JPH06338333A - Gas separator for solid high molecular electrolytic fuel cell - Google Patents

Gas separator for solid high molecular electrolytic fuel cell

Info

Publication number
JPH06338333A
JPH06338333A JP5126754A JP12675493A JPH06338333A JP H06338333 A JPH06338333 A JP H06338333A JP 5126754 A JP5126754 A JP 5126754A JP 12675493 A JP12675493 A JP 12675493A JP H06338333 A JPH06338333 A JP H06338333A
Authority
JP
Japan
Prior art keywords
separator
gas
fuel cell
grooved
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5126754A
Other languages
Japanese (ja)
Inventor
Katsuo Hashizaki
克雄 橋▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5126754A priority Critical patent/JPH06338333A/en
Publication of JPH06338333A publication Critical patent/JPH06338333A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To attain lightening of weight and reduction of a cost of a cell by integrally forming a grooved separator, integral separator coating plate and a separator substrate, and obtaining a gas separator, so that a flow path groove or the like is formed without performing cutting work and etching work. CONSTITUTION:In a gas separator 10, fuel gas or oxidant gas is supplied to a solid high molecular electrolytic film of a fuel cell. This gas separator 10 is divided into a grooved separator 20 having a plurality of gas flow path grooves 21 in one side surface, integral separator coating plate 30 fitting the separator 20 and also having a flow path communicating with the groove 21 to supply/discharge gas further having an opening part 34 for exposing while covering the gas flow path groove 21 and a separator substrate 40 connected to a back side of the separator 20, to manufacture the gas separator 10 integrally formed. In this way, the coating plate 30 can be formed of a molded product of high molecular material or the like of light weight at a low cost without performing complicated cutting work and etching work, and weight lightening and cost reduction of a cell main unit can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質燃料
電池用ガスセパレータに関する。
TECHNICAL FIELD The present invention relates to a gas separator for a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】[Prior art]

(1)固体高分子電解質燃料電池の発電原理 図5に固体高分子電解質燃料電池の一例を示す。電解質
01としてフッ素樹脂系の高分子イオン交換膜(例えば
スルホン酸基を持つフッ素樹脂系イオン交換膜)を用
い、これを中央にして両面に触媒電極(例えば白金)0
2,03を付着させ、さらにその両面を多孔質カーボン
電極04,05でサンドウィッチ状にはさみ重ねて電極
接合体06を構成している。ここで、アノード極側に供
給された燃料中の水素(H2 )は、触媒電極(アノード
極)02上で水素イオン化され、水素イオンは電解質0
1中を水の介在のもと、H+ ・xH2 Oとしてカソード
極側へ移動する。触媒電極(カソード極)03上で酸化
剤中の酸素(O2 )及び外部回路07を流通してきた電
子(e- )と反応し水を生成し、燃料電池外へ排出され
る。この時、外部回路07を流通した電子(e- )の流
れが直流の電気エネルギーとして利用できる。この反応
を下記「化1」に示す。
(1) Power Generation Principle of Solid Polymer Electrolyte Fuel Cell FIG. 5 shows an example of a solid polymer electrolyte fuel cell. As the electrolyte 01, a fluororesin-based polymer ion-exchange membrane (for example, a fluororesin-based ion-exchange membrane having a sulfonic acid group) is used, and a catalyst electrode (for example, platinum) 0 is formed on both sides with this center
2, 03 are adhered, and the both surfaces thereof are sandwiched by the porous carbon electrodes 04, 05 so as to be sandwiched to form an electrode assembly 06. Here, hydrogen (H 2 ) in the fuel supplied to the anode electrode side is hydrogen-ionized on the catalyst electrode (anode electrode) 02, and the hydrogen ion is converted into the electrolyte 0.
Under the presence of water, 1 moves as H + · xH 2 O to the cathode side. On the catalyst electrode (cathode electrode) 03, it reacts with oxygen (O 2 ) in the oxidant and electrons (e ) flowing through the external circuit 07 to generate water, which is discharged to the outside of the fuel cell. At this time, the flow of the electrons (e ) flowing through the external circuit 07 can be used as DC electric energy. This reaction is shown in "Chemical Formula 1" below.

【0003】[0003]

【化1】 [Chemical 1]

【0004】ところで、電解質01となる高分子イオン
交換膜において、前述のような水素イオン透過性を実現
させるためには、この膜を常に充分なる保水状態に保持
しておく必要があり、通常、燃料、又は酸化剤に電池の
運転温度(常温〜100℃程度)近傍の飽和水蒸気を含
ませて、すなわち加湿して燃料及び酸化剤を電極接合体
06に供給し、膜の保水状態を保つようにしている。
By the way, in order to realize the above-mentioned hydrogen ion permeability in the polymer ion exchange membrane as the electrolyte 01, it is necessary to always keep the membrane in a sufficiently water-retaining state. The fuel or the oxidant is mixed with saturated steam near the operating temperature of the battery (normal temperature to about 100 ° C.), that is, humidified to supply the fuel and the oxidant to the electrode assembly 06 to keep the membrane water-retaining state. I have to.

【0005】(2)従来の固体高分子電解質燃料電池の
運転システム 図6に従来の固体高分子電解質燃料電池の運転システム
の一例を示す。純水素燃料011及び酸化剤012は、
電気ヒータ013,014で所定の温度に温められた加
湿装置015,016中の純水中017を通過させるこ
とにより、その飽和水蒸気分圧相当の湿分を含むことに
なる。この加湿された純水素燃料011、又は酸化剤0
12を燃料電池本体018に送気する。燃料電池本体0
18で使用されなかった純水素燃料011、又は酸化剤
012は、残存純水素燃料011の場合は残存加湿水蒸
気と共に、又残存酸化剤015の場合は残存加湿水蒸気
と電池反応生成水と共に燃料電池本体018外に排出さ
れる。ここで、排出された残存純水素燃料は、燃料利用
率向上のためリサイクルポンプ019によりリサイクル
され再び燃料電池本体018に再導入されるような運転
システム構成をとっている。
(2) Conventional Solid Polymer Electrolyte Fuel Cell Operating System FIG. 6 shows an example of a conventional solid polymer electrolyte fuel cell operating system. Pure hydrogen fuel 011 and oxidant 012 are
By passing 017 in pure water in the humidifiers 015, 016 heated to a predetermined temperature by the electric heaters 013, 014, the moisture equivalent to the saturated steam partial pressure is contained. This humidified pure hydrogen fuel 011 or oxidizer 0
12 is fed to the fuel cell main body 018. Fuel cell body 0
The pure hydrogen fuel 011 or the oxidant 012 which was not used in 18 is the fuel cell main body together with the residual humidified steam in the case of the residual pure hydrogen fuel 011 and the residual humidified steam and the cell reaction product water in the case of the residual oxidant 015. 018 is discharged to the outside. Here, the discharged residual pure hydrogen fuel has an operation system configuration in which it is recycled by the recycle pump 019 to be reintroduced into the fuel cell main body 018 in order to improve the fuel utilization rate.

【0006】(3)従来の固体高分子電解質燃料電池の
ガスセパレータの構成 図7に、従来の内部マニホールド型、または内部ヘッダ
型固体高分子電解質燃料電池用ガスセパレータの外観を
示す。同図に示すように、ガスセパレータ020には燃
料電池に導入される流体021、すなわち燃料、又は酸
化剤、又は冷却水を流入する流体導入孔022が形成さ
れており、該流体021は当該流体導入孔022より燃
料電池本体内に導入され、入口側流体ヘッダ023を通
じて流体流路溝024に分配供給され、燃料電池の電池
反応や冷却に寄与する。その後、残存燃料、又は酸化
剤、あるいは発電時の発熱を吸収し温水となった冷却水
は、出口側流体ヘッダ025に集められ、流体排出孔0
26を通じて燃料電池本体外に排出されるようになって
いる。
(3) Structure of Gas Separator for Conventional Solid Polymer Electrolyte Fuel Cell FIG. 7 shows the appearance of a conventional internal manifold type or internal header type gas separator for a solid polymer electrolyte fuel cell. As shown in the drawing, the gas separator 020 is provided with a fluid 021 introduced into the fuel cell, that is, a fluid introduction hole 022 into which a fuel, an oxidant, or cooling water is introduced, and the fluid 021 is the fluid. It is introduced into the fuel cell main body through the introduction hole 022, is distributed and supplied to the fluid flow path groove 024 through the inlet side fluid header 023, and contributes to the cell reaction and cooling of the fuel cell. After that, the residual fuel, the oxidant, or the cooling water that has absorbed the heat generated during power generation and becomes hot water is collected in the outlet side fluid header 025, and the fluid discharge hole 0
It is designed to be discharged to the outside of the fuel cell main body through 26.

【0007】(4)従来の固体高分子電解質燃料電池の
構成 図8に、従来の内部マニホールド型、または内部ヘッダ
型の固体高分子電解質燃料電池の構成例を示す。燃料電
池に導入される純水素燃料、又は酸化剤は、図10に示
されるような外部に備えられた加湿装置015,016
により一旦加湿され、加湿された純水素燃料、又は酸化
剤として燃料電池に供給される。燃料電池本体は、図1
1に示したような内部マニホールド型、または内部ヘッ
ダ型ガスセパレータに電極接合体を挟み、その背後に冷
却水を導くための冷却水セパレータを配した構成となっ
ている。加湿された純水素燃料021A、又は加湿され
た酸化剤021Bは、各々純水素燃料ガスセパレータ0
20A、または酸化剤ガスセパレータ020Bに設けら
れた純水素燃料流路溝024A、酸化剤流路溝024B
を通じて各々電極接合体031の表面に設けられたアノ
ード極032、カソード極033に各々分配、供給され
電池反応に寄与する。電池発熱は、純水素燃料ガスセパ
レータ020Aの背後に配された冷却水セパレータ03
4の冷却水導入孔035から導入され冷却水流路溝03
6を流れる冷却水037に吸収され燃料電池本体の冷却
に寄与するようになっている。その後、残存燃料、又は
酸化剤、あるいは発電時の電池発熱を吸収し温水となっ
た冷却水037は、各々、各排出孔026A,026
B,038を通じて燃料電池本体外に排出されるように
なっている。
(4) Configuration of Conventional Solid Polymer Electrolyte Fuel Cell FIG. 8 shows a configuration example of a conventional internal manifold type or internal header type solid polymer electrolyte fuel cell. The pure hydrogen fuel or the oxidant introduced into the fuel cell is used as the humidifiers 015, 016 provided outside as shown in FIG.
Is once humidified by and is supplied to the fuel cell as a humidified pure hydrogen fuel or an oxidant. Figure 1 shows the fuel cell body.
The internal manifold type or the internal header type gas separator as shown in FIG. 1 sandwiches the electrode assembly, and the cooling water separator for guiding the cooling water is arranged behind the electrode assembly. The humidified pure hydrogen fuel 021A or the humidified oxidant 021B is the pure hydrogen fuel gas separator 0, respectively.
20A or pure hydrogen fuel flow channel 024A and oxidant flow channel 024B provided in the oxidant gas separator 020B.
Through, are distributed and supplied to the anode electrode 032 and the cathode electrode 033 provided on the surface of the electrode assembly 031 respectively, and contribute to the battery reaction. The cell heat is generated by the cooling water separator 03 placed behind the pure hydrogen fuel gas separator 020A.
Cooling water passage groove 03 introduced from the cooling water introduction hole 035 of No. 4
It is absorbed by the cooling water 037 flowing through the fuel cell 6 and contributes to the cooling of the fuel cell body. After that, the residual fuel, the oxidizer, or the cooling water 037 that has become hot water by absorbing the heat generated by the battery during power generation is discharged into the discharge holes 026A and 026, respectively.
B, 038 is discharged to the outside of the fuel cell main body.

【0008】[0008]

【発明が解決しようとする課題】図7,8に示すような
固体高分子電解質燃料電池では、セパレータ全体を一つ
の材質とするため、金属板、カーボン板のような高価な
材料を用いると燃料電池本体の製造費の向上につなが
る。また、各板に各ヘッダーや、流路溝を切削加工やエ
ッチング加工して仕上げざるをえないため、加工工程が
非常に複雑となって加工費用がかかり燃料電池本体の製
造費の向上につながる。
In the solid polymer electrolyte fuel cell as shown in FIGS. 7 and 8, since the entire separator is made of a single material, it is necessary to use an expensive material such as a metal plate or a carbon plate for fuel. This leads to an increase in the manufacturing cost of the battery body. In addition, since each plate has to be finished by cutting or etching the headers and channel grooves, the processing process becomes very complicated and processing costs increase, leading to an improvement in the manufacturing cost of the fuel cell body. .

【0009】さらに、燃料となる水素ガスを供給するガ
スセパレータをカーボン板で製作するに至っては、ガス
不透過性が要求されることから緻密なカーボン板が要求
されるが、そのようなガス不透過性を有する緻密なカー
ボン板は、切削加工により溝を形成させることが非常に
困難である。
Further, when a gas separator for supplying hydrogen gas serving as a fuel is manufactured from a carbon plate, a dense carbon plate is required because gas impermeability is required. It is very difficult to form grooves in a dense carbon plate having transparency by cutting.

【0010】また、固体高分子電解質燃料電池のような
電極接合体が軟質性の場合、各マニホールド、またはヘ
ッダーに相当する大きな凹部分は、燃料供給用セパレー
タと酸化剤供給用セパレータによる両面からの挟み込み
状態とならないため、電極接合体がマニホールド、また
はヘッダの凹部内部にたわんだり、変形したりする。
When the electrode assembly such as a solid polymer electrolyte fuel cell is flexible, the large recessed portions corresponding to the respective manifolds or headers are separated from both sides by the fuel supply separator and the oxidant supply separator. Since it is not sandwiched, the electrode assembly bends or deforms inside the recess of the manifold or the header.

【0011】前記たわみ込みを防止するため、各マニホ
ールド、またはヘッダーに相当する凹部に多孔質物質を
充填、あるいは挿入し、軟質性の電極接合体を燃料供給
用セパレータと酸化剤供給用セパレータにより両面から
挟み込んだ状態にしようとすると、製作工程、材料が増
え、廉価に製造出来ないという問題がある。
In order to prevent the flexure, a porous material is filled or inserted in the recesses corresponding to the respective manifolds or headers, and a soft electrode assembly is formed on both sides by a fuel supply separator and an oxidant supply separator. There is a problem in that the manufacturing process and materials increase, and the product cannot be manufactured at a low price, if the product is to be sandwiched between them.

【0012】[0012]

【課題を解決するための手段】前記課題を解決する本発
明に係るセパレータは、燃料電池の固体高分子電解質膜
へ燃料ガス又は酸化剤ガスを供給するためのガス用のセ
パレータにおいて、一側面に複数のガス流路溝を有する
溝付セパレータと、該溝付セパレータを嵌合すると共に
上記ガス流路溝と連通しガスを供給又は排出する流路を
有し且つ上記溝付セパレータのガス流路溝側を覆うと共
に当該ガス流路溝を露出する開口部を有する一体セパレ
ータ被覆板と、上記一体セパレータ被覆板に嵌合した溝
付セパレータの背面側で接合してなるセパレータ基板と
を、一体化してなることを特徴とする。
Means for Solving the Problems A separator according to the present invention for solving the above problems is a gas separator for supplying a fuel gas or an oxidant gas to a solid polymer electrolyte membrane of a fuel cell. A grooved separator having a plurality of gas channel grooves, and a gas channel of the grooved separator having a channel for fitting the grooved separator and communicating with the gas channel groove to supply or discharge gas. An integrated separator cover plate having an opening that covers the groove side and exposes the gas flow path groove, and a separator substrate that is joined on the back side of the grooved separator fitted to the integrated separator cover plate are integrated. It is characterized by

【0013】また上記ガスセパレータにおいて、上記溝
付セパレータと冷却セパレータ基板とが導電体からなる
と共に、一体セパレータ被覆板が不導電体からなること
を特徴とする。
Further, in the gas separator, the grooved separator and the cooling separator substrate are made of a conductor, and the integral separator covering plate is made of a non-conductor.

【0014】[0014]

【作用】前記構成のガスセパレータは、セパレータ被覆
板により各マニホールド、またはヘッダーが覆われてい
るため、軟質性の電極接合体が凹部にたわみ込んだり変
形したりすることなく、セパレータ被覆板、一体セパレ
ータ被覆板により両面からしっかりと挟み込み固定でき
る。また、セパレータ全体を高価で、しかも導電性を有
する金属板、カーボン板で製作する必要がなく、少なく
とも冷却水流路溝付きの冷却セパレータ基板、及び溝付
セパレータを、導電性を有する金属板、カーボン板等で
製作するだけでよく、他のセパレータ支持板は、軽量で
安価なガス不透過性の不導電体(例えば、各種高分子材
料等)で構成できる。さらに、各マニホールド、または
ヘッダや、流路溝を複雑な切削加工やエッチング加工な
しに形成できる。
In the gas separator having the above structure, since each manifold or header is covered with the separator covering plate, the separator covering plate is integrated with the separator covering plate without being bent or deformed by the soft electrode assembly. It can be firmly sandwiched and fixed from both sides by the separator coating plate. Further, the entire separator is expensive, and it is not necessary to manufacture it with a conductive metal plate or carbon plate. At least a cooling separator substrate with a cooling water flow channel groove and a grooved separator are provided with a conductive metal plate and carbon plate. The other separator support plate can be made of a lightweight and inexpensive gas impermeable non-conductive material (for example, various polymer materials). Further, each manifold, header, or flow channel can be formed without complicated cutting or etching.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいて説明する。
図1には実施例に係るガスセパレータの左方向からみた
分解斜視図、図2はセパレータ被覆板の概略図である。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is an exploded perspective view of the gas separator according to the embodiment as viewed from the left, and FIG. 2 is a schematic view of a separator coating plate.

【0016】これらの図面に示すように、本実施例に係
るガスセパレータ10は、溝付セパレータ20、該溝付
セパレータ20を嵌合する一体セパレータ被覆板30及
び溝付セパレータ20の背面側で接合するセパレータ基
板40とから構成され、これらを接合一体化してなるも
のである。
As shown in these drawings, a gas separator 10 according to the present embodiment is provided with a grooved separator 20, an integral separator cover plate 30 for fitting the grooved separator 20 and a rear surface side of the grooved separator 20. And a separator substrate 40, which are joined and integrated.

【0017】ここで、上記溝付セパレータ20はその一
側面側に幅方向(図中、上下方向)に延びる複数のガス
流路溝21が一定ピッチで形成されている。
Here, the grooved separator 20 has a plurality of gas passage grooves 21 extending in the width direction (vertical direction in the drawing) formed on one side surface side thereof at a constant pitch.

【0018】上記一体セパレータ被覆板30は、上記溝
付セパレータ20を嵌合する嵌合凹部31を有すると共
に、該嵌合した際にガス流路溝21の上端と下端とで連
通するガス供給ヘッダ32及びガス排出ヘッダ33が形
成されている。また、上記セパレータ被覆板30には、
上記嵌合凹部31内に嵌合して上記溝付セパレータ20
のガス流路溝21側の外周の枠部を覆うと共に、当該ガ
ス流路溝21が露出するガス流路溝用開口部34が形成
されている。
The integral separator covering plate 30 has a fitting recess 31 into which the grooved separator 20 is fitted, and a gas supply header which communicates with the upper and lower ends of the gas passage groove 21 when fitted. 32 and a gas exhaust header 33 are formed. Further, the separator coating plate 30 includes
The grooved separator 20 is fitted in the fitting recess 31.
While covering the outer peripheral frame portion on the gas flow channel 21 side, the gas flow channel opening 34 for exposing the gas flow channel 21 is formed.

【0019】上記セパレータ基板40は、上記一体セパ
レータ被覆板30の嵌合凹部31内に溝付セパレータ2
0が嵌合した当該溝付セパレータ20の背面側を覆うも
のである。また、セパレータ基板40の相対向する角部
には厚さ方向に貫通するガス供給孔41,ガス排出孔4
2が各々設けられており、一体セパレータ被覆板30と
セパレータ基板40とが接合した際には、ガス供給孔4
1はガス供給ヘッダ32と、また一方のガス排出孔42
はガス排出ヘッダ33と各々連通するよう配されてい
る。
The separator substrate 40 has a grooved separator 2 in the fitting recess 31 of the integrated separator covering plate 30.
This is for covering the back surface side of the grooved separator 20 in which 0 is fitted. In addition, gas supply holes 41 and gas discharge holes 4 penetrating in the thickness direction are formed at opposite corners of the separator substrate 40.
2 are provided respectively, and when the integrated separator covering plate 30 and the separator substrate 40 are joined, the gas supply hole 4
1 is a gas supply header 32 and another gas discharge hole 42
Are arranged so as to communicate with the gas exhaust header 33, respectively.

【0020】上記構成からなる溝付セパレータ20,セ
パレータ被覆板30及びセパレータ基板40を積層し一
体化してなるガスセパレータ10を一対とし、図3に示
すように電極接合体50を挟み込んで燃料電池を構成し
ている。尚、図中符号51はアノード極,52はカソー
ド極を各々図示している。また、電極接合体50の構成
は図5に示したものと同様であるのでその説明は省略す
る。本実施例においては、電池を冷却する場合において
も、ガスセパレータと同様の構造のものを冷却セパレー
タ60として用い、水素極側のガスセパレータの背面か
ら冷却するようにしている。
A pair of gas separators 10 formed by stacking and integrating the grooved separator 20, the separator covering plate 30 and the separator substrate 40 having the above-described structure are set as a pair, and an electrode assembly 50 is sandwiched as shown in FIG. I am configuring. In the figure, reference numeral 51 is an anode electrode and 52 is a cathode electrode. Further, the structure of the electrode assembly 50 is the same as that shown in FIG. In this embodiment, even when the battery is cooled, the cooling separator 60 having the same structure as the gas separator is used, and the cooling is performed from the back surface of the gas separator on the hydrogen electrode side.

【0021】上記冷却セパレータ60は上述したガスセ
パレータ10と同一構造であり、同図中符号61は冷却
水流路溝、62は冷却水供給孔、63は冷却水排出孔、
64は冷却水を各々図示している。尚、冷却セパレータ
は、ガスセパレータ10との間に電極接合体50を配さ
ないため、図8で示したような従来形式の冷却セパレー
タを用いてもよい。
The cooling separator 60 has the same structure as the gas separator 10 described above. In the figure, reference numeral 61 is a cooling water passage groove, 62 is a cooling water supply hole, and 63 is a cooling water discharge hole.
Reference numerals 64 respectively represent cooling water. Since the electrode separator 50 is not arranged between the cooling separator and the gas separator 10, a conventional cooling separator as shown in FIG. 8 may be used.

【0022】次に、この燃料電池のガス(純水素燃料又
は酸化剤)及び冷却水の供給及び排出について図1,2
及び図3を用いて説明する。
Next, regarding supply and discharge of gas (pure hydrogen fuel or oxidizer) and cooling water of this fuel cell, FIGS.
3 and FIG.

【0023】加湿された純水素燃料ガス(H2 )53、
または加湿された酸化剤ガス(O2)54は、各々のガ
ス供給孔41より電池本体内に導入され、セパレータ被
覆板30のガス供給ヘッダ32を通じて溝付セパレータ
30に設けられた各ガス流路溝21に分配、供給され
る。このガス流路溝21を通過する間に純水素燃料ガス
53、または酸化剤ガス54は電極接合体50における
電池反応に応じ消費されることになる。消費され残った
純水素燃料ガス53、または酸化剤ガス54は、排出ヘ
ッダ33に集められ、その後、各々のガス排出孔42を
通じて電池本体外に排出される。
Humidified pure hydrogen fuel gas (H 2 ) 53,
Alternatively, the humidified oxidant gas (O 2 ) 54 is introduced into the battery main body through the respective gas supply holes 41, and each gas flow path provided in the grooved separator 30 through the gas supply header 32 of the separator coating plate 30. It is distributed and supplied to the groove 21. While passing through the gas flow channel 21, the pure hydrogen fuel gas 53 or the oxidant gas 54 is consumed according to the cell reaction in the electrode assembly 50. The remaining pure hydrogen fuel gas 53 or the oxidant gas 54 is collected in the discharge header 33 and then discharged to the outside of the cell body through the respective gas discharge holes 42.

【0024】一方、電池冷却水64は、冷却水流路溝6
1を有する冷却セパレータ60に設けられた冷却水供給
孔62より電池本体内に導入され、冷却水供給ヘッダを
通じて各冷却水流路溝61に分配、供給され、電池を冷
却している。
On the other hand, the battery cooling water 64 is the cooling water flow channel groove 6
The cooling water is introduced into the battery main body through the cooling water supply hole 62 provided in the cooling separator 60 having No. 1 and is distributed and supplied to each cooling water flow channel 61 through the cooling water supply header to cool the battery.

【0025】上述した図3に示す燃料電池においては、
電池の両面から各流体を導入する一例を示したが、本発
明はこれに限定されるものではなく、一対のガスセパレ
ータ10、10により電極接合体50を挟み込み、その
内の片側のガスセパレータ10から各流体を導入するよ
うにしてもよく、その一例を図4に示す。
In the fuel cell shown in FIG. 3 described above,
An example in which each fluid is introduced from both sides of the battery has been shown, but the present invention is not limited to this, and the electrode assembly 50 is sandwiched by a pair of gas separators 10 and one of the gas separators 10 is sandwiched. Each fluid may be introduced from the above, and an example thereof is shown in FIG.

【0026】同図に示すように、片側に設けたガスセパ
レータ10Aには、純水素燃料ガス53を供給及び排出
するガス供給孔41B及びガス排出孔42Bを貫通する
ように設け、純水素燃料ガス73をガスセパレータ10
Bに供給・排出するようにしている。このように、必要
に応じて各流体の供給孔及び排出孔をガスセパレータの
片面、両面に配することができる。
As shown in the figure, the gas separator 10A provided on one side is provided so as to pass through the gas supply hole 41B for supplying and discharging the pure hydrogen fuel gas 53 and the gas discharge hole 42B. 73 to the gas separator 10
B is supplied and discharged. In this way, the supply hole and the discharge hole for each fluid can be arranged on one side or both sides of the gas separator as required.

【0027】[0027]

【発明の効果】本発明に係るガスセパレータによれば、
以下の効果を奏する。
According to the gas separator of the present invention,
The following effects are achieved.

【0028】セパレータ全体を高価で、しかも導電性を
有する金属板、カーボン板等で製作する必要がなく、少
なくとも冷却水流路溝付きの冷却セパレータ基板、及び
溝付セパレータを導電性を有する金属板、カーボン板等
で製作するだけでよく、他の板は、軽量で安価なガス不
透過性の不導電性(例えば、各種高分子材料等)で構成
できる。また、各マニホールド、またはヘッダや、流路
溝を複雑な切削加工やエッチング加工なしに形成できる
ため、燃料電池本体を軽量に、しかも複雑な加工工程を
要さないので非常に安価にできる。
It is not necessary to manufacture the entire separator from an expensive and electrically conductive metal plate, carbon plate or the like, and at least the cooling separator substrate with the cooling water flow channel groove, and the grooved separator with the electrically conductive metal plate, It only has to be made of a carbon plate or the like, and the other plates can be made of a lightweight and inexpensive gas impermeable non-conductive material (for example, various polymer materials). In addition, since each manifold, header, or flow path groove can be formed without complicated cutting or etching, the fuel cell main body can be made lightweight, and since complicated processing steps are not required, the cost can be very low.

【0029】一体セパレータ被覆板により各マニホール
ド、またはヘッダが覆われているため、軟質性の電極接
合体が凹部にたわみ込んだり変形したりすることなく、
一体セパレータ被覆板により両面からしっかりと挟み込
み固定できるため、電極接合体の変形、損傷等をなくす
ことができる。
Since each manifold or header is covered with the integrated separator coating plate, the flexible electrode assembly is not bent or deformed in the recess,
Since it can be firmly sandwiched and fixed from both sides by the integral separator coating plate, deformation, damage, etc. of the electrode assembly can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係るガスセパレータの構成図であ
る。
FIG. 1 is a configuration diagram of a gas separator according to an embodiment.

【図2】本実施例に係る一体セパレータ被覆板概略図で
ある。
FIG. 2 is a schematic view of an integrated separator coating plate according to the present embodiment.

【図3】固体高分子電解質燃料電池の構成図である。FIG. 3 is a configuration diagram of a solid polymer electrolyte fuel cell.

【図4】固体高分子電解質燃料電池の構成図である。FIG. 4 is a configuration diagram of a solid polymer electrolyte fuel cell.

【図5】固体高分子電解質燃料電池の発電原理図であ
る。
FIG. 5 is a power generation principle diagram of a solid polymer electrolyte fuel cell.

【図6】固体高分子電解質燃料電池の運転システムの概
略図である。
FIG. 6 is a schematic diagram of an operating system of a solid polymer electrolyte fuel cell.

【図7】従来の燃料電池用ガスセパレータの外観図であ
る。
FIG. 7 is an external view of a conventional gas separator for a fuel cell.

【図8】従来のガスセパレータの構成図である。FIG. 8 is a configuration diagram of a conventional gas separator.

【符号の説明】[Explanation of symbols]

10 ガスセパレータ 20 溝付セパレータ 21 ガス流路溝 30 一体セパレータ被覆板 34 ガス流路溝用開口部 50 電極接合体 51 アノード極 52 カソード極 53 純水素燃料ガス 54 酸化剤ガス 64 冷却水 60 冷却セパレータ基板 61 冷却水流路溝 62 冷却水供給孔 63 冷却水排出孔 10 Gas Separator 20 Grooved Separator 21 Gas Channel Groove 30 Integrated Separator Cover Plate 34 Gas Channel Groove Opening 50 Electrode Assembly 51 Anode Electrode 52 Cathode Electrode 53 Pure Hydrogen Fuel Gas 54 Oxidant Gas 64 Cooling Water 60 Cooling Separator Substrate 61 Cooling water flow path groove 62 Cooling water supply hole 63 Cooling water discharge hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池の固体高分子電解質膜へ燃料ガ
ス又は酸化剤ガスを供給するためのガス用のセパレータ
において、 一側面に複数のガス流路溝を有する溝付セパレータと、
該溝付セパレータを嵌合すると共に上記ガス流路溝と連
通しガスを供給又は排出する流路を有し且つ上記溝付セ
パレータのガス流路溝側を覆うと共に当該ガス流路溝を
露出する開口部を有する一体セパレータ被覆板と、上記
一体セパレータ被覆板に嵌合した溝付セパレータの背面
側で接合してなるセパレータ基板とを、一体化してなる
ことを特徴とする固体高分子電解質燃料電池用ガスセパ
レータ。
1. A gas separator for supplying a fuel gas or an oxidant gas to a solid polymer electrolyte membrane of a fuel cell, comprising a grooved separator having a plurality of gas flow channel grooves on one side surface,
The grooved separator is fitted and has a channel communicating with the gas channel groove for supplying or discharging gas, and covers the gas channel groove side of the grooved separator and exposes the gas channel groove. A solid polymer electrolyte fuel cell, characterized in that an integrated separator coating plate having an opening and a separator substrate formed by joining the grooved separator fitted to the integrated separator coating plate on the back side are integrated. Gas separator.
【請求項2】 請求項1の固体高分子電解質燃料電池用
ガスセパレータにおいて、 上記溝付セパレータとセパレータ基板とが導電体からな
ると共に、一体セパレータ被覆板が不導電体からなるこ
とを特徴とする固体高分子電解質燃料電池用ガスセパレ
ータ。
2. The gas separator for a solid polymer electrolyte fuel cell according to claim 1, wherein the grooved separator and the separator substrate are made of a conductor, and the integrated separator coating plate is made of a non-conductor. Gas separator for solid polymer electrolyte fuel cells.
JP5126754A 1993-05-28 1993-05-28 Gas separator for solid high molecular electrolytic fuel cell Withdrawn JPH06338333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5126754A JPH06338333A (en) 1993-05-28 1993-05-28 Gas separator for solid high molecular electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5126754A JPH06338333A (en) 1993-05-28 1993-05-28 Gas separator for solid high molecular electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH06338333A true JPH06338333A (en) 1994-12-06

Family

ID=14943096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5126754A Withdrawn JPH06338333A (en) 1993-05-28 1993-05-28 Gas separator for solid high molecular electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH06338333A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1255315A1 (en) * 2000-02-08 2002-11-06 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
WO2003098726A1 (en) * 2002-05-15 2003-11-27 Dai Nippon Insatsu Kabushiki Kaisha Separator for flat type polyelectrolyte fuel cell and polyelectrolyte fuel cell employing that separator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1255315A1 (en) * 2000-02-08 2002-11-06 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7205061B2 (en) 2000-02-08 2007-04-17 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
EP1255315A4 (en) * 2000-02-08 2010-01-27 Panasonic Corp Polymer electrolyte fuel cell
WO2003098726A1 (en) * 2002-05-15 2003-11-27 Dai Nippon Insatsu Kabushiki Kaisha Separator for flat type polyelectrolyte fuel cell and polyelectrolyte fuel cell employing that separator
JP2004047397A (en) * 2002-05-15 2004-02-12 Dainippon Printing Co Ltd Separator member for polymer electrolyte type flat fuel cell, and polymer electrolyte type fuel cell using it
US7316856B2 (en) 2002-05-15 2008-01-08 Dai Nippon Insatsu Kabushiki Kaisha Separator for flat-type polyelectrolyte fuel cell and polyelectrolyte fuel cell employing that separator
JP4498664B2 (en) * 2002-05-15 2010-07-07 大日本印刷株式会社 Separator member for flat-type polymer electrolyte fuel cell and polymer electrolyte fuel cell using the separator member
US8007956B2 (en) 2002-05-15 2011-08-30 Dai Nippon Insatsu Kabushiki Kaisha Separator for flat-type polyelectrolyte fuel cell and polyelectrolyte fuel cell employing that separator

Similar Documents

Publication Publication Date Title
AU773563B2 (en) Fuel cell and bipolar plate for use with same
US5922485A (en) Solid polymer electrolyte fuel cell
CA2679036C (en) Fuel cell system comprising fuel cell stacks each formed by plural unit cells in horizontal direction
US5382478A (en) Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section
EP1726060B1 (en) Dual function, bipolar separator plates for fuel cells
JP2000231929A (en) Fuel cell
JPH06338338A (en) Humidification of high polymer ion exchange film of fuel cell
JP4612977B2 (en) Fuel cell stack and reaction gas supply method thereof
US20090123784A1 (en) Fuel cell module
US11349134B2 (en) Fuel cell
JPH06338332A (en) Gas separator for solid high molecular electrolytic fuel cell
JP2004171824A (en) Fuel cell
JPH06338333A (en) Gas separator for solid high molecular electrolytic fuel cell
US11217807B2 (en) Fuel cell
JP2004335179A (en) Fuel cell
JP4304955B2 (en) Solid polymer electrolyte fuel cell
JP5249177B2 (en) Fuel cell system
US11271223B2 (en) Fuel cell
US11728499B2 (en) Fuel cell
JP2004014299A (en) Fuel cell
JP3110902B2 (en) Fuel cell
JP2007109466A (en) Humidifying device for reaction gas
JPH0447671A (en) Fuel cell with solid electrolyte
JPH0782862B2 (en) Molten carbonate fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801