasma CVD.
The i layer 30 is sequentially formed.

【0010】続いて、図9に示すように、基板20の一
部のSi層28〜30、電極26およびSiO2膜25
をエッチングしてGaP基板20の電極23を取り出す
ためのステップ31、Si層28〜30をエッチングし
てp−Si層28の電極26を取り出すためのステップ
32をそれぞれ作製する。最後にフォトダイオードのn
型電極33とp−GaP電極34を蒸着する。電極23
〜34間に順方向バイアスを印加すると、n−GaP層
21およびp−GaP層22により形成されたpn接合
で発光し、開口部24、27を通ってフォトダイオード
に達し、電極26〜33間に電圧を発生した。以上のこ
とは発光ダイオードとフォトダイオードは電気的には分
離しているが光で接続しており、光カプラとして機能す
ることを示すものである。
Subsequently, as shown in FIG. 9, Si layers 28 to 30, a part of the substrate 20, an electrode 26 and a SiO 2 film 25 are formed.
Is formed by etching, and step 31 for taking out the electrode 23 of the GaP substrate 20 and step 32 for etching the Si layers 28 to 30 to take out the electrode 26 of the p-Si layer 28 are prepared. Finally n of the photodiode
The mold electrode 33 and the p-GaP electrode 34 are deposited. Electrode 23
When a forward bias is applied between the electrodes 34 to 34, light is emitted from the pn junction formed by the n-GaP layer 21 and the p-GaP layer 22, reaches the photodiode through the openings 24 and 27, and the electrodes 26 to 33 are electrically connected. Generated voltage. The above shows that the light emitting diode and the photodiode are electrically separated but connected by light, and thus function as an optical coupler.

【0011】[0011]

【発明の効果】本発明によると従来よりも単純なプロセ
スで基板上に発光素子と受光素子が形成でき、しかも光
を結合させるためのアライメントがプロセス途中のマス
ク合わせで実現できる。また本発明によると、マルチチ
ャネルの光カプラが容易に実現できる。
According to the present invention, a light emitting element and a light receiving element can be formed on a substrate by a simpler process than before, and alignment for coupling light can be realized by mask alignment during the process. Further, according to the present invention, a multi-channel optical coupler can be easily realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の光カプラの製造工程を示
す模式図である。
FIG. 1 is a schematic view showing a manufacturing process of an optical coupler according to a first embodiment of the present invention.

【図2】 本発明の実施例1の光カプラの製造工程を示
す模式図である。
FIG. 2 is a schematic view showing a manufacturing process of the optical coupler according to the first embodiment of the present invention.

【図3】 本発明の実施例1の光カプラの断面模式図で
ある。
FIG. 3 is a schematic sectional view of an optical coupler of Example 1 of the present invention.

【図4】 本発明の実施例の発光ダイオードとフォトダ
イオードを1対1で対応させるための素子配置を示す断
面模式図である。
FIG. 4 is a schematic cross-sectional view showing an element arrangement for making a one-to-one correspondence between the light emitting diode and the photodiode of the embodiment of the present invention.

【図5】 本発明の実施例の発光ダイオードとフォトダ
イオードを1対2で対応させるための素子配置を示す断
面模式図である。
FIG. 5 is a schematic cross-sectional view showing an element arrangement for making the light emitting diode and the photodiode of the embodiment of the present invention correspond one to two.

【図6】 本発明の実施例の発光ダイオードとフォトダ
イオードを2対1で対応させるための素子配置を示す断
面模式図である。
FIG. 6 is a schematic sectional view showing an element arrangement for making the light emitting diode and the photodiode of the embodiment of the present invention correspond to each other in a two-to-one relationship.

【図7】 本発明の実施例の発光ダイオードとフォトダ
イオードを1対2で対応させるための素子配置を示す断
面模式図である。
FIG. 7 is a schematic cross-sectional view showing an element arrangement for making the light emitting diode and the photodiode of the embodiment of the present invention correspond one to two.

【図8】 本発明の実施例2の光カプラの製造工程を示
す模式図である。
FIG. 8 is a schematic view showing a manufacturing process of the optical coupler according to the second embodiment of the present invention.

【図9】 本発明の実施例2の光カプラの断面模式図で
ある。
FIG. 9 is a schematic sectional view of an optical coupler according to a second embodiment of the present invention.

【図10】 従来技術の半導体発光素子と受光素子を組
み合わせたモジュールを示す図である。
FIG. 10 is a diagram showing a module in which a semiconductor light emitting element and a light receiving element of a conventional technique are combined.

【符号の説明】[Explanation of symbols]

1…n−GaAs基板、2…n−GaAsバッファ層、
3…n−AlGaAs層、4…p−AlGaAs層、5
…p−AlGaAsコンタクト層、6、10、25…S
iO2膜、7、9、12、24、27、43…開口部 、
8…p型電極(対AlGaAs)、11…p型電極(対
Si)、13、28…p−Si層、14、29…i−S
i層、15、30…n−Si層、16、17、31、3
2…ステップ、18…n型電極(対Si)、19…n型
電極(対GaAs)、26、33…n型電極(対S
i)、34…p型電極(対GaP)、40…発光ダイオ
ード、41…フォトダイオード、42…SiO2膜、4
4…境界部
1 ... n-GaAs substrate, 2 ... n-GaAs buffer layer,
3 ... n-AlGaAs layer, 4 ... p-AlGaAs layer, 5
... p-AlGaAs contact layer, 6, 10, 25 ... S
iO 2 film, 7, 9, 12, 24, 27, 43 ... Opening part,
8 ... p-type electrode (to AlGaAs), 11 ... p-type electrode (to Si), 13, 28 ... p-Si layer, 14, 29 ... i-S
i layer, 15, 30 ... n-Si layer, 16, 17, 31, 3
2 ... Step, 18 ... N-type electrode (to Si), 19 ... N-type electrode (to GaAs), 26, 33 ... N-type electrode (to S)
i), 34 ... P-type electrode (against GaP), 40 ... Light emitting diode, 41 ... Photodiode, 42 ... SiO 2 film, 4
4 ... Border

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成されたpn接合また
はpin接合に電流を注入して発光させる半導体発光素
子と、 該半導体発光素子上に形成され、発光素子の発光波長に
対して透明あるいは半透明である材料からなる絶縁層
と、 該絶縁層上に形成された多結晶あるいはアモルファス状
の半導体で構成された光が入射するとpn接合あるいは
pin接合にキャリアが発生する受光素子とからなり、
前記発光素子に電流を注入したときの発光が受光素子に
達することを特徴とする光カプラ。
1. A semiconductor light-emitting device that emits light by injecting a current into a pn junction or a pin junction formed on a semiconductor substrate, and a semiconductor light-emitting device formed on the semiconductor light-emitting device and transparent or semi-transparent to the emission wavelength of the light-emitting device. An insulating layer made of a transparent material; and a light receiving element that is made of a polycrystalline or amorphous semiconductor formed on the insulating layer and generates carriers at a pn junction or a pin junction when light is incident on the insulating layer.
An optical coupler, wherein light emission when current is injected into the light emitting element reaches a light receiving element.
【請求項2】 半導体基板上に形成されたpn接合また
はpin接合に電流を注入して発光させる半導体発光素
子と、 発光素子の発光波長に対して透明あるいは半透明である
半導体基板の裏面上に形成され、発光素子の発光波長に
対して透明あるいは半透明である材料からなる絶縁層
と、 該絶縁層上に形成された多結晶あるいはアモルファス状
の半導体で構成された光が入射するとpn接合あるいは
pin接合にキャリアが発生する受光素子とからなり、
前記発光素子に電流を注入したときの発光が受光素子に
達することを特徴とする光カプラ。
2. A semiconductor light emitting element for injecting a current into a pn junction or a pin junction formed on a semiconductor substrate to emit light, and a back surface of the semiconductor substrate transparent or semitransparent to an emission wavelength of the light emitting element. An insulating layer formed of a material that is transparent or semi-transparent to the emission wavelength of the light-emitting element and a light composed of a polycrystalline or amorphous semiconductor formed on the insulating layer are incident on the pn junction or It consists of a light receiving element in which carriers are generated in the pin junction,
An optical coupler, wherein light emission when current is injected into the light emitting element reaches a light receiving element.
【請求項3】 発光素子と受光素子とが1対1で対応し
たアレイ状あるいは2次元状に配置されていることを特
徴とする請求項1または2記載の光カプラ。
3. The optical coupler according to claim 1, wherein the light emitting element and the light receiving element are arranged in a one-to-one corresponding array or two-dimensional form.
【請求項4】 単一の発光素子から発せられた光が2個
以上の受光素子で受光されるように配置されていること
を特徴とする請求項1または2記載の光カプラ。
4. The optical coupler according to claim 1, wherein the optical coupler is arranged so that light emitted from a single light emitting element is received by two or more light receiving elements.
【請求項5】 単一の受光素子で2個以上の発光素子か
ら発せられる光を受光できるように配置されたことを特
徴とする請求項1または2記載の光カプラ。
5. The optical coupler according to claim 1, wherein the optical coupler is arranged so that light emitted from two or more light emitting elements can be received by a single light receiving element.
JP12720093A 1993-05-28 1993-05-28 Optical coupler Pending JPH06338628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12720093A JPH06338628A (en) 1993-05-28 1993-05-28 Optical coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12720093A JPH06338628A (en) 1993-05-28 1993-05-28 Optical coupler

Publications (1)

Publication Number Publication Date
JPH06338628A true JPH06338628A (en) 1994-12-06

Family

ID=14954188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12720093A Pending JPH06338628A (en) 1993-05-28 1993-05-28 Optical coupler

Country Status (1)

Country Link
JP (1) JPH06338628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006040788B4 (en) * 2006-08-31 2013-02-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Integrated optocoupler with organic light emitter and inorganic photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006040788B4 (en) * 2006-08-31 2013-02-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Integrated optocoupler with organic light emitter and inorganic photodetector

Similar Documents

Publication Publication Date Title
US5674778A (en) Method of manufacturing an optoelectronic circuit including heterojunction bipolar transistor, laser and photodetector
US5300788A (en) Light emitting diode bars and arrays and method of making same
US6730990B2 (en) Mountable microstructure and optical transmission apparatus
US5665985A (en) Light-emitting diode of edge-emitting type, light-receiving device of lateral-surface-receiving type, and arrayed light source
JPH11154774A (en) Surface light emission type semiconductor device, manufacture thereof, and display device using the same
US5055894A (en) Monolithic interleaved LED/PIN photodetector array
JPH11168262A (en) Planar optical device, manufacture thereof, and display device
JPH02174272A (en) Manufacture of light-emitting diode array
JPH07111339A (en) Surface emission type semiconductor light emitting device
JP3206080B2 (en) Semiconductor laser
US6169298B1 (en) Semiconductor light emitting device with conductive window layer
US5105236A (en) Heterojunction light-emitting diode array
JPH06338628A (en) Optical coupler
JP3238979B2 (en) Surface emitting laser device and method of manufacturing the same
JPH05315645A (en) Semiconductor light-emitting device
JPH1168153A (en) Light-emitting diode and manufacture thereof
US5006907A (en) Crosstalk preventing laser diode array
JPH09172198A (en) Light emitting diode and its manufacture
JPH0945959A (en) Light emitting element
KR102097687B1 (en) Monolithic integrated transceiver device of a photodiode and a surface emitting laser and the fabrication method of this device
JP4239311B2 (en) Light emitting diode and light emitting diode array
JPH0426159A (en) Semiconductor light-integration device
JPH0677531A (en) Semiconductor light emitting element and its manufacture
US6407410B1 (en) Semiconductor optical device
JPH11238915A (en) Light-emitting diode array