JPH063381A - Adjusting device for power measuring instrument - Google Patents

Adjusting device for power measuring instrument

Info

Publication number
JPH063381A
JPH063381A JP4162827A JP16282792A JPH063381A JP H063381 A JPH063381 A JP H063381A JP 4162827 A JP4162827 A JP 4162827A JP 16282792 A JP16282792 A JP 16282792A JP H063381 A JPH063381 A JP H063381A
Authority
JP
Japan
Prior art keywords
power
input
power meter
phase
phase error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4162827A
Other languages
Japanese (ja)
Other versions
JP3060723B2 (en
Inventor
Hidetoshi Nagura
英俊 名倉
Masaaki Saijo
正晃 西條
Toshiharu Sugiyama
俊治 杉山
Kenji Fujino
健治 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP4162827A priority Critical patent/JP3060723B2/en
Publication of JPH063381A publication Critical patent/JPH063381A/en
Application granted granted Critical
Publication of JP3060723B2 publication Critical patent/JP3060723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To achieve an adjusting device for measuring instruments for power which dispenses with reading of much data and reduces time for adjusting the measuring instrument for power by reducing the number of measuring instruments including a low-distortion sinusoidal wave generator. CONSTITUTION:The title device for compensating the phase error of a measuring instrument by a compensation function stored in a storage element of the measuring instrument for power applies three types of sinusoidal waveform signals to a measuring instrument 50 for power successively while shifting the phase difference between voltage input and current input by 90 degrees each for a power supply 9, a signal source 6, a phase shifter 7, a voltmeter 8, a writer 13, and sinusoidal wave signals with two types of input frequencies, thus calculating the phase error between the voltage input and the current input according to a wattage operation output including phase error characteristics. A means for calculating the compensation coefficient of compensation function which is an equation of the first degree of input frequency from the phase error and two types of input frequencies and for storing the compensation coefficient of the calculated compensation function in the storage element of the measuring instrument for power is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディジタル技術を用い
た電力用計器に関し、特に入力トランスで生じる入力電
圧と入力電流の位相誤差を補正する電力用計器調整装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power meter using digital technology, and more particularly to a power meter adjusting device for correcting a phase error between an input voltage and an input current generated in an input transformer.

【0002】[0002]

【従来の技術】従来例の構成図を図6に示す。図6
(A)はアナログ回路のみによって構成された電力用計
器であり、図6(B)は演算部分にディジタル技術を用
いた電力用計器である。図6(A)において、被測定信
号線は高圧、大電流の電源線である場合が多く、入力信
号はトランス1aにより絶縁、降圧されてアナログ演算
回路2に入力される。アナログ演算回路2の出力は表示
手段3aにより電力値が表示される。一方、図6(B)
において、入力信号はトランス1bにより絶縁、降圧さ
れてA/D変換器4a及び4bに入力されてディジタル
値に変換される。A/D変換器4a及び4bの出力はプ
ログラマブルなディジタル演算器5に入力される。ディ
ジタル演算器5は演算結果をPWM(Pulse Width Modu
lation)信号等の信号に変換したのち表示手段3bに送
り電力値、電圧値、電流実効値、無効電力、皮相電力、
位相角、力率、周波数等を表示する。
2. Description of the Related Art FIG. 6 shows a block diagram of a conventional example. Figure 6
FIG. 6A is a power meter configured only with an analog circuit, and FIG. 6B is a power meter using a digital technique in the calculation part. In FIG. 6A, the signal line to be measured is often a high-voltage, large-current power supply line, and the input signal is insulated and stepped down by the transformer 1a and input to the analog arithmetic circuit 2. As for the output of the analog arithmetic circuit 2, the power value is displayed by the display means 3a. On the other hand, FIG. 6 (B)
In, the input signal is insulated and stepped down by the transformer 1b, input to the A / D converters 4a and 4b, and converted into a digital value. The outputs of the A / D converters 4a and 4b are input to the programmable digital calculator 5. The digital arithmetic unit 5 outputs the calculation result to the PWM (Pulse Width Modu
lation) After being converted into a signal such as a signal, it is sent to the display means 3b, and a power value, a voltage value, an effective current value, a reactive power, an apparent power,
Displays the phase angle, power factor, frequency, etc.

【0003】ここで、前述のトランス1a及び1bは、
1次側入力と2次側出力の間において位相進み要素とし
て働き、また、電圧変換と電流変換とでは位相の進み方
が異なるので入力電圧と入力電流間に位相誤差が生じ
る。さらに、この位相誤差は入力周波数の関数であり、
この位相誤差が電力用計器全体の精度を低下させる要因
となる。
Here, the above-mentioned transformers 1a and 1b are
It acts as a phase lead element between the primary side input and the secondary side output, and since the phase advance differs between voltage conversion and current conversion, a phase error occurs between the input voltage and the input current. Furthermore, this phase error is a function of the input frequency,
This phase error becomes a factor that reduces the accuracy of the entire power meter.

【0004】図6(A)に示すアナログ回路による電力
用計器において、位相誤差の補正を正確に行うには複雑
な回路及び多大な調整工数が必要となり、このため補正
機能をもたない電力用計器が大部分である。一方、図6
(B)に示すディジタル技術を用いた電力用計器におい
ては、内部プログラムによって回路動作を規定できるよ
うになり、位相誤差を補正関数によって補正することも
可能である。
In the power meter using the analog circuit shown in FIG. 6A, a complicated circuit and a great amount of adjustment man-hours are required to accurately correct the phase error. Therefore, the power meter without the correction function is required. Most instruments. On the other hand, FIG.
In the power meter using the digital technique shown in (B), the circuit operation can be defined by the internal program, and the phase error can be corrected by the correction function.

【0005】位相誤差を補正関数によって補正する方法
としては、特願平4−51411号に係る電力用計器調
整方法がある。この方法では低歪の正弦波を入力し、A
/D変換器からのディジタル出力をシリアルデータとし
て直接取り出し、最小二乗法で入力波形を推定し、この
推定した波形を補正するように補正係数を求めている。
As a method of correcting the phase error with a correction function, there is a power meter adjusting method according to Japanese Patent Application No. 4-51411. In this method, a low distortion sine wave is input and A
The digital output from the / D converter is directly taken out as serial data, the input waveform is estimated by the least square method, and the correction coefficient is calculated so as to correct the estimated waveform.

【0006】[0006]

【発明が解決しようとする課題】しかし、特願平4−5
1411号に係る電力用計器調整方法では、入力波形を
高精度で推定するための低歪正弦波発生器や前記シリア
ルデータを取り込むためのインターフェイスが必要とな
る。また、最小二乗法で入力波形を高精度で推定するた
めには多くのデータの取り込みが必要であり、また演算
量が膨大であるため、この取り込み時間及び取り込んだ
データの演算時間が長くなり、電力用計器の調整時間が
長くなってしまう。従って本発明の目的は、低歪正弦波
発生器等の測定機器数を減少させ、多くのデータの取り
込み処理が不要で、電力用計器の調整時間が短い電力用
計器調整装置の実現にある。
However, Japanese Patent Application No. 4-5.
The power meter adjusting method according to No. 1411 requires a low distortion sine wave generator for estimating the input waveform with high accuracy and an interface for taking in the serial data. Further, in order to estimate the input waveform with high accuracy by the least squares method, it is necessary to import a large amount of data, and since the amount of calculation is huge, this acquisition time and the calculation time of the acquired data become long, Adjustment time of the power meter becomes long. Therefore, an object of the present invention is to reduce the number of measuring instruments such as a low-distortion sine wave generator and the like, and to realize an electric power meter adjusting device in which a large amount of data acquisition processing is unnecessary and the electric power meter adjusting time is short.

【0007】[0007]

【課題を解決するための手段】このような目的を達成す
るために、本発明では、電力用計器の記憶素子に格納さ
れている補正関数により計器の位相誤差を補正する電力
用計器調整装置において、前記電力用計器に電源電圧を
供給する電源と、前記電力用計器の電圧入力端子に任意
の入力周波数の正弦波信号を印加する信号源と、この信
号源の正弦波信号の位相をずらして前記電力用計器の電
流入力端子に印加する移相器と、前記電力用計器の電力
値演算出力を測定する電圧計と、前記電力用計器の記憶
素子に前記補正係数を書き込む書込み器と、前記信号源
を制御して2種類の入力周波数の正弦波信号を前記電力
用計器に印加し、前記移相器を制御して前記2種類の入
力周波数の正弦波信号毎に電圧入力と電流入力との位相
差を90°ずつずらして3種類の正弦波信号を順次前記
電力用計器に印加し、前記電圧計で測定した各入力にお
ける前記電力用計器の位相誤差特性を含む電力値演算出
力を取り込み、この電力値演算出力から電圧入力と電流
入力との位相誤差を演算し、この位相誤差と前記2種類
の入力周波数とから入力周波数の1次式である補正関数
の補正係数を演算し、前記書込み器を制御して演算され
た補正関数の補正係数を前記電力用計器の記憶素子に格
納する演算制御手段とを備えたことを特徴とするもので
ある。
In order to achieve such an object, the present invention provides a power meter adjusting device for correcting a phase error of a meter by a correction function stored in a storage element of the power meter. , A power supply for supplying a power supply voltage to the power meter, a signal source for applying a sine wave signal of an arbitrary input frequency to a voltage input terminal of the power meter, and a phase shift of the sine wave signal of the signal source. A phase shifter applied to a current input terminal of the power meter, a voltmeter for measuring a power value calculation output of the power meter, a writer for writing the correction coefficient in a storage element of the power meter, and A signal source is controlled to apply sinusoidal signals of two types of input frequencies to the power meter, and a phase shifter is controlled to input a voltage input and a current input for each sinusoidal signal of the two types of input frequencies. Phase difference of 90 degrees Then, three kinds of sine wave signals are sequentially applied to the power meter, and the power value calculation output including the phase error characteristic of the power meter at each input measured by the voltmeter is taken in. From this power value calculation output The phase error between the voltage input and the current input is calculated, and the correction coefficient of the correction function, which is a linear expression of the input frequency, is calculated from the phase error and the two types of input frequencies, and the writer is controlled to perform the calculation. Arithmetic control means for storing the correction coefficient of the corrected correction function in the storage element of the power meter.

【0008】[0008]

【作用】電力用計器調整装置で2種類の周波数に対し、
位相差の異なる3点の測定出力のみにより位相誤差補正
関数の補正係数を求めることにより、測定機器の数が減
少し、多くのデータの取り込み処理が不要となり、電力
用計器の調整時間が短くなる。
[Function] With the power meter adjusting device for two types of frequencies,
By obtaining the correction coefficient of the phase error correction function only from the measurement outputs of three points with different phase differences, the number of measuring devices is reduced, the process of taking in a lot of data is unnecessary, and the adjustment time of the power meter is shortened. .

【0009】[0009]

【実施例】以下本発明を図面を用いて詳細に説明する。
図1は本発明に係る電力用計器調整装置の一実施例を示
す構成ブロック図である。6は電力用計器50の電圧入
力端子に正弦波を供給する信号源、7は信号源6の位相
を変化させ、電力用計器50の電流入力端子に供給する
移相器、8は電力用計器50の電力値演算出力信号10
0を検出する電圧計、9は電力用計器50に供給するた
めの電源、10は信号源6、その他測定器を制御する演
算制御手段であるワークステーションである。また、電
力用計器50は補正関数の補正係数を格納する記憶素子
11、入力信号をアナログ・ディジタル変換し、演算し
て表示若しくは出力を制御するASIC(Application
specific integrated circuit :以下ASIC回路と呼
ぶ)回路12から構成されている。13は記憶素子11
に補正関数の補正係数を書き込むための書込み器であ
る。ここで、ワークステーション10は多くの演算処理
を行うわけではないので、低速なワークステーションで
十分である。
The present invention will be described in detail below with reference to the drawings.
FIG. 1 is a configuration block diagram showing an embodiment of a power meter adjusting device according to the present invention. 6 is a signal source that supplies a sine wave to the voltage input terminal of the power meter 50, 7 is a phase shifter that changes the phase of the signal source 6 and supplies the current input terminal of the power meter 50, and 8 is a power meter. 50 power value calculation output signal 10
A voltmeter for detecting 0, 9 is a power source for supplying the power meter 50, 10 is a signal source 6, and a work station which is an arithmetic control unit for controlling the other measuring instruments. In addition, the power meter 50 is a storage element 11 that stores a correction coefficient of a correction function, and an ASIC (Application) that performs analog / digital conversion of an input signal and performs calculation to control display or output.
specific integrated circuit: hereinafter referred to as ASIC circuit). 13 is a memory element 11
It is a writer for writing the correction coefficient of the correction function to. Here, since the workstation 10 does not perform much arithmetic processing, a slow workstation is sufficient.

【0010】電力用計器50はASIC回路12内にA
/D変換器、マイクロプロセッサ等を有する。通常動作
においては、取り込んだ電圧及び電流をA/D変換した
後、記憶素子11に格納されている補正関数の補正係数
により補正し、電力等の演算して結果を出力する。
The power meter 50 has an A
It has a / D converter, a microprocessor, and the like. In the normal operation, after the voltage and current that have been taken in are A / D converted, they are corrected by the correction coefficient of the correction function stored in the storage element 11, the power is calculated, and the result is output.

【0011】図1の動作を図2のフローチャートを用い
て説明する。ステップとして電力用計器50を通常動
作状態にする。ステップとしてワークステーション7
は電力用計器50の電流及び電圧入力端子に正弦波を印
加する。ステップとして信号源6により周波数を変化
させ、移相器7により電力用計器50の電圧入力端子に
印加される正弦波に対し、電流入力端子に印加される正
弦波の位相を変化させる。ステップとしてこの状態で
の電力用計器50の電力値演算出力信号100を電圧計
8で測定する。ステップとして2種類の周波数につい
てそれぞれ位相差”−90°”、”0°”、”+90
°”の単相電力出力の測定を終了したかを確認する。も
し、終了していなければステップ、ステップを繰り
返す。ステップとして測定した6種類のデータから2
種類の周波数における位相誤差を求める。ステップと
して2種類の周波数とその周波数における位相誤差から
補正係数を求め、求められた補正関数の係数を書込み器
13によって電力用計器50の記憶素子11に書き込
む。
The operation of FIG. 1 will be described with reference to the flowchart of FIG. As a step, the power meter 50 is brought into a normal operation state. Workstation 7 as a step
Applies a sine wave to the current and voltage input terminals of power meter 50. As a step, the frequency is changed by the signal source 6, and the phase shifter 7 changes the phase of the sine wave applied to the current input terminal with respect to the sine wave applied to the voltage input terminal of the power meter 50. As a step, the voltmeter 8 measures the power value calculation output signal 100 of the power meter 50 in this state. As a step, the phase difference for each of the two frequencies is "-90 °", "0 °", "+90".
Check if the measurement of the single-phase power output of ° ”has been completed. If not completed, repeat steps and steps. 2 from 6 types of data measured as steps
Find the phase error at different frequencies. As a step, a correction coefficient is calculated from two types of frequencies and a phase error at the frequency, and the coefficient of the calculated correction function is written in the storage element 11 of the power meter 50 by the writer 13.

【0012】さらに、この補正関数について図3及び図
4の特性曲線図を用いて説明する。図3は電圧若しくは
電流の時間変化を示す特性曲線図である。図3中”イ”
は実際に取り込んだ電圧若しくは電流波形、”ロ”は電
圧入力と電流入力間の位相誤差がない場合の電圧若しく
は電流波形である。また、図3中”ニ”は電圧入力と電
流入力間の位相誤差”ΔΦ”、”ハ”はASIC回路1
2内A/D変換器の1サンプリング周期の位相相当分”
Φsampling”である。
Further, this correction function will be described with reference to the characteristic curve diagrams of FIGS. FIG. 3 is a characteristic curve diagram showing a time change of voltage or current. "A" in Figure 3
Is a voltage or current waveform actually taken in, and "b" is a voltage or current waveform when there is no phase error between the voltage input and the current input. In FIG. 3, “D” is a phase error “ΔΦ” between the voltage input and the current input, and “C” is the ASIC circuit 1.
Equivalent to the phase of one sampling cycle of A / D converter in 2 "
Φ sampling ”.

【0013】ここで、単相電力は電圧入力と電流入力間
の位相誤差”ΔΦ”により影響を受けるわけであるか
ら、電圧入力の位相を補正して電流入力の位相に合わせ
るか、電流入力の位相を補正して電圧入力の位相に合わ
せるかして位相誤差”ΔΦ”をゼロにすればよい。即
ち、電圧入力若しくは電流入力のn番目のサンプリング
・データを”S(n)”、その1つ前のデータ、即ち
(n−1)番目のサンプリング・データを”S(n−
1)”とした場合、補正されたn番目のサンプリング・
データ”Scomp(n)”は直線補間により以下のように
求まる。 Scomp(n)=S(n)−[{S(n)−S(n−1)}/Φsampling]・ΔΦ =ΔΦ/Φsampling・S(n−1) +(1−ΔΦ/Φsampling)・S(n) (1)
Since the single-phase power is affected by the phase error "ΔΦ" between the voltage input and the current input, the phase of the voltage input is corrected to match the phase of the current input, or the The phase error “ΔΦ” may be set to zero by correcting the phase and matching it with the phase of the voltage input. That is, the nth sampling data of the voltage input or the current input is “S (n)”, and the immediately preceding data, that is, the (n−1) th sampling data is “S (n−).
1) ”, the corrected nth sampling
The data "S comp (n)" is obtained by linear interpolation as follows. S comp (n) = S (n)-[{S (n) -S (n-1)} / Φ sampling ] ・ ΔΦ = ΔΦ / Φ sampling・ S (n-1) + (1-ΔΦ / Φ sampling ) ・ S (n) (1)

【0014】また、位相誤差”ΔΦ”は移相器7による
位相差”−90°”、”0°”及び”+90°”の単相
電力出力から求まる。図4は移相器7による位相差と単
相電力の関係を示す特性曲線図である。図4中”イ”は
位相誤差が”0”の場合の特性、”ロ”は”ハ”に示す
位相誤差”ΔΦ”がある場合の特性である。ここで、図
4中”ニ”、”ホ”及び”ヘ”はそれぞれ移相器7によ
る位相差を”−90°”、”0°”及び”+90°”と
した時の単相電力出力”P”である。
Further, the phase error "ΔΦ" is obtained from the single phase power output of the phase difference "-90 °", "0 °" and "+ 90 °" by the phase shifter 7. FIG. 4 is a characteristic curve diagram showing the relationship between the phase difference by the phase shifter 7 and the single-phase power. In FIG. 4, “A” is the characteristic when the phase error is “0”, and “B” is the characteristic when there is the phase error “ΔΦ” shown in “C”. Here, “d”, “e”, and “f” in FIG. 4 are single-phase power outputs when the phase difference by the phase shifter 7 is “−90 °”, “0 °”, and “+ 90 °”, respectively. It is "P".

【0015】移相器7による位相差を”Φ”、電圧入力
値及び電流入力値をそれぞれ”V0”、”I0 ”とした
場合、単相電力出力”P(Φ)”は以下の式で表され
る。 P(Φ)=(V0・I0/2)cos(Φ+ΔΦ) (2) 移相器7による位相差は”−90°”、”0°”及び”
+90°”であるから、式(2)は、 P(−90°)= (V0・I0/2)cos(−90°+ΔΦ) =−(V0・I0/2)sinΔΦ (3) P( 0°)= (V0・I0/2)cos(0°+ΔΦ) = (V0・I0/2)cos(ΔΦ) (4) P( 90°)= (V0・I0/2)cos(90°+ΔΦ) = (V0・I0/2)sinΔΦ (5) となる。
When the phase difference due to the phase shifter 7 is "Φ" and the voltage input value and the current input value are "V 0 " and "I 0 ", respectively, the single-phase power output "P (Φ)" is as follows. It is represented by a formula. P (Φ) = phase difference due to (V 0 · I 0/2 ) cos (Φ + ΔΦ) (2) phase shifter 7 "-90 °", "0 °" and "
Since a + 90 ° ", the formula (2) is, P (-90 °) = ( V 0 · I 0/2) cos (-90 ° + ΔΦ) = - (V 0 · I 0/2) sinΔΦ (3 ) P (0 °) = ( V 0 · I 0/2) cos (0 ° + ΔΦ) = (V 0 · I 0/2) cos (ΔΦ) (4) P (90 °) = (V 0 · I 0/2) cos (90 ° + ΔΦ) = become (V 0 · I 0/2 ) sinΔΦ (5).

【0016】式(3)〜(5)より、位相誤差”ΔΦ”
は、 ΔΦ=tan-1{−P(−90°)/P(0°)} =tan-1{P(90°)/P(0°)} (6) で求まる。しかし、前述のように位相誤差”ΔΦ”は入
力波形の周波数の関数であるので、式(1)における”
ΔΦ/Φsampling”を”δ”として、この”δ”を以下
のように周波数の1次式とする。 δ=Gf+H (7) ここで、”G”及び”H”は補正係数、”f”は入力波
形の周波数である。
From equations (3) to (5), the phase error "ΔΦ"
Can be obtained by ΔΦ = tan −1 {−P (−90 °) / P (0 °)} = tan −1 {P (90 °) / P (0 °)} (6). However, since the phase error “ΔΦ” is a function of the frequency of the input waveform as described above,
ΔΦ / Φ sampling is “δ”, and this “δ” is a linear expression of the frequency as follows: δ = Gf + H (7) where “G” and “H” are correction coefficients and “f” "Is the frequency of the input waveform.

【0017】従って、2種類の周波数”f1 ”、”f
2 ”について式(6)から2種類の位相誤差”Δ
Φ1 ”、”ΔΦ2 ”を求め、即ち”δ1 ”、”δ2 ”を
求めて、式(7)に代入することにより得られる以下の
連立方程式、 δ1=Gf1+H δ2=Gf2+H を解くことにより、補正係数”G”及び”H”が以下の
ように求まる。 G=(δ2−δ1)/(f2−f1) H=(f2・δ1−f1δ2)/(f2−f1)
Therefore, the two types of frequencies "f 1 " and "f
For 2 ", two kinds of phase error" Δ
Φ 1 ″, “ΔΦ 2 ”, that is, “δ 1 ”, “δ 2 ”, are obtained, and the following simultaneous equations are obtained by substituting into equation (7): δ 1 = Gf 1 + H δ 2 = By solving Gf 2 + H, the correction coefficients “G” and “H” are obtained as follows: G = (δ 2 −δ 1 ) / (f 2 −f 1 ) H = (f 2 · δ 1 − f 1 δ 2 ) / (f 2 −f 1 )

【0018】図5(A)及び(B)は上述の電力用計器
調整装置で調整した電力用計器のシミュレーション結果
を示す特性曲線図である。図5(A)は50〜60Hz
の範囲で、(B)は40〜70Hzの範囲でそれぞれ補
正係数を求め、位相誤差”ΔΦ≦0.36°”の単相電
力計で電圧入力及び電流入力の位相差”Φ=+90°”
の場合の単相電力計の読出誤差を示している。但し、図
5中”イ”及び”ハ”は補正をしない場合、”ロ”及
び”ニ”は補正をした場合をそれぞれ示している。ここ
で、図5(A)は50〜60Hzの範囲で読出誤差が約
1/1000程度に、(B)は40〜70Hzの範囲で
読出誤差が約1/4程度に改善されている。
FIGS. 5 (A) and 5 (B) are characteristic curve diagrams showing the simulation results of the power meter adjusted by the power meter adjusting device described above. FIG. 5A shows 50 to 60 Hz.
In the range of (B), the correction coefficient is calculated in the range of 40 to 70 Hz, and the phase difference between the voltage input and the current input is “Φ = + 90 °” with the single-phase power meter with the phase error “ΔΦ ≦ 0.36 °”.
The reading error of the single-phase power meter in the case of is shown. However, in FIG. 5, “a” and “c” indicate the case where no correction is performed, and “b” and “d” indicate the case where correction is performed, respectively. Here, in FIG. 5A, the read error is improved to about 1/1000 in the range of 50 to 60 Hz, and in FIG. 5B, the read error is improved to about 1/4 in the range of 40 to 70 Hz.

【0019】この結果、従来の調整方法で用いていた低
歪正弦波発生器、インターフェイス等が不要となり、取
り込むデータも6種類となり、”tan-1 ”及び数回の四
則演算を行うだけですむので、取り込み時間や演算時間
も短縮される。また、一般に高価である低歪正弦波発生
器や高速ワークステーションを使用しにくい製造ライン
や客先等での再調整等に際して、調整システムの構築が
容易になる。
As a result, the low-distortion sine wave generator and interface used in the conventional adjustment method are no longer required, and the data to be captured becomes 6 types, and only "tan -1 " and several arithmetic operations are required. Therefore, the acquisition time and the calculation time are also shortened. In addition, the adjustment system can be easily constructed when readjustment is performed on a production line or a customer where it is difficult to use a low-distortion sine wave generator or a high-speed workstation, which are generally expensive.

【0020】なお、式(6)において位相誤差”ΔΦ”
を求める際には、演算精度を要求しない場合は式(6)
の一方の値を、演算精度を要求する場合は両方の平均値
を用いる。また、移相器7による位相差は”−90
°”、”0°”及び”+90°”ではなく、位相差を”
0°”、”+90°”及び”+180°”等としてもよ
い。
In equation (6), the phase error "ΔΦ"
(6) when the calculation accuracy is not required when calculating
If one of the two values is required, the average value of both values is used. In addition, the phase difference due to the phase shifter 7 is "-90.
“”, “0 °” and “+ 90 °”, not the phase difference
It may be 0 ° "," + 90 ° "," + 180 ° ", or the like.

【0021】また、位相誤差の補正と共に非直線性補正
を行う場合は、本発明に係る電力用計器調整装置に、前
述の特願平4−51411号に係る電力用計器調整方法
を組み合わせることにより実現することができる。
Further, in the case of performing the non-linearity correction together with the phase error correction, the power meter adjusting apparatus according to the present invention is combined with the power meter adjusting method according to Japanese Patent Application No. 4-51411. Can be realized.

【0022】[0022]

【発明の効果】以上説明したことから明らかなように、
本発明によれば次のような効果がある。2種類の周波数
に対し、位相差の異なる3点の測定出力のみにより位相
誤差補正関数の補正係数を求めることにより、従来例の
ような低歪正弦波発生器等の測定機器の数が減少し、デ
ータの取り込み処理を不要となり、電力用計器の調整時
間が短い電力用計器調整装置が実現できる。
As is apparent from the above description,
The present invention has the following effects. The number of measuring devices such as low distortion sine wave generators as in the conventional example is reduced by obtaining the correction coefficient of the phase error correction function by using only the measurement outputs of three points with different phase differences for two kinds of frequencies. As a result, it is possible to realize a power meter adjustment device that does not require data acquisition processing and has a short time for adjusting the power meter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電力用計器調整装置の一実施例を
示す構成ブロック図である。
FIG. 1 is a configuration block diagram showing an embodiment of an electric power meter adjusting device according to the present invention.

【図2】図1の装置の動作を説明するフローチャートで
ある。
FIG. 2 is a flowchart illustrating the operation of the device of FIG.

【図3】電圧若しくは電流の時間変化を示す特性曲線図
である。
FIG. 3 is a characteristic curve diagram showing a time change of voltage or current.

【図4】位相差と単相電力の関係を示す特性曲線図であ
る。
FIG. 4 is a characteristic curve diagram showing a relationship between a phase difference and single-phase power.

【図5】図1の実施例で調整した電力用計器のシミュレ
ーション結果を示す特性曲線図である。
5 is a characteristic curve diagram showing a simulation result of the power meter adjusted in the example of FIG.

【図6】従来の電力用計器の一例を示す構成ブロック図
である。
FIG. 6 is a configuration block diagram showing an example of a conventional power meter.

【符号の説明】[Explanation of symbols]

1a,1b トランス 2 アナログ演算回路 3a,3b 表示手段 4a,4b A/D変換器 5 ディジタル演算器 6 信号源 7 移相器 8 電圧計 9 電源 10 ワークステーション 11 記憶素子 12 ASIC回路 13 書込み器 50 電力用計器 100 電力値演算出力信号 1a, 1b Transformer 2 Analog operation circuit 3a, 3b Display means 4a, 4b A / D converter 5 Digital operation device 6 Signal source 7 Phase shifter 8 Voltmeter 9 Power supply 10 Workstation 11 Memory element 12 ASIC circuit 13 Writer 50 Power meter 100 Power value calculation output signal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤野 健治 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Fujino 2-9-32 Nakamachi 2-chome, Musashino-shi, Tokyo Yokogawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電力用計器の記憶素子に格納されている補
正関数により計器の位相誤差を補正する電力用計器調整
装置において、 前記電力用計器に電源電圧を供給する電源と、 前記電力用計器の電圧入力端子に任意の入力周波数の正
弦波信号を印加する信号源と、 この信号源の正弦波信号の位相をずらして前記電力用計
器の電流入力端子に印加する移相器と、 前記電力用計器の電力値演算出力を測定する電圧計と、 前記電力用計器の記憶素子に前記補正係数を書き込む書
込み器と、 前記信号源を制御して2種類の入力周波数の正弦波信号
を前記電力用計器に印加し、前記移相器を制御して前記
2種類の入力周波数の正弦波信号毎に電圧入力と電流入
力との位相差を90°ずつずらして3種類の正弦波信号
を順次前記電力用計器に印加し、前記電圧計で測定した
各入力における前記電力用計器の位相誤差特性を含む電
力値演算出力を取り込み、この電力値演算出力から電圧
入力と電流入力との位相誤差を演算し、この位相誤差と
前記2種類の入力周波数とから入力周波数の1次式であ
る補正関数の補正係数を演算し、前記書込み器を制御し
て演算された補正関数の補正係数を前記電力用計器の記
憶素子に格納する演算制御手段とを備えたことを特徴と
する電力用計器調整装置。
1. A power meter adjusting device for correcting a phase error of a meter by a correction function stored in a storage element of the power meter, comprising: a power supply for supplying a power supply voltage to the power meter; and the power meter. A signal source for applying a sine wave signal having an arbitrary input frequency to the voltage input terminal of the power source, a phase shifter for shifting the phase of the sine wave signal of the signal source and applying the current input terminal of the power meter, and the power Voltmeter that measures the power value calculation output of the power meter, a writer that writes the correction coefficient in the storage element of the power meter, and a sine wave signal having two input frequencies by controlling the signal source. Applied to a measuring instrument and controlling the phase shifter to shift the phase difference between the voltage input and the current input by 90 ° for each of the sine wave signals of the two types of input frequencies, and sequentially output the three types of sine wave signals. Apply to the power meter, before The power value calculation output including the phase error characteristic of the power meter at each input measured by the voltmeter is taken in, and the phase error between the voltage input and the current input is calculated from this power value calculation output. An operation of calculating a correction coefficient of a correction function, which is a linear expression of the input frequency, from the input frequency of each type, and controlling the writer to store the calculated correction coefficient of the correction function in a storage element of the power meter. An electric power meter adjusting device, comprising: a control means.
JP4162827A 1992-06-22 1992-06-22 Meter adjustment device for electric power Expired - Fee Related JP3060723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4162827A JP3060723B2 (en) 1992-06-22 1992-06-22 Meter adjustment device for electric power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4162827A JP3060723B2 (en) 1992-06-22 1992-06-22 Meter adjustment device for electric power

Publications (2)

Publication Number Publication Date
JPH063381A true JPH063381A (en) 1994-01-11
JP3060723B2 JP3060723B2 (en) 2000-07-10

Family

ID=15761993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4162827A Expired - Fee Related JP3060723B2 (en) 1992-06-22 1992-06-22 Meter adjustment device for electric power

Country Status (1)

Country Link
JP (1) JP3060723B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194703A (en) * 2005-01-12 2006-07-27 Ohkura Electric Co Ltd Ac power measurement apparatus and program
JP2010127656A (en) * 2008-11-25 2010-06-10 Panasonic Electric Works Denro Co Ltd Watt-hour meter
KR101471969B1 (en) * 2014-09-29 2014-12-11 (주)참네트 System and method for monitoring power consumption in real time
JP2020073904A (en) * 2016-06-14 2020-05-14 アナログ・デヴァイシズ・グローバル・アンリミテッド・カンパニー Method and apparatus for learning phase error or timing delay within current transducer, and power measurement apparatus including current transducer error correction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194703A (en) * 2005-01-12 2006-07-27 Ohkura Electric Co Ltd Ac power measurement apparatus and program
JP2010127656A (en) * 2008-11-25 2010-06-10 Panasonic Electric Works Denro Co Ltd Watt-hour meter
KR101471969B1 (en) * 2014-09-29 2014-12-11 (주)참네트 System and method for monitoring power consumption in real time
JP2020073904A (en) * 2016-06-14 2020-05-14 アナログ・デヴァイシズ・グローバル・アンリミテッド・カンパニー Method and apparatus for learning phase error or timing delay within current transducer, and power measurement apparatus including current transducer error correction
JP2021121802A (en) * 2016-06-14 2021-08-26 アナログ・デヴァイシズ・グローバル・アンリミテッド・カンパニー Method and apparatus for learning phase error or timing delay within current transducer, and power measurement apparatus including current transducer error correction

Also Published As

Publication number Publication date
JP3060723B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
US6911813B2 (en) Methods and apparatus for phase compensation in electronic energy meters
US20110254721A1 (en) Method for Compensating a Frequency Characteristic of an Arbitrary Waveform Generator
US5508617A (en) Electric power measuring apparatus and method
JP3060723B2 (en) Meter adjustment device for electric power
JP3317557B2 (en) Transmission line constant measuring device and method for improving measurement accuracy
EP0430256B1 (en) Method and equipment for cablibrating output levels of waveform analyzing apparatus
US20050288884A1 (en) Meter apparatus and method for phase angle compensation employing linear interpolation of digital signals
JP2982612B2 (en) PQ calculation correction method
JPH10148648A (en) Electric meter
JPH05180878A (en) Adjusting method for electric power measuring instrument
Gubisch et al. Power calibrator using sampled feedback for current and voltage
JP3265681B2 (en) Correction method for three-phase AC measurement
JPH04131769A (en) Sampling type electric power meter
Zupunski et al. Power-factor calibrator
KR100287917B1 (en) Method for interpolating rated voltage of the measuring instrument for power
JP3474914B2 (en) Automatic balancing device
Ramos et al. A new calibration method for current and voltage sensors used in power quality measurements
JP3013956B2 (en) Composite transducer for measuring various electric quantities and its error correction method
JP2598889Y2 (en) Three-phase AC measuring device
JPH05504616A (en) sampling circuit
JP3863097B2 (en) Carrier leak measurement method for double balanced mixer
JPH11101833A (en) Turn ratio measuring method and its apparatus
JPH0221714A (en) Sampling frequency converter
CN117148253A (en) Error measurement method and system for low-frequency transformer
JPS63246682A (en) Transfer function measuring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees