JPH06338547A - Method and device for evaluating silicon wafer - Google Patents

Method and device for evaluating silicon wafer

Info

Publication number
JPH06338547A
JPH06338547A JP12731493A JP12731493A JPH06338547A JP H06338547 A JPH06338547 A JP H06338547A JP 12731493 A JP12731493 A JP 12731493A JP 12731493 A JP12731493 A JP 12731493A JP H06338547 A JPH06338547 A JP H06338547A
Authority
JP
Japan
Prior art keywords
photoconductivity
change
waves
silicon wafer
evaluated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12731493A
Other languages
Japanese (ja)
Inventor
Yoichiro Ogita
陽一郎 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikutoku Gakuen School Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Ikutoku Gakuen School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Ikutoku Gakuen School Corp filed Critical Showa Denko KK
Priority to JP12731493A priority Critical patent/JPH06338547A/en
Publication of JPH06338547A publication Critical patent/JPH06338547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable the surface of a semiconductor wafer and the crystallinity of a surface crystal layer to be measured through a non-destructive method by a method wherein the surface of a wafer is irradiated with impulse light and electromagnetic waves at the same time, and the reflected electromagnetic waves are detected. CONSTITUTION:A position P on the surface a semiconductor wafer is irradiated with impulse light 4 large in absorption coefficient, as it is kept irradiated with electromagnetic waves 2. At this point, the reflected waves 3 of the probing electromagnetic waves 2 are detected. The reflected waves 3 of the probing waves 2 are modulated due to a so-called photoconductivity attenuation change caused by an increase in photoconductivity due to light carrier excited in crystal and a decrease in photoconductivity due to recombination after quenching. Therefore, the reflected waves 3 of the probing waves 2 are detected, whereby a photoconductivity attenuation change can be obtained. This photoconductivity change can be obtained through such a manner that the reflected waves 3 are high-speed detected and observed by a high-speed waveform observing equipment. The surface of a wafer and the properties of a surface crystal layer can be evaluated basing on the obtained photoconductivity change.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はIC用半導体ウェーハ
の表面及び表面層の評価方法及びそれに使用する装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the surface and surface layer of a semiconductor wafer for ICs and an apparatus used for the method.

【0002】[0002]

【従来の技術】ICは半導体ウェーハの表面から数マイ
クロメータから数十マイクロメータ以内の表面結晶層内
に作製される。従来、ウェーハ表面結晶層の評価方法と
しては、ウェーハへきかい後、当該断面の化学エッチン
グによるエッチピット像による欠陥の観察、あるいはへ
きかい後、赤外レーザを照射して、析出物からの、散乱
光観測による析出物の観察がある(学振第145委,第
53回研究会資料P.7〜P.12 平成3年2月2日参
照)。表面層の重金属汚染評価として、SIMSの測定
によるものがある(UCS半導体基盤技術研究会,超L
SIウルトラクリーンテクノロジーワークショップ資料
No.9,1991年3月15日,P.29〜P.39;学振
第145委,第42回研究会資料,昭和63年10月3
日,P.15〜P.20等参照)。さらに、表面の評価で
は、STMによる表面の凹凸の直接観測法がある。IC
は半導体ウェーハ上の数μmから数十μm以内の表面結
晶層内に作製される。従って、特にULSI等では、そ
の表面結晶層の結晶欠陥の非発生、重金属等の汚染の防
止または除去そして結晶表面歪等の除去が非常に重要で
ある。その表面での欠陥非生成の技術として、ウェーハ
内部に欠陥を故意に生成することにより、表面層の欠陥
を非生成とするいわゆるイントリンジックゲッタリング
(IG)と、表面層と反対側の裏面側に欠陥を故意に生
成することにより、表面層の欠陥を非生成とするエクス
トリンジックゲッタリング(EG)がある。いずれの場
合も、表面層では欠陥は殆どなくなる(いわゆるデヌー
ドゾーン DZを形成する)が、内部は欠陥だらけとな
る。したがって、このようなウェーハの表面層の結晶性
と重金属汚染度合の評価が必要不可欠である。表面及び
表面結晶層の評価は、非破壊で非接触でできるのが望ま
しい。現状の評価技術は、試料作成上、または測定上、
破壊評価である。また、ウェーハライフタイム法は非接
触法であるが表面及び表面結晶層の情報を取り出せな
い。表面粗さはその表面酸化膜の性質に影響を及ぼし、
デバイスの集積度の増加と共に、デバイス性能と密接に
関係することが分かり始めている。これら表面及び表面
結晶層を評価する上で、電子デバイスの性質と直接的関
係にあるその電気的性質を非接触、非破壊で測定できる
ことは非常に重要である。
2. Description of the Related Art ICs are formed in a surface crystal layer within a few micrometers to a few tens of micrometers from the surface of a semiconductor wafer. Conventionally, as a method for evaluating a wafer surface crystal layer, after observing the wafer, observing defects by an etch pit image by chemical etching of the cross section, or after observing, irradiating an infrared laser and observing scattered light from precipitates There are some observations of precipitates by the Society for the Promotion of Science (145th Committee, Materials of the 53rd Research Group P.7 to P.12, February 2, 1991). One of the evaluation methods for heavy metal contamination of the surface layer is by SIMS measurement (UCS Semiconductor Technology Research Group, Ultra L
Materials for SI Ultra Clean Technology Workshop
No. 9, March 15, 1991, P.29 to P.39; Gakshin 145th Committee, 42nd Research Group materials, October 3, 1988.
Sun, P.15-P.20, etc.). Further, in the surface evaluation, there is a direct observation method of surface irregularities by STM. IC
Is produced in the surface crystal layer within a few μm to a few tens μm on the semiconductor wafer. Therefore, especially in ULSI and the like, it is very important to prevent the generation of crystal defects in the surface crystal layer, prevent or remove the contamination of heavy metals, and remove the crystal surface strain. As a technique of generating no defects on the surface, so-called intrinsic gettering (IG) that causes defects in the surface layer to be non-generated by intentionally generating defects inside the wafer and the back surface on the opposite side of the surface layer There is extrinsic gettering (EG) in which defects on the surface layer are not generated by intentionally generating defects on the side. In either case, the surface layer has almost no defects (forming a so-called de nude zone DZ), but the inside is full of defects. Therefore, it is essential to evaluate the crystallinity of the surface layer of such a wafer and the degree of heavy metal contamination. It is desirable that the surface and the surface crystal layer can be evaluated in a non-destructive and non-contact manner. The current evaluation technology is for sample preparation or measurement,
It is a destructive evaluation. Further, the wafer lifetime method is a non-contact method, but information on the surface and the surface crystal layer cannot be extracted. The surface roughness affects the properties of the surface oxide film,
With increasing device integration, it is beginning to be found to be closely related to device performance. In evaluating these surfaces and surface crystal layers, it is very important to be able to measure their electrical properties, which are directly related to the properties of electronic devices, in a non-contact and non-destructive manner.

【0003】[0003]

【発明が解決しようとする課題】表面結晶層の結晶特性
の評価は、非破壊でかつウェーハ面内の特性分布も評価
できるのが望ましい。またウェーハライフタイム法はウ
ェーハ断面方向全体の評価であり、表面結晶層の情報は
現状では取り出せていない。また、表面結晶歪について
は、現在特に問題は発生していないが、将来デバイスの
高集積化がさらに進歩してくると問題になってくる可能
性がある結晶特性である。上記欠点を解決できる評価手
段が本発明の目的であり、シリコンウェーハにおけるD
Z、エピ層等の表面及び表面結晶層の結晶特性を非接触
非破壊で測定する方法と装置を提供するものである。
For the evaluation of the crystal characteristics of the surface crystal layer, it is desirable that the characteristics distribution within the wafer surface can be evaluated nondestructively. Further, the wafer lifetime method is an evaluation of the entire wafer cross-sectional direction, and information on the surface crystal layer is not available at present. Further, the surface crystal strain has no particular problem at present, but it is a crystal characteristic that may become a problem in the future when higher integration of devices is further advanced. An evaluation means capable of solving the above-mentioned drawbacks is an object of the present invention, and D in a silicon wafer is evaluated.
The present invention provides a method and apparatus for non-contact and non-destructive measurement of crystal characteristics of surfaces such as Z and epi layers and surface crystal layers.

【0004】[0004]

【課題を解決するための手段】本発明ではウェーハ表面
にインパルス光と電磁波を同時に照射し、反射してくる
電磁波を検出する方法において、インパルス光照射中及
び直後の光導電変化波形から、表面及び表面層特性を評
価する方法である。以下本発明の評価方法につき、図を
用いて詳細に説明する。図1は本発明の評価方法の概略
を示す図である。図1において、1は被測定半導体ウェ
ーハである。1の表面に電磁波2を照射したまま、吸収
係数の大きいインパルス光4を選択して照射する。この
際反射してくるプローブ電磁波の反射波3を検知する。
評価する表面層の厚みをWdとし、照射光の波長をλ、
吸収係数をαとしたとき、光の侵入長さを決める波長λ
は、1/α≦Wdとなるように、α−λ曲線から決定す
る。
According to the present invention, a wafer surface is irradiated with impulse light and electromagnetic waves at the same time, and a reflected electromagnetic wave is detected. This is a method for evaluating surface layer characteristics. Hereinafter, the evaluation method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing an outline of the evaluation method of the present invention. In FIG. 1, reference numeral 1 is a semiconductor wafer to be measured. While irradiating the surface of 1 with the electromagnetic wave 2, the impulse light 4 having a large absorption coefficient is selected and irradiated. At this time, the reflected wave 3 of the reflected probe electromagnetic wave is detected.
The thickness of the surface layer to be evaluated is Wd, the wavelength of the irradiation light is λ,
When the absorption coefficient is α, the wavelength λ that determines the penetration length of light
Is determined from the α-λ curve so that 1 / α ≦ Wd.

【0005】次に、プローブ波7は周波数30〜3,0
00GHzのミリ波またはサブミリ波を用い、ウェーハ表
面の励起光照射位置と同じ位置P点に照射する。プロー
ブ波2の反射波3は、結晶内で励起された光キャリアに
よる光導電度の増加と、それに続く消光後再結合される
際の減衰に伴ういわゆる光導電減衰変化によって変調さ
れたものとなる。したがってプローブ波2の反射波3を
検出して検波すれば、光導電減衰変化を知ることができ
る。インパルス光の照射により、表面結晶層内の表面側
に励起されたキャリヤにより、光導電率が急峻に増加
し、その後、それに比べて、ゆっくりと増加または減少
する。この光導電率変化は、プローブ電磁波の反射波3
を高速検波し、高速波形観測器で観測することにより求
まる。
Next, the probe wave 7 has a frequency of 30 to 3,0.
A millimeter wave or submillimeter wave of 00 GHz is used to irradiate the same point P on the wafer surface as the excitation light irradiation position. The reflected wave 3 of the probe wave 2 is modulated by an increase in photoconductivity due to the photocarriers excited in the crystal and subsequent so-called photoconductivity decay change accompanying decay upon recombination after quenching. . Therefore, if the reflected wave 3 of the probe wave 2 is detected and detected, the photoconductive attenuation change can be known. The photoconductivity sharply increases due to the carriers excited to the surface side in the surface crystal layer by the irradiation of the impulse light, and thereafter, the photoconductivity slowly increases or decreases as compared with that. This change in photoconductivity is caused by the reflected wave 3 of the probe electromagnetic wave.
It is obtained by detecting the high-speed wave and observing it with a high-speed waveform observer.

【0006】以上述べた方法により得られる光導電率変
化から、ウェーハの表面及び表面結晶層の特性を評価す
る方法について説明する。表面結晶層の表面付近に励起
されたキャリアは表面結晶層中を拡散する。このときの
光励起直後の光導電率変化の表面再結合速度依存性の理
論計算結果を図2に示す。図に見るように、光導電率は
非常に急峻に増加後、さらに増加し、最大値に達し、そ
の後減少する。表面再結合速度が小,中,大と変わると図
のように、光導電率変化の検出電圧はV3,V2,V1
順に小さくなる。したがって、光導電率変化の最大値は
表面再結合速度に依存する。その表面再結合速度は表面
粗さ、表面ダメッジに強く依存することが分かってい
る。したがって、上記光導電率変化の最大値の大きさか
ら表面粗さが評価できる。
A method for evaluating the characteristics of the surface of the wafer and the surface crystal layer from the change in photoconductivity obtained by the above-mentioned method will be described. The carriers excited near the surface of the surface crystal layer diffuse in the surface crystal layer. The theoretical calculation results of the surface recombination velocity dependence of the change in photoconductivity immediately after photoexcitation at this time are shown in FIG. As can be seen, the photoconductivity increases very sharply, then increases further, reaches a maximum and then decreases. When the surface recombination velocity changes from small, medium, and large, the detected voltage of the change in photoconductivity decreases in the order of V 3 , V 2 , and V 1 as shown in the figure. Therefore, the maximum change in photoconductivity depends on the surface recombination rate. It is known that the surface recombination rate strongly depends on the surface roughness and the surface damage. Therefore, the surface roughness can be evaluated from the magnitude of the maximum value of the change in photoconductivity.

【0007】さらに、図に見るように、最大値に達する
までの時間tは表面再結合速度が小,中,大と変わる
と、図のように、t3,t2,t1 と短くなる。つまり、
最大値に達するまでの時間も表面再結合速度に依存して
変わる。したがって、その時間から、表面粗さを評価で
きる。一方、図3に、表面層のライフタイムによるイン
パルス励起光照射中及び直後の光導電率変化波形を示
す。図に見るように、表面層のライフタイムτ0が0.
1,1,50,500μsと変わると、光導電率変化の
最大値電圧はV1,V2,V3,V4と大きくなる。また光
導電率変化が最大値に達するまでの時間もt1,t2,t
3,t4と大きくなり、変化する。一方、そのライフタイ
ムは、重金属汚染に強く依存することが分かっている。
したがって、その最大値電圧またはその時刻から重金属
汚染を評価できる。
Further, as shown in the figure, the time t until reaching the maximum value becomes short as t 3 , t 2 and t 1 as shown in the figure when the surface recombination velocity changes from small to medium to large. . That is,
The time to reach the maximum also changes depending on the surface recombination rate. Therefore, the surface roughness can be evaluated from that time. On the other hand, FIG. 3 shows photoconductivity change waveforms during and immediately after irradiation with the impulse excitation light due to the lifetime of the surface layer. As shown in the figure, the lifetime τ 0 of the surface layer is 0.
When it is changed to 1 , 1 , 50, 500 μs, the maximum value voltage of the change in photoconductivity becomes V 1 , V 2 , V 3 , V 4 as large as possible. Also, the time until the change in photoconductivity reaches the maximum value is t 1 , t 2 , t
3 and t 4, which increase and change. On the other hand, its lifetime has been found to depend strongly on heavy metal contamination.
Therefore, the heavy metal contamination can be evaluated from the maximum value voltage or the time.

【0008】図4に本発明で使用する装置の概要を示
す。電磁波発振器6からサーキュレータ7を通して電磁
波が、導波管または同軸線5を通して試料1の評価すべ
き表面層側に照射させる。一方、レーザ発振器15から
反射鏡13で反射したレーザ光を上記電磁波の入射点に
照射するか、または試料1の評価すべき表面層側にレー
ザ発振器15から反射鏡14で反射したレーザ光を照射
する。この場合、試料は反転されレーザ光が表面結晶層
(測定評価されるべき面側)に照射されるので、上記電
磁波とレーザ光が互いに反対面に照射されることにな
る。励起光に伴う光導電率変化で変調された電磁波の反
射波は、サーキュレータ7で分離され、検波器8で検波
され、光導電率変化波形信号となり、増幅器9で増幅さ
れ、高速A/D変換器10でA/D変換され、コンピュ
ータ11に転送され、データ演算により光導電率変化信
号の最大値の検出と最大値までの時間が検出される。
FIG. 4 shows an outline of the apparatus used in the present invention. An electromagnetic wave is applied from the electromagnetic wave oscillator 6 through the circulator 7 to the surface layer side of the sample 1 to be evaluated through the waveguide or the coaxial line 5. On the other hand, the laser light reflected by the reflecting mirror 13 from the laser oscillator 15 is applied to the incident point of the electromagnetic wave, or the surface layer side of the sample 1 to be evaluated is irradiated with the laser light reflected by the reflecting mirror 14 from the laser oscillator 15. To do. In this case, the sample is inverted and the laser light is applied to the surface crystal layer (the surface side to be measured and evaluated), so that the electromagnetic waves and the laser light are applied to the opposite surfaces. The reflected wave of the electromagnetic wave modulated by the change in photoconductivity accompanying the excitation light is separated by the circulator 7, detected by the detector 8, becomes a photoconductivity change waveform signal, is amplified by the amplifier 9, and is subjected to high-speed A / D conversion. A / D conversion is performed by the device 10, the data is transferred to the computer 11, and the maximum value of the photoconductivity change signal and the time until the maximum value are detected by data calculation.

【0009】[0009]

【作用】本発明は表面付近に励起されたキャリアが表面
及び表面結晶層に拡散する過程で、拡散によるキャリア
の蓄積が生じたり、また表面の表面粗さ、表面ダメッジ
そして表面結晶層中の欠陥、重金属汚染、表面結晶層の
厚みにより、再結合状態が変化したりする。その状態に
よるプローブ電磁波の光導電率変調を検知することによ
り、ウェーハ表面及び表面結晶層の結晶状態を評価する
ものである。
According to the present invention, carriers excited by the vicinity of the surface are diffused in the surface and the surface crystal layer, and carriers are accumulated due to the diffusion, and surface roughness of the surface, surface damaging and defects in the surface crystal layer. The recombination state may change depending on the heavy metal contamination and the surface crystal layer thickness. By detecting the photoconductivity modulation of the probe electromagnetic wave depending on the state, the crystal state of the wafer surface and the surface crystal layer is evaluated.

【0010】[0010]

【実施例】【Example】

〔実施例1〕次に実施例をあげて説明する。試料とし
て、抵抗率10Ωcmのp形シリコンウェーハを使用し
た。表面粗さと光導電率変化による出力電圧の変化を見
るために、上記試料の表面を鏡面研磨した。鏡面研磨時
間が長くなるにつれて、表面粗さが小さくなることが分
かっている。同一試料でコロイダルシリカによる研磨を
15分,30分,60分したあとの光導電率変化を観測し
た。照射した光の波長は337mm、電磁波の波長は10
0GHz である。その結果を図5に示す。研磨時間が長く
なるにつれて、出力信号電圧の最大値がV1,V2,V3
と増加していることが分かる。さらに最大値に達するま
での時間も表面粗さの増大につれてt3,t2,t1と増
加していることが分かる。これは表面再結合速度が表面
粗さが小さくなるにつれて増加するからである。したが
って、その振幅最大値または最大値に達するまでの時間
から表面粗さ、表面ダメッジの表面の状態を評価でき
る。 〔実施例2〕次に、抵抗率10Ωcmのp形Siを重金属
の典型的な例として、Feで汚染した試料の光導電率変
化の測定結果を図6に示す。図にみるように、そのFe
の汚染濃度が、1013,1012,1011cm-3と小さくな
るにつれて、その信号の最大値が、V1,V2,V3 と増
大する。また、最大値に達するまでの時間も、汚染濃度
が小さくなるにつれて、t1,t2,t3 と増大する。し
たがって、その振幅最大値または最大値に達するまでの
時間から、重金属汚染濃度を評価できる。
[Example 1] Next, an example will be described. A p-type silicon wafer having a resistivity of 10 Ωcm was used as a sample. The surface of the sample was mirror-polished in order to see changes in output voltage due to changes in surface roughness and photoconductivity. It has been found that the surface roughness decreases as the mirror polishing time increases. Changes in photoconductivity were observed after polishing with colloidal silica for 15, 30, and 60 minutes on the same sample. The wavelength of the emitted light is 337 mm and the wavelength of the electromagnetic wave is 10
It is 0 GHz. The result is shown in FIG. As the polishing time becomes longer, the maximum values of the output signal voltage become V 1 , V 2 , V 3
You can see that it is increasing. Further, it can be seen that the time required to reach the maximum value also increases as the surface roughness increases to t 3 , t 2 and t 1 . This is because the surface recombination rate increases as the surface roughness decreases. Therefore, the surface roughness and the surface condition of the surface damage can be evaluated from the maximum value of the amplitude or the time until the maximum value is reached. Example 2 Next, FIG. 6 shows the measurement results of the change in photoconductivity of a sample contaminated with Fe using p-type Si having a resistivity of 10 Ωcm as a typical example of a heavy metal. As shown in the figure, the Fe
Contamination concentration is as smaller as 10 13, 10 12, 10 11 cm -3, the maximum value of the signal increases with V 1, V 2, V 3 . Further, the time until reaching the maximum value also increases as t 1 , t 2 , and t 3 as the contamination concentration decreases. Therefore, the heavy metal contamination concentration can be evaluated from the maximum value of the amplitude or the time until the maximum value is reached.

【0011】[0011]

【発明の効果】本発明によれば、半導体ウェーハの表面
の表面粗さ、重金属汚染を評価することが可能となる。
したがって、特に、表面粗さの検出モニターとして、そ
の非接触、非破壊性という利点と相まって、VLSI作
製用のシリコンウェーハの品質評価方法として産業上多
大の効果をもたらす。
According to the present invention, it becomes possible to evaluate the surface roughness of the surface of a semiconductor wafer and the heavy metal contamination.
Therefore, in particular, as a surface roughness detection monitor, in combination with the advantages of non-contact and non-destructiveness, it has a great industrial effect as a quality evaluation method of a silicon wafer for VLSI production.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の測定方法を示す説明図である。FIG. 1 is an explanatory diagram showing a measuring method of the present invention.

【図2】本発明の評価方法を示す説明図である。FIG. 2 is an explanatory diagram showing an evaluation method of the present invention.

【図3】本発明の評価方法を示す説明図である。FIG. 3 is an explanatory diagram showing an evaluation method of the present invention.

【図4】本発明の装置の説明図である。FIG. 4 is an explanatory diagram of the device of the present invention.

【図5】本発明の実施例で、表面粗さと光導電率変化信
号の測定結果である。
FIG. 5 is a measurement result of the surface roughness and the photoconductivity change signal in the example of the present invention.

【図6】本発明の実施例で、重金属汚染濃度と光導電率
変化信号の測定結果である。
FIG. 6 is a measurement result of a heavy metal contamination concentration and a photoconductivity change signal in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 非測定試料 2 入射電磁波 3 反射電磁波 4 キャリア励起用インパルス光 5 導波管または同軸線 6 電磁波発振器 7 サーキュレータ 8 検波器 9 増幅器 10 A/D変換器 11 コンピュータ 12 x軸−y軸微動器 13 反射鏡 14 反射鏡 15 レーザ発振器 1 non-measurement sample 2 incident electromagnetic wave 3 reflected electromagnetic wave 4 carrier excitation impulse light 5 waveguide or coaxial line 6 electromagnetic wave oscillator 7 circulator 8 detector 9 amplifier 10 A / D converter 11 computer 12 x-axis-y-axis fine mover 13 Reflector 14 Reflector 15 Laser oscillator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコンウェーハ表面の同一位置にイン
パルス光と電磁波を同時に照射し、反射する電磁波を検
出し、インパルス光照射時及び照射直後の光導電変化を
利用して表面及び表面層の特性を解析することを特徴と
するシリコンウェーハの評価法。
1. The same position on the surface of a silicon wafer is irradiated with impulse light and an electromagnetic wave at the same time, the reflected electromagnetic wave is detected, and the characteristics of the surface and the surface layer are measured by utilizing the photoconductivity change during and immediately after the irradiation of the impulse light. A silicon wafer evaluation method characterized by analysis.
【請求項2】 表面粗さ、または重金属汚染を評価対象
とし、光導電変化の振幅最大値から評価することを特徴
とする請求項1記載のシリコンウェーハの評価方法。
2. The method for evaluating a silicon wafer according to claim 1, wherein surface roughness or heavy metal contamination is evaluated and evaluated from the maximum amplitude of photoconductivity change.
【請求項3】 表面粗さ、または重金属汚染を評価対象
とし、光導電変化のインパルス光照射後最大振幅値に達
するまでの時間から評価することを特徴とする請求項1
記載のシリコンウェーハの評価方法。
3. The surface roughness or the heavy metal contamination is evaluated, and the evaluation is performed from the time until the maximum amplitude value of the photoconductivity change is reached after irradiation with the impulse light.
The evaluation method of the described silicon wafer.
【請求項4】 シリコンウェーハ表面にインパルス光と
電磁波を同時に照射する手段と、その反射波を検知する
手段とを具備し、インパルス光照射時及び照射直後の光
導電変化を検知する装置及びその検知した波形から光導
電変化波形の最大振幅値そして最大振幅値までの時間を
求める演算装置を具備したことを特徴とするシリコンウ
ェーハ評価装置。
4. An apparatus for detecting a change in photoconductivity during and immediately after irradiation of impulse light, which comprises means for simultaneously irradiating the surface of a silicon wafer with impulse light and electromagnetic waves and means for detecting reflected waves thereof, and detection thereof. An apparatus for evaluating silicon wafers, comprising: an arithmetic unit for obtaining the maximum amplitude value of the waveform of change in photoconductivity and the time from the maximum waveform value to the maximum amplitude value.
JP12731493A 1993-05-28 1993-05-28 Method and device for evaluating silicon wafer Pending JPH06338547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12731493A JPH06338547A (en) 1993-05-28 1993-05-28 Method and device for evaluating silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12731493A JPH06338547A (en) 1993-05-28 1993-05-28 Method and device for evaluating silicon wafer

Publications (1)

Publication Number Publication Date
JPH06338547A true JPH06338547A (en) 1994-12-06

Family

ID=14956878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12731493A Pending JPH06338547A (en) 1993-05-28 1993-05-28 Method and device for evaluating silicon wafer

Country Status (1)

Country Link
JP (1) JPH06338547A (en)

Similar Documents

Publication Publication Date Title
Smith et al. Ion implant monitoring with thermal wave technology
KR100443856B1 (en) Ultrafast Optical Technique for the Characterization of Altered Materials
US20020011852A1 (en) Non-contact photothermal radiometric metrologies and instrumentation for characterization of semiconductor wafers, devices and non electronic materials
US7045786B2 (en) Method of photocarrier radiometry of semiconductors
Thomsen et al. Picosecond acoustics as a non-destructive tool for the characterization of very thin films
JPS6239705B2 (en)
CA1203325A (en) Apparatus for measuring carrier lifetimes in a semiconductor wafer
Balk Scanning electron acoustic microscopy
JP2007333640A (en) Apparatus and method for measuring semiconductor electrical characteristic
JPH07105427B2 (en) Semiconductor material lifetime evaluation method and device
US20020158642A1 (en) Surface passivation method and arrangement for measuring the lifetime of minority carriers in semiconductors
Esser et al. Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon
CN1723386A (en) Method and apparatus for measuring thickness of thin films via transient thermoreflectance
JPH06338547A (en) Method and device for evaluating silicon wafer
JPH0697249A (en) Method and device for evaluating silicon wafer
PERALTA et al. Thermal wave imaging using harmonic detection of the photoacoustic signal
JP3650917B2 (en) Semiconductor surface evaluation method and apparatus using surface photovoltage
JP2001338959A (en) Method and equipment for evaluating semiconductor substrate
Hiller et al. Non-destructive, non-contact characterization of silicon using photothermal radiometry
Oe et al. Nondestructive internal defect detection using photoacoustic and self‐coupling effect
CA2305477A1 (en) Non-contact photothermal radiometric metrologies and instrumentation for characterization of semiconductor wafers, devices and non electronic materials
JPS61173171A (en) Method for measuring resistivity of semiconductor wafer
Choi et al. Characterization of mechanical damage on structural and electrical properties of silicon wafers
Lu et al. Second‐harmonic responses of modulated photoreflectance in semiconductors
RU2009575C1 (en) Method of contact-free determining of characteristics of silicon plates provided with internal getter