JPH06338330A - High molecular solid electrolytic battery and manufacture thereof - Google Patents

High molecular solid electrolytic battery and manufacture thereof

Info

Publication number
JPH06338330A
JPH06338330A JP5127236A JP12723693A JPH06338330A JP H06338330 A JPH06338330 A JP H06338330A JP 5127236 A JP5127236 A JP 5127236A JP 12723693 A JP12723693 A JP 12723693A JP H06338330 A JPH06338330 A JP H06338330A
Authority
JP
Japan
Prior art keywords
active material
electrode active
material layer
solid electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5127236A
Other languages
Japanese (ja)
Other versions
JP3273997B2 (en
Inventor
Kenji Nakai
賢治 中井
Kensuke Hironaka
健介 弘中
Takumi Hayakawa
他▲く▼美 早川
Akio Komaki
昭夫 小牧
Takefumi Nakanaga
偉文 中長
Masatoshi Taniguchi
正俊 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Resonac Corp
Original Assignee
Otsuka Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP12723693A priority Critical patent/JP3273997B2/en
Publication of JPH06338330A publication Critical patent/JPH06338330A/en
Application granted granted Critical
Publication of JP3273997B2 publication Critical patent/JP3273997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a high molecular solid electrolytic battery capable of enlarging a reaction area of the battery by increasing ionic conductivity in an electrolyte without decreasing strength of an electrolytic layer, and further by infiltrating a high molecular solid electrolyte sufficiently into an active material layer. CONSTITUTION:A mixture of positive pole active material powder with a binder is compressed to form a porous positive pole active material layer 2, and after applying a mixed solution containing a negative pole active material or a compound containing this negative pole active material, high molecular solid electrolyte, electrolytic fluid and a solvent to the positive pole active material layer 2, the solvent is volatilized to form a high molecular solid electrolytic layer 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高分子固体電解質電池及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer solid electrolyte battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電解液の液漏れを防止し薄形化を図れる
電池として、正極活物質層と負極活物質層とを高分子固
体電解質層を介して積層した高分子固体電解質電池が提
案されている。この種の電池の高分子固体電解質層は正
極活物質層と負極活物質層との絶縁が確実に図れるよう
に比較的分子量の高い高分子固体電解質により形成され
ている。しかしながら、高分子固体電解質は液体の電解
質に比べてイオン伝導度が大幅に低いため、高分子固体
電解質電池は容量が低く高率放電しにくいという問題が
あった。そこでイオン伝導性の比較的高い低分子量の高
分子固体電解質を高分子化合物に保持させて電解質層を
形成した高分子固体電解質電池が提案された。また高分
子固体電解質電池は電解質と活物質との双方が固体であ
るため、両者の間の接触状態が悪く電池の反応面積が小
さくなるという問題がある。そこで高分子固体電解質を
適当な溶媒に溶解分散させた溶液を活物質層に塗布して
から溶媒を揮発除去して活物質層内に高分子固体電解質
を含浸させることが提案された。
2. Description of the Related Art A polymer solid electrolyte battery in which a positive electrode active material layer and a negative electrode active material layer are laminated via a polymer solid electrolyte layer has been proposed as a battery capable of preventing leakage of an electrolytic solution and achieving a thinner battery. ing. The polymer solid electrolyte layer of this type of battery is formed of a polymer solid electrolyte having a relatively high molecular weight so that the positive electrode active material layer and the negative electrode active material layer can be reliably insulated. However, since the polymer solid electrolyte has a significantly lower ionic conductivity than the liquid electrolyte, the polymer solid electrolyte battery has a problem that it has a low capacity and is difficult to discharge at a high rate. Therefore, a polymer solid electrolyte battery has been proposed in which a polymer compound holds a polymer solid electrolyte having a relatively high ionic conductivity and a low molecular weight to form an electrolyte layer. Further, in the polymer solid electrolyte battery, since both the electrolyte and the active material are solid, there is a problem that the contact state between the two is poor and the reaction area of the battery becomes small. Therefore, it has been proposed to apply a solution in which a solid polymer electrolyte is dissolved and dispersed in an appropriate solvent to the active material layer, and then volatilize and remove the solvent to impregnate the active material layer with the solid polymer electrolyte.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、低分子
量の高分子固体電解質を高分子化合物に保持させた電解
質層の製造工程は複雑である。また、この電解質層では
イオン伝導度を十分に高めるため、低分子量の高分子固
体電解質の量を増やすと電解質層の強度が低下するとい
う問題が生じる。
However, the process for producing an electrolyte layer in which a low molecular weight polymer solid electrolyte is held in a polymer compound is complicated. Further, in this electrolyte layer, since the ionic conductivity is sufficiently increased, there arises a problem that the strength of the electrolyte layer is lowered when the amount of the low molecular weight solid polymer electrolyte is increased.

【0004】また電池の反応面積を増加させるために、
高分子固体電解質を適当な溶媒に溶解分散させた溶液を
活物質層に塗布しても、この溶液は粘性が高く、活物質
層内に十分には浸透せず、電池の反応面積を大きくする
ことには限界があった本発明の目的は、電解質層の強度
を低下させずに電解質内のイオン伝導性を高め、しかも
高分子固体電解質層と活物質層との間の反応面積を大き
くできる高分子固体電解質電池とその製造方法とを提供
することにある。
In order to increase the reaction area of the battery,
Even when a solution in which a solid polymer electrolyte is dissolved and dispersed in an appropriate solvent is applied to the active material layer, this solution has a high viscosity and does not sufficiently penetrate into the active material layer, increasing the reaction area of the battery. The object of the present invention, which has a limit, is to increase the ion conductivity in the electrolyte without lowering the strength of the electrolyte layer, and to increase the reaction area between the polymer solid electrolyte layer and the active material layer. A polymer solid electrolyte battery and a method for manufacturing the same are provided.

【0005】[0005]

【課題を解決するための手段】請求項1の発明では、正
極活物質層と負極活物質層とが高分子固体電解質層を介
して積層されてなる高分子固体電解質電池を対象にし
て、高分子固体電解質層に電解液を含ませ、正極活物質
層及び負極活物質層の少なくとも1つに電解液及び高分
子固体電解質を含ませる。
According to a first aspect of the present invention, there is provided a high polymer solid electrolyte battery comprising a positive electrode active material layer and a negative electrode active material layer, which are laminated via a solid polymer electrolyte layer. An electrolyte solution is included in the molecular solid electrolyte layer, and an electrolyte solution and a polymer solid electrolyte are included in at least one of the positive electrode active material layer and the negative electrode active material layer.

【0006】請求項2の発明では、正極活物質層と負極
活物質層とを高分子固体電解質層を介して積層して高分
子固体電解質電池を製造する方法を対象にする。本発明
の製造方法では、正極活物質層を多孔質に形成し、少な
くとも高分子固体電解質材料と電解液と溶媒とを含む混
合溶液を正極活物質層に塗布した後に溶媒を揮発させて
高分子固体電解質層を形成する。
The invention of claim 2 is directed to a method for producing a polymer solid electrolyte battery by laminating a positive electrode active material layer and a negative electrode active material layer via a polymer solid electrolyte layer. In the production method of the present invention, the positive electrode active material layer is formed into a porous layer, and a mixed solution containing at least a polymer solid electrolyte material, an electrolytic solution, and a solvent is applied to the positive electrode active material layer, and then the solvent is volatilized to form a polymer. A solid electrolyte layer is formed.

【0007】請求項3の発明では、正極活物質層と負極
活物質層とを高分子固体電解質層を介して積層して高分
子固体電解質電池を製造する方法を対象にする。本発明
の製造方法では、少なくとも電解液と高分子固体電解質
材料と溶媒とを含む溶液中に正極活物質粉末を分散させ
た分散溶液を集電体に塗布した後に該分散溶液から溶媒
を揮発させて正極活物質層を形成し、少なくとも高分子
固体電解質材料と電解液と溶媒とを含む溶液を正極活物
質層に塗布した後に溶媒を揮発させて高分子固体電解質
層を形成する。
The invention of claim 3 is directed to a method for producing a polymer solid electrolyte battery by laminating a positive electrode active material layer and a negative electrode active material layer with a polymer solid electrolyte layer interposed therebetween. In the production method of the present invention, a dispersion solution in which the positive electrode active material powder is dispersed in a solution containing at least an electrolytic solution, a solid polymer electrolyte material, and a solvent is applied to a current collector, and then the solvent is volatilized from the dispersion solution. The positive electrode active material layer is formed by applying the solution containing at least the solid polymer electrolyte material, the electrolytic solution, and the solvent to the positive electrode active material layer, and then the solvent is volatilized to form the solid polymer electrolyte layer.

【0008】[0008]

【作用】請求項1の発明のように、イオン伝導性の高い
電解液を高分子固体電解質層及び活物質層内に含浸さ
せ、しかも正極活物質層及び負極活物質層の少なくとも
1つに高分子固体電解質を含ませると、高分子固体電解
質層及び活物質層内のイオン伝導性が高くなる上に活物
質層と高分子固体電解質との間の接触面積を増大させる
ことができる。そのため、本発明によれば負極活物質材
料のイオンを正極活物質側に効率よく伝達することがで
きる。しかも少量の電解液を分子量の高い高分子固体電
解質層に含浸するだけでイオン伝導性は大きく向上する
ため、従来のように高分子固体電解質層の強度を低下さ
せることなく、電池の容量を高めることができる。
According to the invention of claim 1, an electrolyte having a high ionic conductivity is impregnated into the solid polymer electrolyte layer and the active material layer, and at least one of the positive electrode active material layer and the negative electrode active material layer has a high concentration. When the molecular solid electrolyte is included, the ionic conductivity in the polymer solid electrolyte layer and the active material layer is increased, and the contact area between the active material layer and the polymer solid electrolyte can be increased. Therefore, according to the present invention, the ions of the negative electrode active material can be efficiently transmitted to the positive electrode active material side. Moreover, the ion conductivity is greatly improved by simply impregnating a high molecular weight solid polymer electrolyte layer with a small amount of electrolytic solution, thus increasing the capacity of the battery without lowering the strength of the solid polymer electrolyte layer as in the past. be able to.

【0009】高分子固体電解質を電解液と共に溶媒に溶
解した溶液は、高分子固体電解質だけを溶媒に溶解分散
させた溶液に比べて粘性が低い。そのため請求項2の発
明のように、高分子固体電解質と電解液とを含む混合溶
液を多孔質の正極活物質層に塗布すれば、混合溶液が正
極活物質層内の空隙部に十分に浸透して、高分子固体電
解質を容易に正極活物質層内に含浸させることができ
る。
A solution obtained by dissolving a polymer solid electrolyte in a solvent together with an electrolytic solution has a lower viscosity than a solution obtained by dissolving and dispersing only a polymer solid electrolyte in a solvent. Therefore, when the mixed solution containing the polymer solid electrolyte and the electrolytic solution is applied to the porous positive electrode active material layer as in the invention of claim 2, the mixed solution sufficiently penetrates into the voids in the positive electrode active material layer. Then, the solid polymer electrolyte can be easily impregnated into the positive electrode active material layer.

【0010】請求項3の発明では正極活物質層を形成す
る際に電解液と高分子固体電解質とを混合させるので、
必要量の高分子固体電解質を正極活物質層内に含ませる
ことができる。
According to the third aspect of the invention, since the electrolytic solution and the solid polymer electrolyte are mixed when the positive electrode active material layer is formed,
A required amount of solid polymer electrolyte can be included in the positive electrode active material layer.

【0011】[0011]

【実施例】【Example】

(実施例1)図1は本発明を偏平形の高分子固体電解質
リチウム電池に適用した実施例1の電池の概略断面図で
ある。図1において、1は正極集電体、2は正極活物質
層、3は高分子固体電解質層、4は負極活物質層、5は
負極集電体、そして6はホットメルトである。
(Example 1) FIG. 1 is a schematic sectional view of a battery of Example 1 in which the present invention is applied to a flat type polymer solid electrolyte lithium battery. In FIG. 1, 1 is a positive electrode current collector, 2 is a positive electrode active material layer, 3 is a solid polymer electrolyte layer, 4 is a negative electrode active material layer, 5 is a negative electrode current collector, and 6 is a hot melt.

【0012】正極集電体1は厚み約20μm のニッケル
箔により形成されている。正極活物質層2は、五酸化バ
ナジウムキセロゲル(V2 5 ・nH2 O)の粉末とカ
ーボンブラック粉末と四フッ化エチレン樹脂からなるバ
インダとの混合物により多孔質に形成されており、多孔
質内にはプロピレンカーボネートからなる電解液とメト
キシオリゴエチレンオキシポリホスファゼン(MEP
7)からなる高分子固体電解質材料とが含浸されてい
る。高分子固体電解質層3は過塩素酸リチウム(LiC
lO4 )と電解液(プロピレンカーボネート)とを含む
分子量の高いメトキシオリゴエチレンオキシポリホスフ
ァゼン(MEP7)により形成されている。負極活物質
層4はリチウム箔により形成されている。負極集電体5
は正極集電体1と同寸法のステンレス箔により形成され
ている。正極集電体1及び負極集電体5は、それぞれ電
池の外装ケースの一部を構成し、且つ端子の機能を果た
している。ホットメルト6は、加熱されると表面側から
溶融して接着性を示す枠部材である。このホットメルト
6は集電体1及び5の外周端面1b及び5bに対応した
輪郭が矩形状を呈するリングであり、具体的にはポリオ
レフィン系樹脂から形成されている。集電体1及び5の
外周端面1b及び5bがホットメルト6に接続されて電
池が組み立てられている。
The positive electrode current collector 1 is formed of a nickel foil having a thickness of about 20 μm. The positive electrode active material layer 2 is made of a mixture of vanadium pentoxide xerogel (V 2 O 5 .nH 2 O) powder, carbon black powder, and a binder made of tetrafluoroethylene resin, and is porous. Inside, an electrolyte solution consisting of propylene carbonate and methoxy oligoethyleneoxy polyphosphazene (MEP
It is impregnated with the solid polymer electrolyte material of 7). The polymer solid electrolyte layer 3 is made of lithium perchlorate (LiC
lO 4) and are formed by the electrolytic solution (propylene carbonate) and high molecular weight containing a methoxy oligoethyleneoxy polyphosphazene (MEP7). The negative electrode active material layer 4 is formed of lithium foil. Negative electrode current collector 5
Is formed of a stainless foil having the same dimensions as the positive electrode current collector 1. Each of the positive electrode current collector 1 and the negative electrode current collector 5 constitutes a part of the outer case of the battery and also functions as a terminal. The hot melt 6 is a frame member that melts from the surface side when heated and exhibits adhesiveness. The hot melt 6 is a ring having a rectangular contour corresponding to the outer peripheral end faces 1b and 5b of the current collectors 1 and 5, and is specifically made of a polyolefin resin. The outer peripheral end faces 1b and 5b of the current collectors 1 and 5 are connected to the hot melt 6 to assemble the battery.

【0013】本実施例の電池は次のようにして製造し
た。まず五酸化バナジウムキセロゲル(V2 5 ・nH
2 O)の粉末とカーボンブラック粉末と四フッ化エチレ
ン樹脂からなるバインダとを80:15:5の重量比で
混合した混合物をロール成形して厚み100μm のシー
ト状の正極活物質を作った。そして、この正極活物質を
厚み20μm のニッケル箔からなる正極集電体1の一方
の表面1aの中央部分に載置して正極活物質層2を形成
した。次にポリホスファゼン誘導体の一種であるメトキ
シオリゴエチレンオキシポリフォスファゼン(MEP
7)からなる高分子固体電解質材料(平均分子量150
〜200万)と、該MEP7に対して8重量%のLiC
lO4 と、該MEP7に対して10重量%の電解液(プ
ロピレンカーボネート)とを1、2−ジメトキシエタン
(DME)からなる溶媒中に20重量%の割合で溶かし
て高分子固体電解質用溶液を作り、この溶液を正極活物
質層2を全体的に覆うようにして正極活物質層2上に塗
布した。尚、MEP7に対する電解液(プロピレンカー
ボネート)の好ましい割合は1〜15重量%である。電
解液の割合が15重量%を超えると電解質は固体電解質
から流体性を持つ電解質に変わる。そして、これを乾燥
してDMEを揮発するキャスティングにより厚み100
μm の固体電解質層3を作った。尚、DMEの沸点(8
5度)はプロピレンカーボネートの沸点(242度)よ
り低いため、DMEを揮発してもプロピレンカーボネー
トは固体電解質層3内に残留する。また、高分子固体電
解質用溶液を正極活物質層2上に塗布した後に必要に応
じてオートクレーブ等を用いて加圧、減圧または加減圧
しても固体電解質層3を作ることができる。次に固体電
解質層3の上に厚み40μm のLi箔からなる負極活物
質層4を載置し、正極集電体1の外周端部1bの上にホ
ットメルト6を載置した。そして、負極活物質層4とホ
ットメルト6とを覆うようにして正極集電体1と同寸法
のステンレス箔からなる負極集電体5を載置した。次に
加熱によりホットメルト6を集電体1及び5の外周端部
1b及び5bに完全に接続して高分子固体電解質リチウ
ム電池を完成した。
The battery of this example was manufactured as follows. First, vanadium pentoxide xerogel (V 2 O 5 · nH
2 O) powder, carbon black powder, and a binder made of tetrafluoroethylene resin were mixed at a weight ratio of 80: 15: 5 to form a sheet-like positive electrode active material having a thickness of 100 μm by roll molding. Then, this positive electrode active material was placed on the central portion of one surface 1a of the positive electrode current collector 1 made of nickel foil having a thickness of 20 μm to form the positive electrode active material layer 2. Next, methoxyoligoethyleneoxypolyphosphazene (MEP), which is a kind of polyphosphazene derivative,
7) Polymer solid electrolyte material (average molecular weight 150
~ 2 million) and 8% by weight of LiC based on the MEP7
and lO 4, 10 wt% of the electrolyte solution relative to the MEP7 solution for solid polymer electrolyte dissolved in a proportion of 20% by weight in a solvent consisting of (propylene carbonate) and 1,2-dimethoxyethane (DME) This solution was applied to the positive electrode active material layer 2 so as to entirely cover the positive electrode active material layer 2. The preferable ratio of the electrolytic solution (propylene carbonate) to MEP7 is 1 to 15% by weight. When the proportion of the electrolytic solution exceeds 15% by weight, the electrolyte changes from a solid electrolyte to a fluid electrolyte. Then, it is dried to a thickness of 100 by casting to volatilize DME.
A μm solid electrolyte layer 3 was prepared. The boiling point of DME (8
Since (5 degrees) is lower than the boiling point of propylene carbonate (242 degrees), propylene carbonate remains in the solid electrolyte layer 3 even if DME is volatilized. Further, the solid electrolyte layer 3 can be formed by applying a solution for a polymer solid electrolyte onto the positive electrode active material layer 2 and then applying pressure, depressurization or depressurization using an autoclave or the like if necessary. Next, the negative electrode active material layer 4 made of Li foil having a thickness of 40 μm was placed on the solid electrolyte layer 3, and the hot melt 6 was placed on the outer peripheral end 1b of the positive electrode current collector 1. Then, the negative electrode current collector 5 made of stainless steel foil having the same size as the positive electrode current collector 1 was placed so as to cover the negative electrode active material layer 4 and the hot melt 6. Next, the hot melt 6 was completely connected to the outer peripheral end portions 1b and 5b of the current collectors 1 and 5 by heating to complete the polymer solid electrolyte lithium battery.

【0014】(実施例2)本実施例の電池は、正極活物
質層を除いては実施例1の電池と同じ構造を有してい
る。本実施例の電池の正極活物質層は次のようにして形
成した。
Example 2 The battery of this example has the same structure as the battery of Example 1 except for the positive electrode active material layer. The positive electrode active material layer of the battery of this example was formed as follows.

【0015】まず五酸化バナジウムキセロゲル(V2
5 ・nH2 O)の粉末とグラファイト粉末からなる導電
助剤とを2:1の重量比で混合した混合物を作った。次
にメトキシオリゴエチレンオキシポリフォスファゼン
(MEP7)からなる高分子固体電解質材料と、該ME
P7に対して8重量%のLiClO4 と、該MEP7に
対して10重量%の電解液(プロピレンカーボネート)
とを1、2−ジメトキシエタン(DME)からなる溶媒
中に20重量%の割合で溶かして溶液を作り、この溶液
に前述の混合物をいれ、溶液中に五酸化バナジウムキセ
ロゲル粉末とグラファイト粉末とを分散させて分散溶液
を作った。尚、分散溶液中の五酸化バナジウムキセロゲ
ルとグラファイトとMEP7との重量割合は2:1:1
となっている。次にこの分散溶液をホモジナイザーでさ
らに攪拌、分散させた後に、スポイト等で分散溶液を正
極集電体1の一方の表面1aの中央部分に塗布した。そ
して分散溶液中からDMEのみを揮発除去して五酸化バ
ナジウムキセロゲルとグラファイトとの間にプロピレン
カーボネートが含有されたMEP7からなる正極活物質
層を形成した。
First, vanadium pentoxide xerogel (V 2 O
5 · nH 2 O) powder and a conductive auxiliary agent composed of graphite powder were mixed at a weight ratio of 2: 1 to prepare a mixture. Next, a solid polymer electrolyte material composed of methoxyoligoethyleneoxypolyphosphazene (MEP7) and the ME
8% by weight of LiClO 4 with respect to P7 and 10% by weight of electrolyte solution (propylene carbonate) with respect to the MEP7
And 2 are dissolved in a solvent consisting of 1,2-dimethoxyethane (DME) at a ratio of 20% by weight to form a solution, and the above mixture is added to this solution, and vanadium pentoxide xerogel powder and graphite powder are added to the solution. Dispersed to make a dispersion solution. The weight ratio of vanadium pentoxide xerogel, graphite and MEP7 in the dispersion solution was 2: 1: 1.
Has become. Next, this dispersion solution was further stirred and dispersed by a homogenizer, and then the dispersion solution was applied to the central portion of one surface 1a of the positive electrode current collector 1 with a dropper or the like. Then, only DME was volatilized and removed from the dispersion solution to form a positive electrode active material layer made of MEP7 containing propylene carbonate between vanadium pentoxide xerogel and graphite.

【0016】次にMEP7にプロピレンカーボネート
(電解液)を加えずその他は実施例1の電池と同様の方
法で製造した従来の電池と、実施例1及び実施例2の電
池とを終止電圧2.0Vまで50μA/cm2 (25℃)の
電流密度で放電して各電池の放電特性を調べた。図2は
その測定結果を示している。図2より実施例1及び実施
例2の電池は従来の電池に比べて放電作動電圧が約10
0mv程高く、しかも終止電圧(2.0V)までの放電持
続時間が長いのが判る。実施例1及び実施例2の電池の
放電作動電圧が高いのは、高分子固体電解質層に電解液
(プロピレンカーボネート)を含浸させることにより電
解質層内のイオン伝導性が向上したためであると考えら
れる。また放電持続時間が長いのは、プロピレンカーボ
ネートを含有したMEP7/DME溶液は粘性が低いの
で、多孔性の正極活物質層内への含浸性が向上したこと
や、DMEを揮発除去しても高分子固体電解質が正極活
物質層内に残留していることにより電池の有効反応面積
が増加したためであると考えられる。
Next, a conventional battery manufactured by the same method as the battery of Example 1 except that propylene carbonate (electrolyte) was not added to MEP7 and the batteries of Examples 1 and 2 had a final voltage of 2. The discharge characteristics of each battery were examined by discharging to 0 V at a current density of 50 μA / cm 2 (25 ° C.). FIG. 2 shows the measurement result. As shown in FIG. 2, the batteries of Examples 1 and 2 have a discharge operating voltage of about 10 as compared with the conventional batteries.
It can be seen that it is as high as 0 mv and that the discharge duration to the final voltage (2.0 V) is long. The high discharge operating voltage of the batteries of Examples 1 and 2 is considered to be because the ion conductivity in the electrolyte layer was improved by impregnating the polymer solid electrolyte layer with the electrolytic solution (propylene carbonate). . Further, the discharge duration is long because the MEP7 / DME solution containing propylene carbonate has a low viscosity, so that the impregnation property into the porous positive electrode active material layer is improved, and even if the DME is volatilized and removed, it is high. It is considered that this is because the effective reaction area of the battery increased due to the molecular solid electrolyte remaining in the positive electrode active material layer.

【0017】尚、上記各実施例は正極活物質層中に電解
液及び高分子固体電解質を含浸させたが、負極活物質層
中に電解液及び高分子固体電解質を含浸させても構わな
いのは勿論である。例えば、リチウム粉末を適当なバイ
ンダを用いて圧縮成形した負極活物質層、または粉末状
または繊維状の炭素材からなる負極活物質保持体にリチ
ウムイオンをドープさせた負極活物質層中に電解液及び
高分子固体電解質を含浸させても本実施例と同様に放電
特性が向上するのが確認された。
In each of the above examples, the positive electrode active material layer was impregnated with the electrolytic solution and the polymer solid electrolyte, but the negative electrode active material layer may be impregnated with the electrolytic solution and the polymer solid electrolyte. Of course. For example, a negative electrode active material layer obtained by compression-molding lithium powder using an appropriate binder, or a negative electrode active material layer obtained by doping a negative electrode active material support made of a powdery or fibrous carbon material with lithium ions is used as an electrolyte solution. Also, it was confirmed that the discharge characteristics were improved as in the case of the present example even when the polymer solid electrolyte was impregnated.

【0018】また、上記各実施例は本発明を高分子固体
電解質リチウム電池に適用した例であるが、本発明はこ
れに限定されるものではなく、本発明を他の高分子固体
電解質電池及びその製造方法に適用できるのは勿論であ
る。
Although each of the above embodiments is an example in which the present invention is applied to a polymer solid electrolyte lithium battery, the present invention is not limited to this, and the present invention is applied to other polymer solid electrolyte batteries and Of course, it can be applied to the manufacturing method.

【0019】[0019]

【発明の効果】請求項1の発明によれば、イオン伝導性
の高い電解液を高分子固体電解質層及び活物質層内に含
浸させ、しかも負極活物質層及び正極活物質層の少なく
とも1つに高分子固体電解質を含ませるので、負極活物
質材料のイオンを正極活物質側に効率よく伝達すること
ができる。しかも少量の電解液を分子量の高い高分子固
体電解質層に含浸するだけでイオン伝導性は大きく向上
するため、従来のように高分子固体電解質層の強度を低
下させることなく、電池の容量を高めることができる。
According to the invention of claim 1, an electrolytic solution having high ion conductivity is impregnated into the solid polymer electrolyte layer and the active material layer, and at least one of the negative electrode active material layer and the positive electrode active material layer is provided. Since the solid polymer electrolyte is included in, the ions of the negative electrode active material can be efficiently transmitted to the positive electrode active material side. Moreover, the ion conductivity is greatly improved by simply impregnating a high molecular weight solid polymer electrolyte layer with a small amount of electrolytic solution, thus increasing the capacity of the battery without lowering the strength of the solid polymer electrolyte layer as in the past. be able to.

【0020】請求項2の発明によれば、高分子固体電解
質と電解液とを含む混合溶液を多孔質の正極活物質層に
塗布するので、混合溶液が正極活物質層内の空隙部に十
分に浸透して、高分子固体電解質を容易に正極活物質層
内に含浸させることができる。そのため、本発明によれ
ば容量の高い電池を比較的簡単に得ることができる。請
求項3の発明では正極活物質層を形成する際に電解液と
高分子固体電解質とを混合させるので、必要量の高分子
固体電解質を正極活物質層内に含ませることができる。
According to the second aspect of the present invention, since the mixed solution containing the solid polymer electrolyte and the electrolytic solution is applied to the porous positive electrode active material layer, the mixed solution is sufficiently filled in the voids in the positive electrode active material layer. The solid polymer electrolyte can be easily impregnated into the positive electrode active material layer. Therefore, according to the present invention, a high capacity battery can be obtained relatively easily. In the invention of claim 3, since the electrolytic solution and the solid polymer electrolyte are mixed when the positive electrode active material layer is formed, a required amount of the solid polymer electrolyte can be contained in the positive electrode active material layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の電池の概略断面図である。FIG. 1 is a schematic sectional view of a battery of an example of the present invention.

【図2】試験に用いた電池の放電特性を示す図である。FIG. 2 is a diagram showing discharge characteristics of a battery used in a test.

【符号の説明】[Explanation of symbols]

2 正極活物質層 3 固体電解質層 4 負極活物質層 2 Positive electrode active material layer 3 Solid electrolyte layer 4 Negative electrode active material layer

フロントページの続き (72)発明者 早川 他▲く▼美 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 小牧 昭夫 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 中長 偉文 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 谷口 正俊 大阪府大阪市中央区大手通3丁目2番27号 大塚化学株式会社内Front page continuation (72) Inventor Hayakawa et al. KUKUMI 2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo Inside Shin-Kindo Electric Co., Ltd. (72) Inventor Akio Komaki 2-chome, Nishishinjuku, Shinjuku-ku, Tokyo No. 1 In Shinjin To Denki Co., Ltd. (72) Inventor Weibun Nakabun, 463 Kagasuno, Kawauchi Town, Tokushima City, Tokushima Prefecture Otsuka Chemical Co., Ltd., Tokushima Laboratory (72) Inventor Masatoshi Taniguchi Chuo-ku, Osaka City, Osaka Prefecture Otetsu 3-chome 2-27 Otsuka Chemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】正極活物質層と負極活物質層とが高分子固
体電解質層を介して積層されてなる高分子固体電解質電
池において、 前記高分子固体電解質層に電解液が含まれており、前記
正極活物質層及び前記負極活物質層の少なくとも1つに
電解液及び高分子固体電解質が含まれていることを特徴
とする高分子固体電解質電池。
1. A polymer solid electrolyte battery comprising a positive electrode active material layer and a negative electrode active material layer laminated via a polymer solid electrolyte layer, wherein the polymer solid electrolyte layer contains an electrolytic solution, A polymer solid electrolyte battery, wherein at least one of the positive electrode active material layer and the negative electrode active material layer contains an electrolytic solution and a polymer solid electrolyte.
【請求項2】正極活物質層と負極活物質層とを高分子固
体電解質層を介して積層して高分子固体電解質電池を製
造する方法において、 前記正極活物質層を多孔質に形成し、 少なくとも高分子固体電解質材料と電解液と溶媒とを含
む混合溶液を前記正極活物質層に塗布した後に前記溶媒
を揮発させて前記高分子固体電解質層を形成することを
特徴とする高分子固体電解質電池の製造方法。
2. A method for producing a polymer solid electrolyte battery by laminating a positive electrode active material layer and a negative electrode active material layer via a polymer solid electrolyte layer, wherein the positive electrode active material layer is formed porous. A solid polymer electrolyte characterized by forming the solid polymer electrolyte layer by applying a mixed solution containing at least a solid polymer electrolyte material, an electrolytic solution and a solvent to the positive electrode active material layer, and then volatilizing the solvent. Battery manufacturing method.
【請求項3】正極活物質層と負極活物質層とを高分子固
体電解質層を介して積層して高分子固体電解質電池を製
造する方法において、 少なくとも電解液と高分子固体電解質材料と溶媒とを含
む溶液中に正極活物質粉末を分散させた分散溶液を集電
体に塗布した後に該分散溶液から前記溶媒を揮発させて
前記正極活物質層を形成し、 少なくとも高分子固体電解質材料と電解液と溶媒とを含
む溶液を前記正極活物質層に塗布した後に前記溶媒を揮
発させて前記高分子固体電解質層を形成することを特徴
とする高分子固体電解質電池の製造方法。
3. A method for producing a polymer solid electrolyte battery by stacking a positive electrode active material layer and a negative electrode active material layer with a polymer solid electrolyte layer interposed between at least an electrolytic solution, a polymer solid electrolyte material, and a solvent. The positive electrode active material powder is dispersed in a solution containing the above, and the positive electrode active material layer is formed by applying the dispersion solution to the current collector and then volatilizing the solvent from the dispersion solution. A method for producing a polymer solid electrolyte battery, comprising applying a solution containing a liquid and a solvent to the positive electrode active material layer, and then volatilizing the solvent to form the polymer solid electrolyte layer.
JP12723693A 1993-05-28 1993-05-28 Polymer solid electrolyte battery and method of manufacturing the same Expired - Fee Related JP3273997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12723693A JP3273997B2 (en) 1993-05-28 1993-05-28 Polymer solid electrolyte battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12723693A JP3273997B2 (en) 1993-05-28 1993-05-28 Polymer solid electrolyte battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06338330A true JPH06338330A (en) 1994-12-06
JP3273997B2 JP3273997B2 (en) 2002-04-15

Family

ID=14955086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12723693A Expired - Fee Related JP3273997B2 (en) 1993-05-28 1993-05-28 Polymer solid electrolyte battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3273997B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558957A (en) * 1994-10-26 1996-09-24 International Business Machines Corporation Method for making a thin flexible primary battery for microelectronics applications
WO2015093411A1 (en) * 2013-12-20 2015-06-25 三洋化成工業株式会社 Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558957A (en) * 1994-10-26 1996-09-24 International Business Machines Corporation Method for making a thin flexible primary battery for microelectronics applications
WO2015093411A1 (en) * 2013-12-20 2015-06-25 三洋化成工業株式会社 Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
JPWO2015093411A1 (en) * 2013-12-20 2017-03-16 三洋化成工業株式会社 Lithium ion battery electrode, lithium ion battery, and method for producing lithium ion battery electrode
US10276858B2 (en) 2013-12-20 2019-04-30 Sanyo Chemical Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US10727476B2 (en) 2013-12-20 2020-07-28 Sanyo Chemical Industries, Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US11233229B2 (en) 2013-12-20 2022-01-25 Sanyo Chemical Industries, Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell
US11322732B2 (en) 2013-12-20 2022-05-03 Sanyo Chemical Industries, Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing electrode for lithium-ion cell

Also Published As

Publication number Publication date
JP3273997B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
JP3555999B2 (en) Method for producing polymer solid electrolyte / electrode assembly for polymer electrolyte fuel cell
JP3722797B2 (en) Electrolyte-containing granular electrode for lithium storage battery
KR100460570B1 (en) Supercapacitor structure and method of making same
JP2943792B1 (en) Proton conductive polymer battery and method for producing the same
JP3481010B2 (en) Polymer solid electrolyte membrane / electrode integrated body and method for producing the same
JP2002541633A (en) Porous electrode or partition used for non-aqueous battery and method for producing the same
JP2002141105A (en) Proton conductive polymer secondary battery
JP3807038B2 (en) POLYMER ELECTROLYTE MEMBRANE-GAS DIFFUSION ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP3347439B2 (en) Polymer solid electrolyte lithium secondary battery and method of manufacturing the same
JP3260310B2 (en) Manufacturing method of sheet type electrode / electrolyte structure
US3704171A (en) Catalytic membrane air electrodes for fuel cells and fuel cells containing same
JPH06338330A (en) High molecular solid electrolytic battery and manufacture thereof
JP3540629B2 (en) Method for producing electrode for electrochemical device and electrochemical device
US20020177037A1 (en) Method for producing a separator/electrode assembly for electrochemical elements
JPH11288723A (en) Current collector for electrochemical element
JPH10199545A (en) Sheet battery and manufacture of the same
JP4262942B2 (en) Polymer solid electrolyte / electrode assembly for lithium battery and method for producing the same
JP2005276847A (en) Polymer solid electrolyte-electrode junction
JP3416375B2 (en) Method for manufacturing polymer solid electrolyte battery
KR100790039B1 (en) Polymeric mesoporous separator elements for laminated lithium-ion rechargeable batteries
JPH09306462A (en) Battery separator
JP4135198B2 (en) Lithium battery manufacturing method
JPH1012216A (en) High polymer solid electrolyte battery
JP4291901B2 (en) Organic electrolyte battery
JP3108186B2 (en) Solid electrolyte battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees