JPH06337434A - Spatial light modulating element - Google Patents

Spatial light modulating element

Info

Publication number
JPH06337434A
JPH06337434A JP15141293A JP15141293A JPH06337434A JP H06337434 A JPH06337434 A JP H06337434A JP 15141293 A JP15141293 A JP 15141293A JP 15141293 A JP15141293 A JP 15141293A JP H06337434 A JPH06337434 A JP H06337434A
Authority
JP
Japan
Prior art keywords
transparent substrate
thermal expansion
intermediate layer
photoconductor
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15141293A
Other languages
Japanese (ja)
Inventor
Yasuyuki Natsubori
泰行 夏堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP15141293A priority Critical patent/JPH06337434A/en
Publication of JPH06337434A publication Critical patent/JPH06337434A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain excellent display performance by reducing warping of a transparent substrate caused by a temperature change even if coefficients of thermal expansion of the transparent substrate and a light conductor of a spatial light modulating element are different from each other. CONSTITUTION:When a coefficient of thermal expansion of a light conductor 16 is small to a transparent substrate 20, the light conductor 16 side warps in a projecting shape as shown in (A) according to a temperature change. When an intermediate layer 50 having a coefficient of thermal expansion larger than that is formed on the transparent substrate 20, the intermediate layer 50 side warps this time in a recessed shape to the contrary as shown in (B). In this way, the relationship between a recess and a projection is reversed in response to the relationship of dimensions of the coefficient of thermal expansion. Thereby, when the intermediate layer 50 is formed between the transparent substrate 20 and the light conductor 16 as shown in (C), warping in the projecting direction of (A) and warping in the recessing direction of (B) are cancelled each other, and as a result, the warping is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光導電体と光変調体を
有し、動画や静止画の並列処理やその表示,記憶などの
光情報処理に用いられる空間光変調素子にかかり、更に
具体的には熱的変形に対する改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spatial light modulator having a photoconductor and a light modulator and used for optical information processing such as parallel processing of moving images and still images, its display, and storage. Specifically, it relates to improvement against thermal deformation.

【0002】[0002]

【従来の技術】ビデオプロジェクタなどに使用される空
間光変調素子としては、例えば図3に示すようなものが
ある。同図において、光変調体10の書込み光入射側
(矢印FA側)には、誘電体ミラー12,遮光層14,
光導電体16,透明電極18,透明基板20が順に積層
されている。また、光変調体10の読出し光入射側(矢
印FB参照)には、透明電極22,透明基板24が順に
積層されている。なお、透明ガラス基板20,24に
は、いずれも外部からの光入射側に反射防止膜が必要に
応じて形成される。遮光層14も、必要に応じて設けら
れる。透明電極18,22には電源26が接続されてお
り、これから出力された駆動電圧が光変調体10や光導
電体16などに印加される構成となっている。
2. Description of the Related Art As a spatial light modulator used in a video projector or the like, there is one as shown in FIG. In the figure, a dielectric mirror 12, a light shielding layer 14, and a writing light incident side (arrow FA side) of the optical modulator 10,
The photoconductor 16, the transparent electrode 18, and the transparent substrate 20 are sequentially stacked. A transparent electrode 22 and a transparent substrate 24 are sequentially stacked on the read light incident side (see arrow FB) of the light modulator 10. An antireflection film is formed on each of the transparent glass substrates 20 and 24 on the light incident side from the outside as needed. The light shielding layer 14 is also provided as needed. A power supply 26 is connected to the transparent electrodes 18 and 22, and a driving voltage output from the power supply 26 is applied to the light modulator 10 and the photoconductor 16.

【0003】以上の各部のうち、光変調体10は、例え
ば、スペーサ28によって形成されたセル内に液晶を充
填した構成となっている。誘電体ミラー12及び透明電
極22のセル側には所要の液晶配向層(図示せず)が形
成されている。誘電体ミラー12は、例えばSiとSi
2(あるいはTiO2とSiO2)とを交互に複数回蒸
着などの手法で積層した構成となっている。また、光導
電体16としては、例えばa−Si:H(水素化アモル
ファスシリコン)やa−SiC:H(水素化アモルファ
スシリコンカーバイド)が用いられる。透明電極18,
22としては、例えばITOやSnO2などが用いられ
る。
Of the above parts, the light modulator 10 has, for example, a structure in which a cell formed by a spacer 28 is filled with liquid crystal. A required liquid crystal alignment layer (not shown) is formed on the cell side of the dielectric mirror 12 and the transparent electrode 22. The dielectric mirror 12 is made of, for example, Si and Si.
It has a structure in which O 2 (or TiO 2 and SiO 2 ) are alternately laminated a plurality of times by a method such as vapor deposition. Further, as the photoconductor 16, for example, a-Si: H (hydrogenated amorphous silicon) or a-SiC: H (hydrogenated amorphous silicon carbide) is used. Transparent electrode 18,
For example, ITO or SnO 2 is used as 22.

【0004】次に、以上のような空間光変調器の作用を
説明すると、透明電極18,22間には電源26によっ
て交流電圧が予め印加される。この印加電圧は、光変調
体10,誘電体ミラー12,遮光層14,光導電体16
のインピーダンスに応じて各層に配分される。このよう
な状態で、画像情報を含む書込み光が矢印FAのように
空間光変調器に入射すると、この書込み光は透明ガラス
基板20,透明電極18を順に透過して光導電体16に
到達する。光導電体16では、書込み光が吸収されてそ
のインピーダンスが減少するようになる。すると、その
インピーダンスの減少に対応して光変調体10に配分さ
れる駆動電圧が増大することになる。すなわち、書込み
光の強度分布に対応した電界が光変調体10に形成され
ることになる。
Next, the operation of the above spatial light modulator will be described. An AC voltage is applied in advance between the transparent electrodes 18 and 22 by a power source 26. This applied voltage is applied to the light modulator 10, the dielectric mirror 12, the light shielding layer 14, and the photoconductor 16.
It is distributed to each layer according to the impedance of. In this state, when the writing light including the image information is incident on the spatial light modulator as indicated by the arrow FA, the writing light passes through the transparent glass substrate 20 and the transparent electrode 18 in order and reaches the photoconductor 16. . The photoconductor 16 absorbs the writing light and reduces its impedance. Then, the drive voltage distributed to the optical modulator 10 increases in accordance with the decrease in the impedance. That is, an electric field corresponding to the intensity distribution of the writing light is formed in the optical modulator 10.

【0005】この状態で、読出し光が矢印FBのように
空間光変調素子に入射すると、この読出し光は透明ガラ
ス基板24,透明電極22を順に透過して光変調体10
に到達する。この読出し光は、前記液晶の複屈折などに
よって、書込み光強度分布に対応する変調を受け、更に
誘電体ミラー層12で反射されて矢印FCのように空間
光変調素子から出力される。このようにして、空間光変
調素子に書き込まれた画像情報が読み出される。読出し
光は、例えばスクリーンに投影される。空間光変調素子
を用いることによって、高輝度,高解像度の画像表示が
可能となる。特に、光変調体10として垂直配向型の液
晶を用いると、良好なコントラストの画像表示が可能と
なる。
In this state, when the read light is incident on the spatial light modulator as indicated by the arrow FB, the read light is transmitted through the transparent glass substrate 24 and the transparent electrode 22 in this order, and the light modulator 10 is read.
To reach. The read light is modulated by the birefringence of the liquid crystal or the like according to the write light intensity distribution, is further reflected by the dielectric mirror layer 12, and is output from the spatial light modulator as indicated by the arrow FC. In this way, the image information written in the spatial light modulator is read. The readout light is projected on a screen, for example. By using the spatial light modulator, it is possible to display an image with high brightness and high resolution. In particular, when a vertically aligned liquid crystal is used as the light modulator 10, it is possible to display an image with good contrast.

【0006】ところで、このような空間光変調素子の光
導電層体16に用いられるa−Si:Hなどは、通常プ
ラズマCVD法により形成される。特願平4−3355
96号特許出願には、その厚みを10〜30μm程度と
した空間光変調素子が開示されている。
By the way, a-Si: H or the like used in the photoconductive layer body 16 of such a spatial light modulator is usually formed by a plasma CVD method. Japanese Patent Application No. 4-3355
The 96 patent application discloses a spatial light modulator having a thickness of about 10 to 30 μm.

【0007】[0007]

【発明が解決しようとする課題】ところで、透明基板上
にa−Si:Hなどを10〜30μm形成すると、膜形
成時の温度が200〜250℃と高温であるため、室温
に戻ったときに透明基板20とa−Si:Hの熱膨張係
数の違いから内部応力が発生する。そして、この内部応
力によって膜形成前は平坦であった透明基板20に、膜
形成後は反りが生じるという問題点がある。このような
反りが生じると、その後に形成される光変調体10の液
晶層の厚みが不均一となり、表示性能が劣化してしま
う。
When a-Si: H or the like is formed on a transparent substrate in an amount of 10 to 30 μm, the temperature during film formation is as high as 200 to 250 ° C. Internal stress occurs due to the difference in thermal expansion coefficient between the transparent substrate 20 and a-Si: H. The internal stress causes a problem that the transparent substrate 20 that is flat before the film formation is warped after the film formation. If such a warp occurs, the thickness of the liquid crystal layer of the light modulator 10 formed thereafter becomes non-uniform, and the display performance deteriorates.

【0008】このような問題点を改良する従来技術とし
ては、 透明基板20の厚みを増す, 透明基板20として、a−Si:Hと同じ熱膨張係数
の材料を使用する, 透明基板20を、あらかじめ反らすようにする(特開
平3−261918号公報参照), という手法がある。
As a conventional technique for improving such a problem, the thickness of the transparent substrate 20 is increased. As the transparent substrate 20, a material having the same coefficient of thermal expansion as a-Si: H is used. There is a method of warping in advance (see Japanese Patent Application Laid-Open No. 3-261918).

【0009】しかしながら、及びの手法では、光導
電体の形成直後に平坦であっても、空間光変調素子とし
ての使用時に温度が変化するとやはり透明基板20に反
りが生じるようになる。また、の手法では、透明基板
20として使用できる材料の熱膨張係数が限られてしま
うため、歪のない均一な光学的特性に優れた透明基板材
料が得られないという不都合がある。
However, according to the methods (1) and (2), even if the photoconductor is flat immediately after it is formed, the transparent substrate 20 still warps when the temperature changes during use as a spatial light modulator. Further, with the method (1), the coefficient of thermal expansion of the material that can be used as the transparent substrate 20 is limited, so that there is a disadvantage that a transparent substrate material having no distortion and uniform optical characteristics cannot be obtained.

【0010】本発明は、これらの点に着目したもので、
光導電体と異なる熱膨張係数をもった透明基板上にその
光導電体を形成する場合でも、温度変動に伴う反りの発
生を低減して優れた表示性能を得ることができる空間光
変調素子を提供することを、その目的とするものであ
る。
The present invention focuses on these points,
A spatial light modulator that can obtain excellent display performance by reducing the occurrence of warpage due to temperature variation even when forming a photoconductor on a transparent substrate having a thermal expansion coefficient different from that of the photoconductor. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、透明電極付きの透明基板間に、少なくと
も光導電体と光変調体とが積層されている空間光変調素
子において、透明基板の熱膨張係数をα(SUB),光導
電体の熱膨張係数をα(PC),中間層の熱膨張係数をα
(ML)としたとき、それらが、α(PC)<α(SUB)<
α(ML)又はα(PC)>α(SUB)>α(ML)の関係を
満たす中間層を、前記透明基板と光導電体との間に形成
したことを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a transparent spatial light modulator in which at least a photoconductor and a light modulator are laminated between transparent substrates with transparent electrodes. The thermal expansion coefficient of the substrate is α (SUB), the thermal expansion coefficient of the photoconductor is α (PC), and the thermal expansion coefficient of the intermediate layer is α.
(ML), they are α (PC) <α (SUB) <
An intermediate layer satisfying the relationship of α (ML) or α (PC)> α (SUB)> α (ML) is formed between the transparent substrate and the photoconductor.

【0012】[0012]

【作用】本発明による空間光変調素子では、光導電体側
の透明基板と光導電体との間に透明中間層が設けられ
る。そして、この透明中間層の作用によって、透明基板
と光導電体の熱膨張係数の違いによる内部応力が緩和さ
れる。これにより、透明基板の反りが低減されて空間光
変調素子の表示性能が向上する。
In the spatial light modulator according to the present invention, the transparent intermediate layer is provided between the transparent substrate on the photoconductor side and the photoconductor. Then, due to the action of this transparent intermediate layer, the internal stress due to the difference in thermal expansion coefficient between the transparent substrate and the photoconductor is relaxed. Thereby, the warp of the transparent substrate is reduced and the display performance of the spatial light modulator is improved.

【0013】図1には、本発明の基本的な作用が示され
ている。なお、透明電極の厚みは500Å(0.05μ
m)〜2000Å(0.2μm)と薄く、温度変動に伴
って内部応力が発生しても透明基板に対して反りを発生
させないので、透明電極は省略されている。例えば、透
明基板20に対して光導電体16の熱膨張係数の方が小
さいとする。すると、図4(D)に示したように室温と
なったときに光導電体16側が凸となるように反る。こ
の様子は図1(A)に示されている。これに対し、透明
基板20上にそれよりも熱膨張係数が大きい中間層50
を形成したとすると、今度は逆に、中間層50側が凹と
なるように反る。この様子は図1(B)に示されてい
る。
FIG. 1 shows the basic operation of the present invention. The thickness of the transparent electrode is 500Å (0.05μ
m) to 2000 Å (0.2 μm), and does not warp the transparent substrate even if internal stress occurs due to temperature fluctuation, so the transparent electrode is omitted. For example, it is assumed that the photoconductor 16 has a smaller thermal expansion coefficient than the transparent substrate 20. Then, as shown in FIG. 4D, when the temperature reaches room temperature, the photoconductor 16 side warps so as to be convex. This state is shown in FIG. On the other hand, the intermediate layer 50 having a larger coefficient of thermal expansion than that on the transparent substrate 20.
If it is formed, this time, conversely, it warps so that the intermediate layer 50 side becomes concave. This state is shown in FIG.

【0014】このように、熱膨張係数の大小関係に対応
して温度変動時の凹凸の関係が逆になる。従って、同図
(C)に示すように、透明基板20と光導電体16との
間に中間層50を形成すると、同図(A)の凸方向の反
りと同図(B)の凹方向の反りとが丁度キャンセルされ
て、結果的に反りのない平坦な状態となる。しかも、こ
のように両者のバランスによって平坦化しているので、
例えば素子を画像投影に使用した場合のように経時的な
温度変化があっても、両者の反りがキャンセルされて素
子は良好に平坦に維持されるようになる。
As described above, the relationship of the unevenness when the temperature changes is reversed corresponding to the relationship of the coefficient of thermal expansion. Therefore, as shown in FIG. 7C, when the intermediate layer 50 is formed between the transparent substrate 20 and the photoconductor 16, the warp in the convex direction in FIG. The warp is just canceled, resulting in a flat state without warpage. Moreover, since it is flattened by the balance between the two,
For example, even if there is a change in temperature over time such as when the element is used for image projection, the warp of both elements is canceled and the element is favorably maintained flat.

【0015】なお、熱膨張係数の大小関係が上述した場
合と逆の関係になるとき、すなわち透明基板20の熱膨
張係数が光導電体16よりも小さい場合には、同図
(A)は透明基板側に凸となる。この場合は、中間層5
0として透明基板20よりも熱膨張係数が小さいものを
使用すれば、同図(B)は逆に透明基板側が凹となる。
従って、同様に両者の反りをキャンセルして平坦な素子
を得ることができる。
When the magnitude relationship of the coefficient of thermal expansion is opposite to the case described above, that is, when the coefficient of thermal expansion of the transparent substrate 20 is smaller than that of the photoconductor 16, FIG. It becomes convex on the substrate side. In this case, the intermediate layer 5
If a material having a coefficient of thermal expansion smaller than that of the transparent substrate 20 is used as 0, the transparent substrate side is concave, as shown in FIG.
Therefore, similarly, it is possible to cancel the warp of both and obtain a flat element.

【0016】[0016]

【実施例】以下、本発明による空間光変調素子の一実施
例について、図2を参照しながら詳細に説明する。な
お、上述した従来技術と同一の構成部分又は従来技術に
対応する構成部分には、同一の符号を用いることとす
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the spatial light modulator according to the present invention will be described in detail below with reference to FIG. The same reference numerals are used for the same components as those of the above-described conventional technique or components corresponding to the conventional technique.

【0017】透明基板20としては、コーニング社製の
「7059ガラス」を使用した。その熱膨張係数α(SU
B)は46×10-7/℃,基板自体の大きさは縦×横が
24mm×38mm,厚さが2mmである。他方、光導
電体16として使用するa−Si:Hの熱膨張係数α
(PC)は約35×10-7/℃である。平坦化を実現する
ための中間層50として、ショット社製の透明ガラスで
ある「BK−7ガラス」を用いた。その熱膨張係数α
(ML)は80×10-7/℃である。すなわち、熱膨張係
数は、 α(PC)<α(SUB)<α(ML) …………………………(1) の関係となっている。
As the transparent substrate 20, "7059 glass" manufactured by Corning Incorporated was used. Its thermal expansion coefficient α (SU
B) is 46 × 10 −7 / ° C., and the size of the substrate itself is 24 mm × 38 mm and the thickness is 2 mm. On the other hand, the thermal expansion coefficient α of a-Si: H used as the photoconductor 16
(PC) is about 35 × 10 -7 / ° C. As the intermediate layer 50 for realizing the flattening, "BK-7 glass", which is transparent glass manufactured by Schott, was used. Its coefficient of thermal expansion α
(ML) is 80 × 10 −7 / ° C. That is, the coefficient of thermal expansion has a relationship of α (PC) <α (SUB) <α (ML) …………………… (1).

【0018】以上のような材料を用いて、中間層50を
設けなかった場合と設けた場合のそれぞれについてサン
プルを作成し、反り具合を比較した。結果を図2及び図
4に示す。
Using the above materials, samples were prepared for the case where the intermediate layer 50 was not provided and the case where the intermediate layer 50 was provided, and the warpage was compared. The results are shown in FIGS. 2 and 4.

【0019】最初に、図4を参照しながら、中間層50
を設けない従来の場合について説明する。同図(A)に
示す透明基板20の主面上には、まず錫含有の酸化イン
ジウム(ITO)などをスパッタリング法や真空蒸着法
で形成して透明電極18を得る(同図(B)参照)。次
に、プラズマCVD法によりa−Si:Hによる光導電
体16を20μm形成する(同図(C)参照)。具体的
には、基板温度200℃,SiH4ガス15sccm,
2ガス60sccm,ガス圧力133Pa,投入電力
20Wの条件で成膜を行った。その後、温度が室温程度
になると、光導電体16と透明基板20の熱膨張係数の
違いから、同図(D)に示すように光導電体16側が凸
となるように反ってしまった。
First, referring to FIG. 4, the intermediate layer 50
A conventional case in which the above is not provided will be described. First, tin-containing indium oxide (ITO) or the like is formed on the main surface of the transparent substrate 20 shown in FIG. 7A by a sputtering method or a vacuum deposition method to obtain the transparent electrode 18 (see FIG. 9B). ). Next, the photoconductor 16 of a-Si: H is formed in a thickness of 20 μm by the plasma CVD method (see FIG. 6C). Specifically, the substrate temperature is 200 ° C., the SiH 4 gas is 15 sccm,
Film formation was performed under the conditions of H 2 gas 60 sccm, gas pressure 133 Pa, and input power 20 W. After that, when the temperature reached about room temperature, due to the difference in thermal expansion coefficient between the photoconductor 16 and the transparent substrate 20, the photoconductor 16 side was warped so as to be convex as shown in FIG.

【0020】光導電体16の形成前の平坦度は0.3μ
m以下であったが、光導電体16の形成後室温とした状
態での平坦度は、圧縮応力の発生によって2μm程度に
まで悪化した。なお、光導電体16の形成直後の200
℃の温度状態における平坦度が0.3μm以下であった
ことから、前記光導電体16の成膜条件では真応力は発
生しておらず、平坦化には熱膨張係数の差による熱応力
だけを考慮すればよいことが分った。
The flatness before forming the photoconductor 16 is 0.3 μm.
However, the flatness at room temperature after formation of the photoconductor 16 deteriorated to about 2 μm due to the generation of compressive stress. It should be noted that 200 after the photoconductor 16 was formed.
Since the flatness in the temperature state of 0 ° C. was 0.3 μm or less, no true stress was generated under the film forming conditions of the photoconductor 16, and only the thermal stress due to the difference in the thermal expansion coefficient was used for flattening. I found that you should consider.

【0021】次に、図2を参照しながら中間層50を設
けた場合について説明する。この場合は、透明基板20
(同図(A)参照)にBK−7ガラスをスパッタリング
法や真空蒸着法により形成し、中間層50を得る(同図
(A1)〜(D1)参照)。このときの中間層50の厚
さは、同図(A1)が1μm,(B1)が3μm,(C
1)が5μm,(D1)が10μmという具合に変化さ
せてサンプルを得ている。また、この中間層形成時の基
板温度は、a−Si:Hを形成するときと同じ200℃
とした。
Next, the case where the intermediate layer 50 is provided will be described with reference to FIG. In this case, the transparent substrate 20
BK-7 glass is formed by a sputtering method or a vacuum evaporation method (see (A) of the same figure) to obtain an intermediate layer 50 (see (A1) to (D1) of the same figure). At this time, the thickness of the intermediate layer 50 is 1 μm in the same figure (A1), 3 μm in the case of (B1), and (C
Samples were obtained by changing 1) to 5 μm and (D1) to 10 μm. The substrate temperature at the time of forming this intermediate layer is the same as that at the time of forming a-Si: H, 200 ° C.
And

【0022】次に、図4の場合と同様の条件で、透明電
極18を中間層50上に形成するとともに(同図(A
2)〜(D2)参照)、更にその上にa−Si:Hによ
る光導電体16を成した(同図(A3)〜(D3)参
照)。これらの各サンプルについて、膜形成後室温とな
った状態での素子の平坦度を見ると、同図(A4)〜
(D4)に示すようになった。
Next, the transparent electrode 18 is formed on the intermediate layer 50 under the same conditions as in FIG.
2) to (D2)), and a photoconductor 16 made of a-Si: H was formed thereon (see (A3) to (D3) in the same figure). For each of these samples, the flatness of the device at room temperature after the film formation was examined.
As shown in (D4).

【0023】まず、中間層50が1μmと最も薄いサン
プルでは、同図(A4)に示すように凸状(透明基板側
が凹)に1.5μm程度の反りが生じた。次に、中間層
50が3μmのサンプルでは、同図(B4)に示すよう
に凸状に反りが生じたものの、同図(A4)のサンプル
よりも反り具合は小さく、1.0μm程度であった。次
に、中間層50が5μmのサンプルでは、同図(C4)
に示すようにほとんど反りは見られず、0.3μm以下
であった。次に、中間層50が10μmのサンプルで
は、同図(D4)に示すように逆方向の凹状(透明基板
側が凸)の2.0μm程度の反りが発生した。
First, in the thinnest sample having the intermediate layer 50 of 1 μm, a warp of about 1.5 μm occurred in the convex shape (the transparent substrate side is concave) as shown in FIG. Next, in the sample with the intermediate layer 50 having a thickness of 3 μm, a warp was generated in a convex shape as shown in FIG. 4B, but the degree of warpage was smaller than that of the sample in FIG. It was Next, in the sample with the intermediate layer 50 of 5 μm, the same figure (C4)
As shown in (1), almost no warp was observed, and it was 0.3 μm or less. Next, in the sample in which the intermediate layer 50 had a thickness of 10 μm, a warp of about 2.0 μm in a concave shape (convex on the transparent substrate side) occurred in the opposite direction as shown in FIG.

【0024】このような結果からすると、中間層50の
膜厚が薄いときには、図4の中間層を設けない場合と同
様に圧縮応力が発生している。これに対し、中間層50
の膜厚が5μmでは応力がキャンセルされてほとんど0
となり、更に中間層50を厚くなると逆に引っ張り応力
が発生していることが分る。
From these results, when the thickness of the intermediate layer 50 is thin, compressive stress is generated as in the case where the intermediate layer of FIG. 4 is not provided. On the other hand, the intermediate layer 50
When the film thickness is 5 μm, the stress is canceled and almost zero
It can be seen that, when the intermediate layer 50 is further thickened, tensile stress is generated.

【0025】このように、本実施例の結果からすると、
中間層50の熱膨張係数と厚みを制御することで、温度
変動に伴って生ずる内部応力を緩和することができ、透
明基板20と光導電体16の熱膨張係数が異なっても、
反りのない良好な素子基板が得られる。従って、光変調
体10における液晶層に厚みムラが発生することがな
く、表示の均一性が向上する。更に、図1を参照して説
明したように、透明基板20と光導電体16との間で生
ずる反りと、透明基板20と中間層50との間で生ずる
反りとがキャンセルされるため、使用によって温度変化
が生じても平坦性が維持され、駆動の温度安定性も向上
する。
Thus, according to the results of this embodiment,
By controlling the thermal expansion coefficient and the thickness of the intermediate layer 50, it is possible to reduce the internal stress caused by the temperature change, and even if the transparent substrate 20 and the photoconductor 16 have different thermal expansion coefficients,
A good element substrate with no warp can be obtained. Therefore, the liquid crystal layer in the light modulator 10 does not have thickness unevenness, and the display uniformity is improved. Further, as described with reference to FIG. 1, the warp generated between the transparent substrate 20 and the photoconductor 16 and the warp generated between the transparent substrate 20 and the intermediate layer 50 are canceled, so that it is used. The flatness is maintained even when the temperature changes, and the driving temperature stability is improved.

【0026】図3の空間光変調素子を得るためには、以
上のようにして得た図2(C4)の光導電体16上に、
遮光層14,誘電体ミラー12を順に形成する。そし
て、液晶に対する配向処理を行った後に、もう1枚の透
明電極22付き透明基板24と透明基板20とを張り合
わせてセルを形成する。その後、セルの間に液晶を注入
して空間光変調素子を得る。
In order to obtain the spatial light modulator of FIG. 3, on the photoconductor 16 of FIG. 2 (C4) obtained as described above,
The light shielding layer 14 and the dielectric mirror 12 are sequentially formed. Then, after performing the alignment treatment on the liquid crystal, another transparent substrate 24 with the transparent electrode 22 and the transparent substrate 20 are bonded together to form a cell. Then, liquid crystal is injected between the cells to obtain a spatial light modulator.

【0027】<他の実施例>なお、本発明は何ら上記実
施例に限定されるものではなく、例えば次のようなもの
も含まれる。 (1)前記実施例では、透明基板の熱膨張係数α(SU
B)が光導電体16の熱膨張係数α(PC)よりも大きな
場合について説明したが、使用する材料によっては逆の
関係になることもある。この場合には、中間層の熱膨張
係数α(ML)との関係は、 α(PC)>α(SUB)>α(ML) …………………………(2) とすればよい。 (2)前記実施例では、透明基板と光導電体との関係の
みを扱ったが、遮光層や誘電体ミラーの熱膨張係数も考
慮して中間層を形成するようにしてもよい。
<Other Embodiments> The present invention is not limited to the above embodiments, and includes, for example, the following ones. (1) In the above embodiment, the coefficient of thermal expansion α (SU
The case where B) is larger than the thermal expansion coefficient α (PC) of the photoconductor 16 has been described, but the relationship may be reversed depending on the material used. In this case, the relationship with the coefficient of thermal expansion α (ML) of the intermediate layer is α (PC)> α (SUB)> α (ML) ………………………… (2) Good. (2) In the above embodiments, only the relationship between the transparent substrate and the photoconductor is dealt with, but the intermediate layer may be formed in consideration of the thermal expansion coefficient of the light shielding layer or the dielectric mirror.

【0028】(3)前記実施例では、透明基板20とし
てコーニング社製の「7059ガラス」,中間層50と
してショット社製の「BK−7ガラス」を用いたが、各
層の材料としてもちろん他の材料を用いてよい。また、
各層の形成方法も、真空蒸着法,スパッタリング法,プ
ラズマCVD法など適宜他の方法を用いてよい。この場
合、各層の熱膨張係数の関係は、前記(1)式又は
(2)式を満たすようにする。
(3) In the above embodiments, "7059 glass" manufactured by Corning Co., Ltd. was used as the transparent substrate 20, and "BK-7 glass" manufactured by Schott Co. was used as the intermediate layer 50. Materials may be used. Also,
As a method of forming each layer, another method such as a vacuum vapor deposition method, a sputtering method, a plasma CVD method may be appropriately used. In this case, the relationship of the coefficient of thermal expansion of each layer should satisfy the above formula (1) or formula (2).

【0029】[0029]

【発明の効果】以上説明したように、本発明による空間
光変調素子によれば、透明基板と光導電体との間に中間
層を形成し、これら各層の熱膨張係数の関係が、α(P
C)<α(SUB)<α(ML),又は、α(PC)>α(SU
B)>α(ML)となるようにしたので、透明基板と光導
電体の熱膨張係数が異なっても、温度変動に伴って生ず
る内部応力の発生を緩和して基板の平坦性の向上を図る
ことができ、優れた表示性能を得ることができるという
効果がある。
As described above, according to the spatial light modulator of the present invention, the intermediate layer is formed between the transparent substrate and the photoconductor, and the relationship of the thermal expansion coefficient of these layers is α ( P
C) <α (SUB) <α (ML) or α (PC)> α (SU
Since B)> α (ML), even if the thermal expansion coefficient of the transparent substrate and that of the photoconductor are different, the internal stress generated due to temperature fluctuations is mitigated to improve the flatness of the substrate. There is an effect that it is possible to obtain an excellent display performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による空間光変調素子における基板平坦
化の作用を示す説明図である。
FIG. 1 is an explanatory diagram showing an operation of flattening a substrate in a spatial light modulator according to the present invention.

【図2】本発明の実施例の形成手順と反りの様子を示す
説明図である。
FIG. 2 is an explanatory diagram showing a forming procedure and a state of warpage according to the embodiment of the present invention.

【図3】一般的な空間光変調素子の構成を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing a configuration of a general spatial light modulator.

【図4】中間層を設けない従来の場合の各層の形成手順
と反りの様子を示す説明図である。
FIG. 4 is an explanatory diagram showing a procedure of forming each layer and a state of warpage in a conventional case in which an intermediate layer is not provided.

【符号の説明】[Explanation of symbols]

10…光変調体、12…誘電体ミラー、14…遮光層、
16…光導電体、18,22…透明電極、20,24…
透明基板、26…駆動電源、28…スペーサ、50…中
間層、FA…書込み光の入射方向、FB…読出し光の入
射方向、FC…読出し光の出力方向。
10 ... Light modulator, 12 ... Dielectric mirror, 14 ... Light-shielding layer,
16 ... Photoconductor, 18, 22 ... Transparent electrodes, 20, 24 ...
Transparent substrate, 26 ... Driving power supply, 28 ... Spacer, 50 ... Intermediate layer, FA ... Incident direction of writing light, FB ... Incident direction of reading light, FC ... Output direction of reading light.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 透明電極付きの透明基板間に、少なくと
も光導電体と光変調体とが積層されている空間光変調素
子において、透明基板の熱膨張係数をα(SUB),光導
電体の熱膨張係数をα(PC),中間層の熱膨張係数をα
(ML)としたとき、それらが、α(PC)<α(SUB)<
α(ML)又はα(PC)>α(SUB)>α(ML)の関係を
満たす中間層を、前記透明基板と光導電体との間に形成
したことを特徴とする空間光変調素子。
1. A spatial light modulator in which at least a photoconductor and a light modulator are laminated between transparent substrates with transparent electrodes, wherein the coefficient of thermal expansion of the transparent substrate is α (SUB), The coefficient of thermal expansion is α (PC), and the coefficient of thermal expansion of the intermediate layer is α
(ML), they are α (PC) <α (SUB) <
A spatial light modulation element, characterized in that an intermediate layer satisfying the relationship of α (ML) or α (PC)> α (SUB)> α (ML) is formed between the transparent substrate and the photoconductor.
JP15141293A 1993-05-29 1993-05-29 Spatial light modulating element Pending JPH06337434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15141293A JPH06337434A (en) 1993-05-29 1993-05-29 Spatial light modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15141293A JPH06337434A (en) 1993-05-29 1993-05-29 Spatial light modulating element

Publications (1)

Publication Number Publication Date
JPH06337434A true JPH06337434A (en) 1994-12-06

Family

ID=15518045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15141293A Pending JPH06337434A (en) 1993-05-29 1993-05-29 Spatial light modulating element

Country Status (1)

Country Link
JP (1) JPH06337434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205650B2 (en) 2001-02-16 2007-04-17 Sanyo Electric Co., Ltd. Composite devices of laminate type and processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205650B2 (en) 2001-02-16 2007-04-17 Sanyo Electric Co., Ltd. Composite devices of laminate type and processes

Similar Documents

Publication Publication Date Title
US5148298A (en) Spatial light modulator
JP3062012B2 (en) LCD light valve
US5071230A (en) Liquid crystal display device with selective transmitting means and an impedance changing layer
JPH06230410A (en) Spatial optical modulation element
US5760853A (en) Liquid crystal light valve with dielectric mirror containing semiconductor oxide, ferroelectric material or conductive material
JPH06337434A (en) Spatial light modulating element
JP2658747B2 (en) Dielectric mirror and method of manufacturing the same
JPS63253924A (en) Light valve and its production
US5446563A (en) Photoconductor coupled liquid crystal light valve with impurity doping which varies in the thickness direction
KR0151949B1 (en) Liquid crystal display device
KR100200670B1 (en) Liquid light valve
JP2769395B2 (en) LCD light valve
JPH07294956A (en) Photoconductive liquid crystal light valve
JPH05165050A (en) Photo-conductive liquid crystal light bulb
KR0150945B1 (en) Liquid crystal light valve
JPH03289625A (en) Spatial optical modulating element
US5521730A (en) Photoconductive-type liquid crystal light valve with a shielding layer made of manganese oxide and silicon dioxide
KR940009155B1 (en) Lcd light valve
KR940006343B1 (en) Light valve
JPH0659272A (en) Liquid crystal spatial optical modulation element
JPH04261520A (en) Liquid crystal display element
JPH09329783A (en) Spatial light modulation element
JPH07120781A (en) Production of optical writing type spacial optical modulating element
JPH0713186A (en) Spatial optical modulation element
KR940009154B1 (en) Lcd light valve