JPH06338432A - Manufacture of magnetic thin film - Google Patents

Manufacture of magnetic thin film

Info

Publication number
JPH06338432A
JPH06338432A JP5127026A JP12702693A JPH06338432A JP H06338432 A JPH06338432 A JP H06338432A JP 5127026 A JP5127026 A JP 5127026A JP 12702693 A JP12702693 A JP 12702693A JP H06338432 A JPH06338432 A JP H06338432A
Authority
JP
Japan
Prior art keywords
thin film
magnetic
magnetic thin
electrolytic solution
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5127026A
Other languages
Japanese (ja)
Inventor
Yoshihiko Iijima
喜彦 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5127026A priority Critical patent/JPH06338432A/en
Publication of JPH06338432A publication Critical patent/JPH06338432A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0027Thick magnetic films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0063Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids

Abstract

PURPOSE:To manufacture a magnetic thin film whose density is small and which is rich in flexibility by a method wherein a polymerizing monomer in an electrolytic solution is polymerized electrochemically on the surface of an electrode and magnetic-substance fine particles are contained in an electrolytically polymerized polymer. CONSTITUTION:An action electrode and a counter electrode as well as a reference electrode as required are immersed in an electrolytic solution which contains a polymerizing monomer and a support electrolyte. Then, a voltage is applied and the polymerizing monomer is electrolytically oxidized or electrolytically reduced electrochemically. A reaction active species such as a cation radical, an anion radical or the like is generated in situ, it is polymerized, and a polymer is prepared. Then, magnetic fine particles are added to the electrolytic solution, the polymer is polymerized on the electrodes, and a magnetic thin film which contains the magnetic particles in the polymer obtained on a thin film is formed. Thereby, the magnetic thin film which is fine and whose shape is complicated can be obtained, and its film thickness can be controlled easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁性薄膜の製造方法に
係わるもので、特にポリマー中に磁性体微粒子を含有す
る磁性薄膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic thin film, and more particularly to a method for producing a magnetic thin film containing magnetic fine particles in a polymer.

【0002】[0002]

【従来の技術】磁性薄膜は、現在、種々の電子機器製品
及び電子材料に使用されるもので、例えば磁気テープ等
の磁気記録材料、光磁気記録材料あるいは磁気ヘッド等
に使用されている。磁性薄膜は一般に、磁性体の金属、
合金、非晶質合金、酸化物等々の様々な無機材料より構
成されるものであり、該磁性薄膜の製法としては、スパ
ッタリング法、蒸着法、エピタクシャル法、電着法、無
電解メッキ法が用いられ、主にスパッタリング法および
蒸着法が用いられている。これら従来の磁性薄膜は、そ
の磁気特性の点では格別問題ないものではあるが、構成
材料である無機材料が硬質で柔軟性に欠けることや、密
度が大きいことから加工性等に問題が有った。そのため
に磁性薄膜の使用範囲に制限あった。
2. Description of the Related Art Magnetic thin films are currently used in various electronic equipment products and electronic materials, for example, magnetic recording materials such as magnetic tapes, magneto-optical recording materials or magnetic heads. Magnetic thin films are generally magnetic metals,
It is composed of various inorganic materials such as alloys, amorphous alloys, oxides, etc. As the method for producing the magnetic thin film, a sputtering method, a vapor deposition method, an epitaxial method, an electrodeposition method or an electroless plating method is used. The sputtering method and the vapor deposition method are mainly used. These conventional magnetic thin films are not particularly problematic in terms of their magnetic properties, but have a problem in workability because the inorganic material that is a constituent material is hard and lacks flexibility, and has a high density. It was Therefore, the range of use of the magnetic thin film is limited.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前述の従来
の磁性薄膜における課題を解決するもので、従来の磁性
薄膜に比較して、密度が小さく、また柔軟性に富む磁性
薄膜の製造を目的とし、該製造方法によれば、複雑な形
状もしくは微小な形状の磁性薄膜の形成が可能となる。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the conventional magnetic thin film, and is capable of producing a magnetic thin film having a lower density and a higher flexibility as compared with the conventional magnetic thin film. For the purpose, according to the manufacturing method, it is possible to form a magnetic thin film having a complicated shape or a minute shape.

【0004】[0004]

【課題を解決するための手段】本発明の磁性薄膜の製造
方法は、少なくとも重合性モノマー及び磁性体微粒子を
含有する電解液中において、電極表面上で電解液中の重
合性モノマーを電気化学的に重合せしめることで、該電
解重合されたポリマー中に前記磁性体微粒子を含有せし
めることを特徴とする磁性薄膜の製造方法である。ま
た、前記電解液が、少なくとも重合性モノマー及び磁性
体微粒子、さらに界面活性剤を含有する磁性薄膜の製造
方法である。
The method for producing a magnetic thin film according to the present invention is characterized in that, in an electrolytic solution containing at least a polymerizable monomer and magnetic fine particles, the polymerizable monomer in the electrolytic solution is electrochemically added on the electrode surface. The method for producing a magnetic thin film is characterized in that the magnetic fine particles are contained in the electrolytically polymerized polymer. Further, it is a method for producing a magnetic thin film in which the electrolytic solution contains at least a polymerizable monomer, magnetic fine particles, and a surfactant.

【0005】[0005]

【作用】本発明においては、電極表面上で電解液中の重
合性モノマーを電気化学的に重合せしめるものである
が、このような電解重合法は、有機材料の合成法として
良く知られているものである。具体的には、重合性モノ
マー及び支持電解質を含む電解液に、作用電極及び対
極、さらに必要に応じて参照電極を浸漬する。次いで、
電圧を印加することによって、重合性モノマーを電気化
学的に電極表面上で電解酸化あるいは電解還元し、カチ
オンラジカルやアニオンラジカルのような反応活性種を
IN−SITU生成し、これが重合することによってポ
リマーを形成するものである。本発明は、上記電解液に
磁性微粒子を添加し、電極上にポリマーを重合せしめ、
薄膜状で得られたポリマー中に磁性粒子を含有する磁性
薄膜を形成するものである。この時、作用電極の面積及
び通電電荷量を適当に調整することにより、薄膜の膜厚
を所望の膜圧に容易に制御できる。
In the present invention, the polymerizable monomer in the electrolytic solution is electrochemically polymerized on the surface of the electrode. Such an electrolytic polymerization method is well known as a method for synthesizing an organic material. It is a thing. Specifically, the working electrode, the counter electrode, and, if necessary, the reference electrode are immersed in an electrolytic solution containing a polymerizable monomer and a supporting electrolyte. Then
By applying a voltage, the polymerizable monomer is electrochemically electro-oxidized or electro-reduced on the surface of the electrode to produce reactive active species such as cation radicals and anion radicals IN-SITU, which are polymerized to polymerize. Is formed. The present invention, by adding magnetic fine particles to the electrolytic solution, polymerize the polymer on the electrode,
A magnetic thin film containing magnetic particles in a polymer obtained in the form of a thin film is formed. At this time, the film thickness of the thin film can be easily controlled to a desired film pressure by appropriately adjusting the area of the working electrode and the amount of energized charges.

【0006】重合性モノマーとしては、例えば、アミノ
酸あるいは水酸基を含む芳香族化合物、複素環式化合
物、ベンゼンおよび2個あるいはそれ以上の縮合芳香族
環をもつ多環式炭化水素化合物、ビニル基を有する化合
物、アセチレン及びその誘導体など、多くの重合性モノ
マーを対象とすることができる。また、本発明において
は重合性のモノマーに限られるものではなく、ダイマー
や数量体を用いてもよい。 溶媒としては、アセトニト
リル、ベンゾニトリル、プロピレンカーボネートをはじ
めとする非プロトン性溶媒か、メタノールやエタノール
等のプロトン性溶媒など様々な溶媒を用いることができ
る。どの溶媒を使用するかは、電解重合される重合性モ
ノマー等の種類に応じて、適宜、選択される。電解質と
しては、LiBF4、LiClO4、LiPF6、LiA
sF6、P−トルエンスルホン酸塩等の種々の物質を用
いることができ、重合させようとするモノマー等の種類
に応じて適宜、選択使用される。こられの電解質を前記
の溶媒に溶解して電解液を得る。
The polymerizable monomer has, for example, an aromatic compound containing an amino acid or a hydroxyl group, a heterocyclic compound, benzene and a polycyclic hydrocarbon compound having two or more condensed aromatic rings, and a vinyl group. Many polymerizable monomers such as compounds, acetylene and their derivatives can be targeted. Further, in the present invention, the monomer is not limited to the polymerizable monomer, and a dimer or a polymer may be used. As the solvent, various solvents such as aprotic solvents such as acetonitrile, benzonitrile and propylene carbonate, or protic solvents such as methanol and ethanol can be used. Which solvent is used is appropriately selected according to the type of the polymerizable monomer to be electrolytically polymerized. As the electrolyte, LiBF 4 , LiClO 4 , LiPF 6 , LiA
Various substances such as sF 6 and P-toluenesulfonate can be used, and they are appropriately selected and used according to the kind of the monomer or the like to be polymerized. These electrolytes are dissolved in the above solvent to obtain an electrolytic solution.

【0007】本発明においては、電解液中に磁性微粒子
を添加するが、添加の際に磁性微粒子同士が凝集しない
ようにするため、電解液中に界面活性剤を含有させるこ
とが好ましい。界面活性剤としては、例えば、末端基に
カルボキシル基(−COOH)、スルホン基(−SOO
H)、ホスホン基(−PO32)、アミノ基(−N
2)などのいずれかの基を有する鎖状有機分子にて、
磁性微粒子を一重あるいは二重に被覆することで、電解
液中に磁性微粒子を安定して分散させることができる。
磁性微粒子としては、Fe34、スピネル型フェィライ
ト、ガーネット型フェィライト、マグネトブラムバイト
型フェィライト等の酸化物系磁性体、あるいはFe、C
o、Ni、Cr、Mn、Al、Cu、Bi等の金属や、
Y、La、Ce、Pr、Nd、Pm、Sm、Eu、G
d、Tb、Dy、Ho、Er、Tm、Yb、Luの希土
類金属、また前記の金属を含有する合金、金属間化合
物、非晶質合金(これらのなかに、H、B、C、N、
O、Si、P、Ga、Ge、Ti、V、Zr、Nb、M
o、Ru、Hf、Ta、W等の元素をさせることもでき
る。)の磁性微粒子が使用できる。また、さらに磁性を
有する錯体化合物の磁性微粒子、およびこれら磁性微粒
子の混合物を使用できる。特にFe34、Fe、Co、
Niの微粒子は、磁性流体に使用されるものでその微粒
子の製造技術および、微粒子を安定分散させる技術は確
立され、本発明での使用が好ましい。
In the present invention, the magnetic fine particles are added to the electrolytic solution, but it is preferable to add a surfactant to the electrolytic solution so that the magnetic fine particles do not aggregate with each other during the addition. Examples of the surfactant include a carboxyl group (—COOH) and a sulfone group (—SOO) at the terminal group.
H), a phosphonic group (-PO 3 H 2), amino group (-N
H 2 ), such as a chain organic molecule having any group,
By coating the magnetic fine particles in a single layer or a double layer, the magnetic fine particles can be stably dispersed in the electrolytic solution.
Examples of the magnetic fine particles include oxide magnetic materials such as Fe 3 O 4 , spinel type ferrite, garnet type ferrite, and magnetobrambite type ferrite, or Fe, C.
metals such as o, Ni, Cr, Mn, Al, Cu, Bi,
Y, La, Ce, Pr, Nd, Pm, Sm, Eu, G
Rare earth metals such as d, Tb, Dy, Ho, Er, Tm, Yb and Lu, alloys containing the above metals, intermetallic compounds, amorphous alloys (including H, B, C, N,
O, Si, P, Ga, Ge, Ti, V, Zr, Nb, M
Elements such as o, Ru, Hf, Ta and W can also be added. ) Magnetic fine particles can be used. Further, magnetic fine particles of a complex compound having magnetism, and a mixture of these magnetic fine particles can be used. Especially Fe 3 O 4 , Fe, Co,
The fine particles of Ni are used for magnetic fluids, and a technique for producing the fine particles and a technique for stably dispersing the fine particles have been established and are preferably used in the present invention.

【0008】電解重合を電解酸化によって行う場合は、
例えばアミノ酸あるいは水酸基を含む芳香族化合物、複
素環式化合物、ベンゼンおよび2個あるいはそれ以上の
縮合芳香族をもつ多環式炭化水素化合物、ビニル基を有
する化合物等の非常に多くの重合性モノマ−を重合でき
る。具体的には、例えばポリチォフェン、ポリピルー
ル、ポリアニリン、ポリパラフェニレン、ポリピレンを
はじめとする導電性高分子を形成するための重合性モノ
マーが使用される。酸化重合の場合、電解液中に添加す
る界面活性剤の種類、量を適当に調整することによっ
て、得られる磁性薄膜中に磁性微粒子を電気化学的にド
ープすることが可能となり、磁性微粒子の磁性薄膜の含
有量を任意に変化させ、所望の磁気特性に制御しうる。
また磁気特性の制御は、電解液中の磁性微粒子の含有量
を変化させたり、磁性微粒子の種類、組成を変化させた
り、電解条件を変化させるることによっても制御可能で
ある。本発明の磁性薄膜を製造する場合、電解重合のた
めの作用極の形状を適当に変化させることにより、従来
の無機磁性薄膜の製造では困難であった複雑な形状の磁
性薄膜を、従来のような特殊なマスクを必要とせずに、
容易に製造できる。具体的には、電極を微小にパターン
ニングすることにより、用途に応じた精密な微小形状の
磁性薄膜を製造できる。また、本発明によって得られる
磁性薄膜は、従来の無機磁性薄膜には欠けていた柔軟性
に富んでいるため、従来の磁性薄膜では展開が不可能で
あった新たな技術分野への応用展開が期待されるもので
ある。
When electrolytic polymerization is carried out by electrolytic oxidation,
For example, a large number of polymerizable monomers such as aromatic compounds containing amino acids or hydroxyl groups, heterocyclic compounds, benzene and polycyclic hydrocarbon compounds having two or more condensed aromatics, compounds having vinyl groups, etc. Can be polymerized. Specifically, a polymerizable monomer for forming a conductive polymer such as polythiophene, polypyrrole, polyaniline, polyparaphenylene, and polypyrene is used. In the case of oxidative polymerization, it is possible to electrochemically dope the magnetic fine particles into the resulting magnetic thin film by appropriately adjusting the type and amount of the surfactant added to the electrolytic solution. The content of the thin film can be arbitrarily changed to control the desired magnetic properties.
The magnetic properties can be controlled by changing the content of the magnetic fine particles in the electrolytic solution, changing the type and composition of the magnetic fine particles, and changing the electrolysis conditions. When the magnetic thin film of the present invention is produced, by changing the shape of the working electrode for electrolytic polymerization appropriately, it is possible to obtain a magnetic thin film having a complicated shape, which was difficult in the conventional production of an inorganic magnetic thin film. Without the need for a special mask
Easy to manufacture. Specifically, by finely patterning the electrodes, it is possible to manufacture a magnetic thin film having a precise minute shape according to the application. Further, since the magnetic thin film obtained by the present invention is rich in flexibility, which is lacking in the conventional inorganic magnetic thin film, it can be applied to new technical fields which cannot be developed by the conventional magnetic thin film. Expected.

【0009】[0009]

【実施例】【Example】

実施例1 粒径100Å程度のFe34の微粒子を、内側をオレイ
ン酸系、外側をスルフォン酸系の界面活性剤で二重に被
覆して、前記微粒子を水中に安定する分散液1を得た。
次に該分散液1と水とを体積比で99:1で混合し分散
液2を得て、該分散液2に対し、P−トルエンスルフォン
酸ナトリウム及びピロールをそれぞれ、濃度が1.0M
及び0.1Mとなるように添加することで電解液とし
た。調整された電解液中に、陽極としてSnO2ガラ
ス、陰極としてCuの電極対を浸漬した。この時、陽極
の電極表面積を3cm2とした。次いで電解液中の前記
電極対に電圧3.8Vを印加し、20Cまで電解重合を
行うことにより、陽極であるSnO2ガラス上に、Fe3
4微粒子を含有するポリピロール薄膜からなる磁性薄
膜を生成した。得られた磁性薄膜の膜厚は27μmであ
った。図1にSQUIDを用いて測定した300Kにお
ける本実施例の磁性薄膜の減磁曲線を示す。飽和磁化の
値は0.34emu/gであった。
Example 1 A dispersion liquid 1 in which fine particles of Fe 3 O 4 having a particle size of about 100 Å were double-coated with an oleic acid-based surfactant on the inside and a sulfonic acid-based surfactant on the outside to stabilize the above-mentioned particles in water was prepared. Obtained.
Next, the dispersion liquid 1 and water were mixed at a volume ratio of 99: 1 to obtain a dispersion liquid 2, and sodium P-toluenesulfonate and pyrrole were respectively added to the dispersion liquid 2 at a concentration of 1.0M.
And 0.1 M to obtain an electrolytic solution. An electrode pair of SnO 2 glass as an anode and Cu as a cathode was immersed in the adjusted electrolyte solution. At this time, the electrode surface area of the anode was set to 3 cm 2 . Then a voltage 3.8V is applied to the electrode pair in the electrolyte, by performing electrolytic polymerization to 20C, the SnO 2 on a glass as the anode, Fe 3
A magnetic thin film composed of a polypyrrole thin film containing O 4 fine particles was produced. The thickness of the obtained magnetic thin film was 27 μm. FIG. 1 shows the demagnetization curve of the magnetic thin film of this example at 300K measured using SQUID. The value of saturation magnetization was 0.34 emu / g.

【0010】実施例2 実施例1と同様な電解液および電極対を用いて、印加電
圧3.8Vにて10Cまで電解重合を行うことにより、
陽極上にFe34微粒子を含有するポリピロール薄膜か
らなる磁性薄膜を生成した。得られた磁性薄膜の膜厚は
14μmであった。SQUIDを用いて300Kにおけ
る本実施例の磁気特性を測定したところ、実施例1と同
様な磁気特性が得られた。
Example 2 By using the same electrolytic solution and electrode pair as in Example 1 and carrying out electrolytic polymerization up to 10 C at an applied voltage of 3.8 V,
A magnetic thin film composed of a polypyrrole thin film containing Fe 3 O 4 fine particles was produced on the anode. The thickness of the obtained magnetic thin film was 14 μm. When the magnetic properties of this example at 300 K were measured using SQUID, the same magnetic properties as in Example 1 were obtained.

【0011】実施例3 実施例1において使用した分散液1に、P−トルエンス
ルフォン酸ナトリウム及びピロールをそれぞれ、濃度が
1.0M及び0.1Mとなるように添加することで電解
液とし、該電解液に陽極としてのSnO2ガラス(陽極
面積:3cm2)および陰極としてのCuの電極対を浸
漬した。次いで、電解液中の電極対に電圧2.3Vを印
加し、20Cまで電解重合をおこなったところ、陽極上
にFe34微粒子を含有するポリピロール薄膜からなる
磁性薄膜を生成した。この時、得られた磁性薄膜の膜厚
は18μmであった。図2にSQUIDを用いて測定し
た300Kにおける本実施例の磁性薄膜の減磁曲線を示
す。飽和磁化の値は17.8emu/gであった。本発
明の各実施例において、陽極の形状を所望の複雑な形状
にすることで、電極の形状に従った磁性薄膜を得ること
ができた。また、電極より磁性薄膜を剥離して曲げ試験
を行ったところ、十分な柔軟性を有していることが確認
された。
Example 3 Dispersion liquid 1 used in Example 1 was added with sodium P-toluenesulfonate and pyrrole to a concentration of 1.0 M and 0.1 M, respectively, to prepare an electrolytic solution. SnO 2 glass (anode area: 3 cm 2 ) as an anode and a Cu electrode pair as a cathode were immersed in the electrolytic solution. Next, when a voltage of 2.3 V was applied to the electrode pair in the electrolytic solution to carry out electrolytic polymerization up to 20 C, a magnetic thin film composed of a polypyrrole thin film containing Fe 3 O 4 fine particles was formed on the anode. At this time, the thickness of the obtained magnetic thin film was 18 μm. FIG. 2 shows the demagnetization curve of the magnetic thin film of this example at 300K measured using SQUID. The value of saturation magnetization was 17.8 emu / g. In each of the examples of the present invention, a magnetic thin film conforming to the shape of the electrode could be obtained by forming the shape of the anode into a desired complicated shape. In addition, when the magnetic thin film was peeled from the electrode and a bending test was performed, it was confirmed that the electrode had sufficient flexibility.

【0012】[0012]

【発明の効果】本発明の磁性薄膜の製造方法によると、
従来の無機磁性薄膜では得られにくい微細かつ複雑な形
状をを有する磁性薄膜を得ることが出来るとともに、得
られた磁性薄膜は柔軟性に富んだものとなる。また、磁
性薄膜を得るに際しては、その膜厚制御を容易に行うこ
とが出来る。
According to the method of manufacturing a magnetic thin film of the present invention,
It is possible to obtain a magnetic thin film having a fine and complicated shape, which is difficult to obtain with a conventional inorganic magnetic thin film, and the obtained magnetic thin film is highly flexible. Further, when the magnetic thin film is obtained, its film thickness can be easily controlled.

【0013】[0013]

【図面の簡単な説明】[Brief description of drawings]

図1は、実施例1にかかわる磁性薄膜の磁気特性をを示
すものである。 図2は、実施例2にかかわる磁性薄膜の磁気特性をを示
すものである。
FIG. 1 shows the magnetic characteristics of the magnetic thin film according to the first embodiment. FIG. 2 shows the magnetic characteristics of the magnetic thin film according to the second embodiment.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも重合性モノマー及び磁性体微
粒子を含有する電解液中において、電極表面上で電解液
中の重合性モノマーを電気化学的に重合せしめること
で、該電解重合されたポリマー中に前記磁性体微粒子を
含有せしめることを特徴とする磁性薄膜の製造方法
1. In an electrolytic solution containing at least a polymerizable monomer and magnetic fine particles, the polymerizable monomer in the electrolytic solution is electrochemically polymerized on the surface of the electrode to form a polymer in the electrolytically polymerized polymer. A method for producing a magnetic thin film, characterized in that the magnetic fine particles are contained.
【請求項2】 電解液が、少なくとも重合性モノマー及
び磁性体微粒子、さらに界面活性剤を含有する請求項1
の磁性薄膜の製造方法
2. The electrolytic solution contains at least a polymerizable monomer, magnetic fine particles, and a surfactant.
Method for producing magnetic thin film
JP5127026A 1993-05-28 1993-05-28 Manufacture of magnetic thin film Pending JPH06338432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5127026A JPH06338432A (en) 1993-05-28 1993-05-28 Manufacture of magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5127026A JPH06338432A (en) 1993-05-28 1993-05-28 Manufacture of magnetic thin film

Publications (1)

Publication Number Publication Date
JPH06338432A true JPH06338432A (en) 1994-12-06

Family

ID=14949844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5127026A Pending JPH06338432A (en) 1993-05-28 1993-05-28 Manufacture of magnetic thin film

Country Status (1)

Country Link
JP (1) JPH06338432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017341A1 (en) * 2002-08-19 2004-02-26 Mcmaster University Method for producing composite magnetic films
WO2010087228A1 (en) 2009-02-02 2010-08-05 日本碍子株式会社 Method for firmly fixing particles, and method for producing structure having firmly fixed particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017341A1 (en) * 2002-08-19 2004-02-26 Mcmaster University Method for producing composite magnetic films
WO2010087228A1 (en) 2009-02-02 2010-08-05 日本碍子株式会社 Method for firmly fixing particles, and method for producing structure having firmly fixed particles

Similar Documents

Publication Publication Date Title
JPS63249323A (en) Solid electrolytic capacitor
Batich et al. Chromatic changes in polyaniline films
DE3318857A1 (en) METHOD FOR PRODUCING POLYPYROLES AND FILM-SHAPED PRODUCTS OBTAINED BY THIS METHOD
EP0339341B1 (en) Electrically conducting polyheteroaromatics, and process for their preparation
JPH06338432A (en) Manufacture of magnetic thin film
Haseko et al. Reversal pulsing electrodeposition of Ni/polypyrrole composite film
Hsu et al. Conductivity, electrodeposition and magnetic property of Cobalt (II) and dysprosium chloride in Zinc Chloride-1-Ethyl-3-Methylimidazolium chloride room temperature molten salt
EP0560283A1 (en) Method of producing conductive polymer composites
Martinot et al. The use of conducting polymers as cathodes for the electrochemical deposition of magnetic transition metal/rare earth alloys
JP3351950B2 (en) Manufacturing method of organic conductor
Niwa et al. Polythiophene/polyvinylchloride conducting polymer alloy films and their redox properties
Synodis et al. Lithographically patterned polypyrrole multilayer microstructures via sidewall-controlled electropolymerization
JPH09194576A (en) Production of organic magnetic thin membrane
JPH06176915A (en) Magnetic material and manufacture thereof
Gang et al. Study on properties of CoNi films with Mn doping prepared by magnetic fields induced codeposition technology
Hong-ru et al. FePt thin films electrodeposited from non-aqueous liquids
JP2001163960A (en) Method for preparing electrically conductive polymer material and solid electrolytic capacitor
EP0142089B1 (en) Process for continuously preparing film-shaped polymers of pyrroles
JP3200807B2 (en) Organic thin film manufacturing method
JPH08273913A (en) Manufacture of organic magnetic material and organic magnetic material obtained by the manufacture
JPH07179576A (en) Production of organic conductor and organic conductor produced by the process
Genies et al. Electrochemical study of some chemically prepared para-substituted poly-N-phenylpyrroles
Deronzier et al. Thin films of metal dibenzotetraaza [14] annulene complexes.: Part 3. Dimerization and alternated dimerizations of γ-substituted Ni2+ complexes
JPH0710972A (en) Production of high-strength organic conductor and high-strength organic conductor obtained by this production process
JP2653048B2 (en) Conductive polymer composite and method for producing the same