JPH06337264A - Microanalytic method for aluminum - Google Patents

Microanalytic method for aluminum

Info

Publication number
JPH06337264A
JPH06337264A JP12691493A JP12691493A JPH06337264A JP H06337264 A JPH06337264 A JP H06337264A JP 12691493 A JP12691493 A JP 12691493A JP 12691493 A JP12691493 A JP 12691493A JP H06337264 A JPH06337264 A JP H06337264A
Authority
JP
Japan
Prior art keywords
aluminum
solution
boron
sample
hydrofluoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12691493A
Other languages
Japanese (ja)
Inventor
Motoko Ono
基子 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12691493A priority Critical patent/JPH06337264A/en
Publication of JPH06337264A publication Critical patent/JPH06337264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To provide a highly accurate microanalytic method for aluminium. CONSTITUTION:Hydrofluoric acid solution is added with a boron compound, e.g. boric acid, and a phosphorus compound, e.g. phosphoric acid, and used for dissolving silicon oxide on the surface of a silicon wafer. The dissolved liquid is then collected as a sample solution for frameless atomic absorption spectrochemical analysis of aluminum. Phosphorus functions to deposit an aluminum compound (aluminium phosphate) having lower solubility earlier than aluminium fluoride (AlF3) at the time of solidification of the sample solution through evaporation. Boron in the sample solution functions to discharge the residual fluorine in the from of boron fluoride from a high temperature furnace to the outside at the time of calcination and atomization. Since AlF3 is not present, atomization of vapor is promoted in the high temperature furnace thus enhancing the sensitivity of atomic absorption spectrometry along with the reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルミニウムの微量分析
方法に関し、特に、フッ酸溶液中の微量アルミニウムを
フレームレス原子吸光分析方法等の高温炉法を用いて分
析する方法に関わり、たとえば、シリコンウエハにおけ
るシリコン酸化膜中のアルミニウム不純物の分析に適用
して有効な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for microanalyzing aluminum, and more particularly to a method for analyzing a trace amount of aluminum in a hydrofluoric acid solution by using a high temperature furnace method such as a flameless atomic absorption spectrometry method. The present invention relates to a technique effectively applied to analysis of aluminum impurities in a silicon oxide film on a wafer.

【0002】[0002]

【従来の技術】半導体装置の製造において、不純物の混
入は特性の低下や製造歩留りの低下等を招く。このた
め、半導体装置の製造プロセスにおいて、不純物の分析
測定を行い、測定情報に基づいて各製造プロセスを管理
することは重要な技術になる。たとえば、工業調査会発
行「電子材料」1990年12月号、同年12月1日発行、P6
およびP7には、PPTレベルの高感度元素分析装置に
ついて記載されている。同文献には、「近年,半導体プ
ロセスの不純物管理,新素材,材料分野の高機能材の開
発,水質と大気の環境分析,医学,薬学,生化学をはじ
め,幅広い分野で微量元素の量的な把握が重要な問題と
なっている。…こうした微量元素の分析には,これまで
原子吸光光度計や,高周波誘導プラズマ(ICP)発光
分析装置を使用してきたが,これらの装置での測定濃度
域は,溶液試料中のppm(10-6g/ml)〜ppb
(10-9g/ml)レベルであり,半導体デバイスなど
エレクトロニクス分野から要求される,サブppbから
数ppt(10-12 g/ml)という各種試薬の不純物
濃度の管理レベルまでには対応できないのが実情であ
る。」旨記載されている。
2. Description of the Related Art In the manufacture of semiconductor devices, the inclusion of impurities leads to deterioration of characteristics and manufacturing yield. Therefore, it is an important technique to analyze and measure impurities in the semiconductor device manufacturing process and manage each manufacturing process based on the measurement information. For example, “Electronic Materials” issued by the Industrial Research Council, December 1990 issue, December 1, the same year, P6
And P7 describe a highly sensitive elemental analyzer for PPT levels. In the same document, "In recent years, impurities in semiconductor processes, new materials, development of highly functional materials in the materials field, environmental analysis of water quality and atmosphere, medical science, pharmacy, biochemistry, etc. It has been an important issue to analyze such trace elements. Until now, atomic absorption spectrophotometers and high-frequency induction plasma (ICP) emission spectrometers have been used. The range is ppm (10 −6 g / ml) to ppb in the solution sample.
It is (10 −9 g / ml) level, and it cannot be applied to the control level of impurity concentration of various reagents from sub-ppb to several ppt (10 −12 g / ml), which is required in the electronics field such as semiconductor devices. Is the reality. Is stated. "

【0003】一方、特開平2-272359号公報には、ウエハ
表面の不純物量の測定方法について開示されている。こ
の公報の抄録には、「洗浄を施した表面に酸化膜2を形
成した半導体ウエハにHF系溶液3を滴下した後,この
まま一定時間(大体2〜5分程度)放置する。その結
果,ウエハ1上に滴下された滴下溶液が酸化膜2と化学
反応を起こし,その反応領域を徐々に広げて最終的には
球状になる。次にこの球状の溶液3をピペットなどで回
収し,これをフレーム原子吸光光度計で溶液3中の不純
物量を測定する。」旨記載されている。
On the other hand, JP-A-2-272359 discloses a method for measuring the amount of impurities on the surface of a wafer. In the abstract of this publication, "HF solution 3 is dropped on a semiconductor wafer having an oxide film 2 formed on a cleaned surface and then left for a certain period of time (approximately 2 to 5 minutes). The dropping solution dropped on 1 causes a chemical reaction with the oxide film 2 to gradually widen the reaction region and finally become spherical. Next, the spherical solution 3 is collected with a pipette or the like and The amount of impurities in the solution 3 is measured with a flame atomic absorption spectrophotometer. "

【0004】他方、特開平2-271253号公報には、シリコ
ン半導体基板の表面分析方法ついて開示されている。こ
の公報の抄録には、「揮発性物質の蒸気を一定時間シリ
コン半導体基板の表面に当てる。この結果基板の表面に
存する自然酸化膜が揮発性物質と反応し,分解される。
次に,シリコン半導体基板の測定対象面に一定量の精製
した硝酸その他の酸を加えて基板の表面をエッチングす
る如く溶解させて反応物を集め,この金属元素含有溶液
をマイクロピペットで回収し,これを試料としてフレー
ムレス原子吸光分析装置で測定する。」旨記載されてい
る。
On the other hand, Japanese Unexamined Patent Publication No. 2-271253 discloses a surface analysis method for a silicon semiconductor substrate. In the abstract of this publication, "a vapor of a volatile substance is applied to the surface of a silicon semiconductor substrate for a certain period of time. As a result, a natural oxide film on the surface of the substrate reacts with the volatile substance and is decomposed.
Next, a certain amount of purified nitric acid or other acid is added to the surface to be measured of the silicon semiconductor substrate and dissolved so as to etch the surface of the substrate to collect the reaction product, and the solution containing the metal element is collected with a micropipette. This is used as a sample and measured by a flameless atomic absorption spectrometer. Is stated. "

【0005】フレームレス原子吸光光度計については、
たとえば、実開昭62-178353 号公報に開示されている。
Regarding the flameless atomic absorption spectrophotometer,
For example, it is disclosed in Japanese Utility Model Laid-Open No. 62-178353.

【0006】[0006]

【発明が解決しようとする課題】従来、フッ酸溶液中の
微量アルミニウムの分析では、高濃度酸性溶液分析可能
なフレームレス原子吸光光度計が用いられている。しか
し、フレームレス原子吸光光度計におけるフッ酸溶液中
の微量アルミニウムの分析では、沸点に比べ結合エネル
ギーが大きく分解され難いフッ化アルミニウム(AlF
3 )が生成されるため、化学干渉(妨害)を引き起こ
し、感度が低くなるとともに、再現性が低くなることが
本発明者によってあきらかにされた。
Conventionally, in the analysis of a trace amount of aluminum in a hydrofluoric acid solution, a flameless atomic absorption spectrophotometer capable of analyzing a highly concentrated acidic solution has been used. However, in the analysis of a trace amount of aluminum in a hydrofluoric acid solution using a flameless atomic absorption spectrophotometer, the binding energy is much larger than the boiling point and the aluminum fluoride (AlF
It has been clarified by the present inventor that 3 ) is generated, which causes chemical interference (interference), resulting in low sensitivity and low reproducibility.

【0007】本発明の目的は、フレームレス原子吸光分
析方法等の高温炉分析法において、フッ酸溶液中の微量
なアルミニウムを高感度でかつ再現性よく分析すること
ができるアルミニウム微量分析方法を提供することにあ
る。本発明の前記ならびにそのほかの目的と新規な特徴
は、本明細書の記述および添付図面からあきらかになる
であろう。
An object of the present invention is to provide an aluminum trace analysis method capable of analyzing a trace amount of aluminum in a hydrofluoric acid solution with high sensitivity and reproducibility in a high temperature furnace analysis method such as a flameless atomic absorption spectrometry method. To do. The above and other objects and novel features of the present invention will be apparent from the description of the present specification and the accompanying drawings.

【0008】[0008]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を簡単に説明すれば、下
記のとおりである。すなわち、本発明のアルミニウム微
量分析方法においては、フッ酸溶液に硼酸等の硼素化合
物および燐酸等の燐化合物を添加した後、このフッ酸溶
液を用いてシリコンウエハの表面のシリコン酸化膜を溶
融させる。その後前記溶融液を回収して溶液試料とし、
この溶液試料をフレームレス原子吸光光度計で分析して
アルミニウムの含有量の分析を行う。
The outline of the representative ones of the inventions disclosed in the present application will be briefly described as follows. That is, in the aluminum microanalysis method of the present invention, after adding a boron compound such as boric acid and a phosphorus compound such as phosphoric acid to a hydrofluoric acid solution, the silicon oxide film on the surface of the silicon wafer is melted using this hydrofluoric acid solution. . After that, the melt is collected to obtain a solution sample,
This solution sample is analyzed by a flameless atomic absorption spectrophotometer to analyze the content of aluminum.

【0009】本発明の他の実施例においては、フッ酸溶
液によってシリコンウエハ表面のシリコン酸化膜を溶融
した後、前記溶融液を回収して溶液試料とし、その後こ
の溶液試料に硼酸等の硼素化合物および燐酸等の燐化合
物を添加するとともに、この溶液試料をフレームレス原
子吸光光度計で分析してアルミニウムの含有量の分析を
行う。
In another embodiment of the present invention, after the silicon oxide film on the surface of the silicon wafer is melted by a hydrofluoric acid solution, the melt is recovered as a solution sample, and then a boron compound such as boric acid is added to the solution sample. And a phosphorus compound such as phosphoric acid are added, and the solution sample is analyzed by a flameless atomic absorption spectrophotometer to analyze the content of aluminum.

【0010】[0010]

【作用】上記した手段によれば、本発明のアルミニウム
微量分析方法においては、溶液試料を採取するための溶
媒となるフッ酸溶液中に燐および硼素が添加されている
ため、燐の作用によって溶液試料の蒸発乾固時にフッ化
アルミニウムより先に溶解度の小さいアルミニウム化合
物(燐酸アルミニウム:AlPO4 )が析出する。ま
た、溶液試料中の硼素の作用によって灰化,原子化時に
高温炉内に残留しているフッ素はフッ化硼素として炉外
へ排出される。したがって、高温炉内の試料は、従来発
生していた原子化され難いフッ化アルミニウムが存在し
なくなり、いずれも原子蒸気となるため、原子吸光感度
が高くなるとともに再現性良く分析が行えるようにな
る。
According to the above-mentioned means, in the method for microanalyzing aluminum of the present invention, since phosphorus and boron are added to the hydrofluoric acid solution which is a solvent for collecting a solution sample, the solution is formed by the action of phosphorus. When the sample is evaporated to dryness, an aluminum compound (aluminum phosphate: AlPO 4 ) having a low solubility is deposited before aluminum fluoride. Further, due to the action of boron in the solution sample, the fluorine remaining in the high temperature furnace at the time of ashing and atomization is discharged outside the furnace as boron fluoride. Therefore, in the sample in the high temperature furnace, aluminum fluoride which is difficult to be atomized, which has been generated conventionally, does not exist, and both become atomic vapors, so that the atomic absorption sensitivity is increased and the analysis can be performed with good reproducibility. .

【0011】本発明の他の実施例によるアルミニウム微
量分析方法においては、溶液試料に燐および硼素が添加
されるため、燐の作用によって溶液試料の蒸発乾固時に
フッ化アルミニウムより先に溶解度の小さいアルミニウ
ム化合物(燐酸アルミニウム)が析出する。また、溶液
試料中の硼素の作用によって灰化,原子化時に高温炉内
に残留しているフッ素はフッ化硼素として炉外へ排出さ
れる。したがって、高温炉内の試料は、従来発生してい
た原子化され難いフッ化アルミニウムが存在しなくな
り、いずれも原子蒸気となるため、原子吸光感度が高く
なるとともに再現性良く分析が行えるようになる。
In the aluminum microanalysis method according to another embodiment of the present invention, since phosphorus and boron are added to the solution sample, the solubility of the solution sample is smaller than that of aluminum fluoride when the solution sample is evaporated to dryness by the action of phosphorus. An aluminum compound (aluminum phosphate) is deposited. Further, due to the action of boron in the solution sample, the fluorine remaining in the high temperature furnace at the time of ashing and atomization is discharged outside the furnace as boron fluoride. Therefore, in the sample in the high temperature furnace, aluminum fluoride which is difficult to be atomized, which has been generated conventionally, does not exist, and both become atomic vapors, so that the atomic absorption sensitivity is increased and the analysis can be performed with good reproducibility. .

【0012】[0012]

【実施例】以下図面を参照して本発明の一実施例につい
て説明する。図1は本発明の一実施例によるアルミニウ
ム微量分析方法を示すフローチャート、図2は同じくシ
リコンウエハの表面のシリコン酸化膜を溶かして溶液試
料を得る方法を示すフローチャート的説明図、図3は同
じくフレームレス原子吸光光度計による分析状態を示す
フローチャート的説明図、図4は本発明のアルミニウム
微量分析方法における吸光度と硼素濃度との相関を示す
グラフ、図5は同じく吸光度と燐濃度との相関を示すグ
ラフ、図6は本発明のアルミニウム微量分析方法におけ
るアルミニウムの検出限界と燐または硼素濃度の相関を
示すグラフである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a flow chart showing a method for microanalyzing aluminum according to an embodiment of the present invention, FIG. 2 is a flow chart showing a method for obtaining a solution sample by melting a silicon oxide film on the surface of a silicon wafer, and FIG. 3 is also a frame. FIG. 4 is a flow chart-like explanatory view showing the analysis state by a RES atomic absorption spectrophotometer, FIG. 4 is a graph showing the correlation between the absorbance and the boron concentration in the aluminum microanalysis method of the present invention, and FIG. 5 is the correlation between the absorbance and the phosphorus concentration. FIG. 6 is a graph showing the correlation between the detection limit of aluminum and the phosphorus or boron concentration in the aluminum microanalysis method of the present invention.

【0013】この実施例では、シリコンウエハのシリコ
ン酸化膜に含まれるアルミニウム(Al)およびシリコ
ンウエハの表面に付着するAl2 3 をフレームレス原
子吸光光度計によって分析する例について説明する。ア
ルミニウム微量分析は、図1に示すように、溶媒となる
フッ酸溶液に燐(P)および硼素(B)を燐酸(H3
4 ),硼酸(H3 BO3 )の状態で所定量添加する工
程と、前記フッ酸溶液をシリコンウエハ表面に滴下して
シリコン酸化膜を溶融する工程と、前記シリコンウエハ
上のフッ酸溶液等からなる溶融液を回収して溶液試料を
得る工程と、この溶液試料をフレームレス原子吸光光度
計によって分析してアルミニウムの分析を行う工程とに
よって行われる。
In this embodiment, an example of analyzing aluminum (Al) contained in a silicon oxide film of a silicon wafer and Al 2 O 3 attached to the surface of the silicon wafer by a flameless atomic absorption spectrophotometer will be described. As shown in FIG. 1, aluminum microanalysis is carried out by adding phosphorus (P) and boron (B) to phosphoric acid (H 3 P
O 4 ), boric acid (H 3 BO 3 ) in a predetermined amount, a step of dropping the hydrofluoric acid solution onto the surface of the silicon wafer to melt the silicon oxide film, and a hydrofluoric acid solution on the silicon wafer. And the like, and a step of obtaining a solution sample by collecting the molten solution and a step of analyzing the solution sample by a flameless atomic absorption spectrophotometer to analyze aluminum.

【0014】アルミニウム微量分析においては、図2に
示すように、シリコンウエハ(Siウエハ)1の表面に
抽出液2をマイクロピペット3で滴下する。この抽出液
2はフッ酸溶液からなるとともに、後述するように燐
(P)および硼素(B)がそれぞれ添加されている。P
は燐酸(H3 PO4 )の状態で0.1mol/l 程度添加さ
れ、Bは硼酸(H3 BO3 )の状態で0.06mol/l 程
度添加される。
In the aluminum microanalysis, as shown in FIG. 2, the extraction liquid 2 is dropped on the surface of a silicon wafer (Si wafer) 1 with a micropipette 3. The extraction liquid 2 is composed of a hydrofluoric acid solution, and phosphorus (P) and boron (B) are added thereto as described later. P
Is added about 0.1 mol / l in the state of phosphoric acid (H 3 PO 4 ), and B is added about 0.06 mol / l in the state of boric acid (H 3 BO 3 ).

【0015】前記ウエハ(シリコンウエハ)1の表面に
はシリコン酸化膜(SiO2 膜)4が存在する。このシ
リコン酸化膜4は前記抽出液2であるフッ酸溶液によっ
て溶融する。シリコン酸化膜4が抽出液2に溶け込んで
形成される溶融液5は、シリコン酸化膜4が無くなって
シリコンが露出すると、前記溶融液5は表面張力によっ
て球体化する。そこで、前記溶融液5を図示しないマイ
クロピペット3で吸い上げて溶液試料7とする。この溶
液試料7はフレームレス原子吸光光度計(FL−AAS
分析)で分析される。なお、シリコンウエハ1の表面の
シリコン酸化膜4を溶融して溶液試料7を得る方法とし
ては、つぎのような方法もある。シリコンウエハをフッ
酸蒸気中に置いて、表面の自然酸化膜を分解した後、抽
出液をシリコンウエハ上に滴下し、この抽出液上にガイ
ドをセットする。ガイドはウエハの半径方向に円弧を描
いて移動する。この移動に同期してウエハを回転させ
る。この構造は、ウエハの研磨を行うポリッシング装置
と同様な構造となり、ガイドの下にはシリコン酸化膜が
溶けた溶融液が溜まる。そこで、この溶融液をマイクロ
ピペット等で採取して溶液試料とする。
A silicon oxide film (SiO 2 film) 4 exists on the surface of the wafer (silicon wafer) 1. The silicon oxide film 4 is melted by the hydrofluoric acid solution which is the extraction liquid 2. The melt 5 formed by the silicon oxide film 4 dissolving in the extract liquid 2 becomes spherical due to the surface tension when the silicon oxide film 4 disappears and silicon is exposed. Therefore, the melt 5 is sucked up by a micropipette 3 (not shown) to form a solution sample 7. This solution sample 7 is a flameless atomic absorption spectrophotometer (FL-AAS
Analysis). As a method for obtaining the solution sample 7 by melting the silicon oxide film 4 on the surface of the silicon wafer 1, there is also the following method. The silicon wafer is placed in hydrofluoric acid vapor to decompose the natural oxide film on the surface, and then the extract is dropped on the silicon wafer and a guide is set on the extract. The guide moves in an arc in the radial direction of the wafer. The wafer is rotated in synchronization with this movement. This structure is similar to that of a polishing device for polishing a wafer, and a molten liquid in which a silicon oxide film is melted is accumulated under the guide. Therefore, this melt is sampled with a micropipette or the like to obtain a solution sample.

【0016】前記溶液試料7は、図3に示すように、マ
イクロピペット3から滴下されてフレームレス原子吸光
光度計におけるグラファイト炉10のキュベット11内
に入れられる。グラファイト炉10では、約100℃で
溶液試料7を蒸気乾燥(乾固)させた後、約1000℃
で試料を灰化させて灰12とするとともに、3000℃
程度で原子蒸気13にする。また、前記グラファイト炉
10の一方に配設されたランプ(原子スペクトル光源)
14から発光した光15を前記グラファイト炉10の一
方から照射し、原子蒸気層を透過した透過光16を検出
器17で検出する。そして、前記光15の照射強度I0
と、透過光16の検出強度Iから吸光度(吸光度=lo
gI0 /I)を求める。この吸光度は原子数に対応す
る。したがって、吸光度と原子数の相関をあらかじめ求
めておけば、分析して得た吸光度から容易に原子数、す
なわちアルミニウムの含有量(汚染量)を知ることがで
きる。
As shown in FIG. 3, the solution sample 7 is dropped from the micropipette 3 and put in the cuvette 11 of the graphite furnace 10 in the flameless atomic absorption spectrophotometer. In the graphite furnace 10, the solution sample 7 was steam dried (dried to dryness) at about 100 ° C., and then about 1000 ° C.
The sample is ashed to ash 12 and 3000 ° C.
Atomic vapor 13 is made to some extent. Further, a lamp (atomic spectrum light source) arranged on one side of the graphite furnace 10
Light 15 emitted from 14 is irradiated from one side of the graphite furnace 10, and transmitted light 16 transmitted through the atomic vapor layer is detected by a detector 17. Then, the irradiation intensity I 0 of the light 15 is
From the detected intensity I of the transmitted light 16 to the absorbance (absorbance = lo
gI 0 / I) is obtained. This absorbance corresponds to the number of atoms. Therefore, if the correlation between the absorbance and the number of atoms is obtained in advance, the number of atoms, that is, the aluminum content (contamination amount) can be easily known from the absorbance obtained by analysis.

【0017】このようなアルミニウム微量分析方法で
は、溶液試料7中に燐および硼素が所望量添加されてい
ることから、燐の作用によって溶液試料の蒸発乾固時に
フッ化アルミニウム(AlF3 )より先に溶解度の小さ
いアルミニウム化合物(燐酸アルミニウム)が析出す
る。また、溶液試料中の硼素の作用によって灰化,原子
化時に高温炉内に残留しているフッ素はフッ化硼素とし
て炉外へ排出される。したがって、高温炉内には、従来
発生していた原子化され難いフッ化アルミニウムが存在
しなくなる。この結果、試料はいずれも原子蒸気となる
ため、原子吸光感度が高くなる。
In such an aluminum microanalysis method, since a desired amount of phosphorus and boron are added to the solution sample 7, the action of phosphorus causes the solution sample 7 to be heated before aluminum fluoride (AlF 3 ) during evaporation to dryness. An aluminum compound (aluminum phosphate) having a low solubility is deposited on the surface. Further, due to the action of boron in the solution sample, the fluorine remaining in the high temperature furnace at the time of ashing and atomization is discharged outside the furnace as boron fluoride. Therefore, in the high temperature furnace, aluminum fluoride which has been difficult to be atomized and which has been conventionally generated does not exist. As a result, all the samples become atomic vapors, so the atomic absorption sensitivity becomes high.

【0018】ここで、燐および硼素を添加しない従来の
方法による場合におけるフッ酸溶液中のアルミニウム分
析の結果について、図7を参照しながら説明する。濃度
50ppbのAlを含むサンプルを20マイクロリット
ル用意し、このサンプルのフッ酸濃度(wt%)を変化
させ、これを原子化させて吸光度を測定した。フッ酸は
46.8wt%を使用した。吸光度(相対値)は純水中
の吸光度を100とした時の測定値の相対値である。同
グラフから明らかのように、純水中のアルミニウムの吸
光度に比べてフッ酸中のアルミニウムの吸光度は、フッ
酸濃度10%で40%弱程度にまで、20%で20%弱
程度にまで低下する。
Here, the result of aluminum analysis in the hydrofluoric acid solution in the case of the conventional method in which phosphorus and boron are not added will be described with reference to FIG. 20 microliters of a sample containing Al at a concentration of 50 ppb was prepared, the hydrofluoric acid concentration (wt%) of this sample was changed, this was atomized, and the absorbance was measured. The hydrofluoric acid used was 46.8 wt%. The absorbance (relative value) is a relative value of the measured values when the absorbance in pure water is 100. As is clear from the graph, the absorbance of aluminum in hydrofluoric acid is lower than about 40% at a hydrofluoric acid concentration of 10% and 20% at a concentration of 20% as compared with the absorbance of pure water. To do.

【0019】一方、本発明者は、BおよびPを添加する
と吸光度が向上することを知った。図4および図5のグ
ラフは吸光度が向上する様子を示すグラフである。図4
のグラフは硼素濃度とAl吸光度との相関を示すグラフ
であり、図5のグラフは燐濃度とAl吸光度との相関を
示すグラフである。これらのグラフは、試料溶液として
9.5%フッ酸溶液中に濃度50ppbのアルミニウム
を含むサンプル20マイクロリットルの硼酸濃度、もし
くは燐酸濃度を変化させて得たものである。硼酸濃度を
変化させるときは燐酸濃度は0.06mol/l に固定し、
燐酸濃度を変化させるときは硼酸濃度を0.06mol/l
に固定した。同グラフから、硼酸だけの添加でも、燐酸
だけの添加でも感度は向上せず、燐酸および硼酸が同時
に存在している場合にのみフッ酸溶液中のアルミニウム
の感度が初めて向上することが確認できた。硼酸および
燐酸ともに0.005mol/l 以上の添加から吸光度が向
上し、0.02mol/l 以上の添加で吸光度は純水中のア
ルミニウム程度にまで回復する。更に再現性を向上させ
るためには0.05mol/l 以上の硼酸、および燐酸を同
時に添加することが望ましい。添加する硼素濃度、およ
び燐濃度は既知であるから、同じ組成の溶液の吸光度を
予め測定しておきさえすれば、硼素および燐添加による
吸光度の変化を相殺できることは明らかである。
On the other hand, the inventor has found that the addition of B and P improves the absorbance. The graphs of FIGS. 4 and 5 are graphs showing how the absorbance is improved. Figure 4
Is a graph showing the correlation between the boron concentration and the Al absorbance, and the graph in FIG. 5 is a graph showing the correlation between the phosphorus concentration and the Al absorbance. These graphs were obtained by changing the boric acid concentration or phosphoric acid concentration of 20 microliters of a sample containing 50 ppb of aluminum in a 9.5% hydrofluoric acid solution as a sample solution. When changing the concentration of boric acid, fix the concentration of phosphoric acid at 0.06 mol / l,
When changing the phosphoric acid concentration, adjust the boric acid concentration to 0.06 mol / l.
Fixed to. From the graph, it was confirmed that the sensitivity was not improved by adding boric acid alone or phosphoric acid alone, and the sensitivity of aluminum in the hydrofluoric acid solution was improved for the first time only when phosphoric acid and boric acid were present at the same time. . The absorption of both boric acid and phosphoric acid is improved from the addition of 0.005 mol / l or more, and the absorption is restored to the level of aluminum in pure water by the addition of 0.02 mol / l or more. Further, in order to improve reproducibility, it is desirable to add 0.05 mol / l or more of boric acid and phosphoric acid at the same time. Since the boron concentration and the phosphorus concentration to be added are known, it is clear that the change in the absorbance due to the addition of boron and phosphorus can be canceled out by only measuring the absorbance of a solution having the same composition in advance.

【0020】図4および図5の結果から求めたフッ酸溶
液中のアルミニウム元素の検出限界を図6に示す。同グ
ラフより、硼酸、燐酸を添加しない従来法では数十pp
bでばらついていた検出限界が、0.3ppbまで低減
することができ、従来法に比べ、感度が約10倍以上向
上したことが確認できた。また、再現性の向上により、
分析結果の信頼性を向上させることができる。
FIG. 6 shows the detection limit of aluminum element in the hydrofluoric acid solution obtained from the results of FIGS. 4 and 5. From the graph, it is several tens pp in the conventional method without adding boric acid or phosphoric acid.
It was confirmed that the detection limit, which was varied in b, could be reduced to 0.3 ppb, and the sensitivity was improved about 10 times or more as compared with the conventional method. Also, due to the improved reproducibility,
The reliability of the analysis result can be improved.

【0021】なお、この実施例においては、9.5%の
フッ酸溶液中アルミニウム分析について示したが、25
%のフッ酸溶液中アルミニウム分析についても同様の結
果が得られた。
In this example, the analysis of aluminum in a 9.5% hydrofluoric acid solution is shown.
Similar results were obtained for the analysis of aluminum in% hydrofluoric acid solution.

【0022】[0022]

【発明の効果】【The invention's effect】

(1)本発明のアルミニウム微量分析方法によれば、試
料溶液に硼素系溶液と燐酸系溶液を同時に添加すること
により、高温炉法におけるフッ酸溶液中の微量アルミニ
ウム分析において、妨害元素であったフッ化アルミニウ
ムの形成を阻止することができ、分析が高感度に行える
という効果が得られる。すなわち、本発明のアルミニウ
ム微量分析方法によれば、フッ酸溶液中のアルミニウム
元素の検出限界は、従来法による数十ppbに比較し
て、0.3ppb程度となり、従来法に比べて感度が約
10倍以上向上した。
(1) According to the aluminum microanalysis method of the present invention, it was an interfering element in the trace aluminum analysis in the hydrofluoric acid solution in the high temperature furnace method by simultaneously adding the boron solution and the phosphoric acid solution to the sample solution. It is possible to prevent the formation of aluminum fluoride and obtain an effect that the analysis can be performed with high sensitivity. That is, according to the aluminum microanalysis method of the present invention, the detection limit of the aluminum element in the hydrofluoric acid solution is about 0.3 ppb as compared with several tens ppb by the conventional method, and the sensitivity is about the same as the conventional method. It has improved more than 10 times.

【0023】(2)本発明のアルミニウム微量分析方法
によれば、試料溶液に硼素系溶液と燐酸系溶液を同時に
添加することにより、高温炉法におけるフッ酸溶液中の
微量アルミニウム分析において、妨害元素であったフッ
化アルミニウムの形成を阻止することができ、分析が再
現性よく行えるという効果が得られる。
(2) According to the aluminum microanalysis method of the present invention, by simultaneously adding the boron-based solution and the phosphoric acid-based solution to the sample solution, an interfering element is present in the trace aluminum analysis in the hydrofluoric acid solution in the high temperature furnace method. It is possible to prevent the formation of aluminum fluoride, which was a problem with the conventional method, and obtain an effect that the analysis can be performed with good reproducibility.

【0024】(3)上記(2)により、本発明のアルミ
ニウム微量分析方法によれば、分析の再現性の向上によ
り、分析結果の信頼性を向上させることができるという
効果が得られる。
(3) From the above (2), according to the aluminum microanalysis method of the present invention, it is possible to obtain the effect that the reliability of the analysis result can be improved by improving the reproducibility of the analysis.

【0025】(4)本発明によれば、フッ酸溶液中のア
ルミニウム元素の検出をより高いレベルでかつ再現性良
く分析できるアルミニウム微量分析方法を提供すること
ができるという効果が得られる。
(4) According to the present invention, it is possible to provide an aluminum microanalysis method capable of analyzing the detection of elemental aluminum in a hydrofluoric acid solution at a higher level and with good reproducibility.

【0026】(5)上記(1)〜(4)により、本発明
のアルミニウム微量分析方法によれば、半導体ウエハの
Al汚染分析が高感度で簡便に行うことができるため、
Al汚染に起因するデバイスの特性劣化の早期発見およ
び品質管理が可能になるという相乗効果が得られる。
(5) From the above (1) to (4), according to the aluminum microanalysis method of the present invention, Al contamination analysis of a semiconductor wafer can be easily carried out with high sensitivity.
The synergistic effect of enabling early detection of characteristic deterioration of the device due to Al contamination and quality control is obtained.

【0027】以上本発明者によってなされた発明を実施
例に基づき具体的に説明したが、本発明は上記実施例に
限定されるものではなく、その要旨を逸脱しない範囲で
種々変更可能であることはいうまでもない、たとえば、
前記実施例では硼酸と燐酸の添加方法としては、前処理
として分析試料(溶液試料)に直接添加したが、フレー
ムレス原子吸光光度計等の高温炉に分析試料(溶液試
料)を入れた後、硼酸および燐酸を添加し高温炉内で混
合させても前記実施例同様な効果が得られる。また、硼
酸や燐酸を溶液試料に入れる方法としては、前記実施例
のように被分析物を抽出するための抽出液(フッ酸系溶
液等)に入れる方法以外に、被分析物に抽出液を付着さ
せた後回収した回収液に硼素や燐酸を添加する方法でも
前記実施例同様な効果が得られる。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say, for example,
As a method of adding boric acid and phosphoric acid in the above-described examples, the sample was directly added to the analysis sample (solution sample) as a pretreatment, but after the analysis sample (solution sample) was placed in a high-temperature furnace such as a flameless atomic absorption spectrophotometer, Even if boric acid and phosphoric acid are added and mixed in a high-temperature furnace, the same effect as in the above-mentioned embodiment can be obtained. Further, as a method of adding boric acid or phosphoric acid to a solution sample, in addition to the method of adding an extract solution (hydrofluoric acid-based solution or the like) for extracting the analyte as in the above-mentioned embodiment, the extract solution is added to the analyte. The same effect as in the above embodiment can be obtained by the method in which boron or phosphoric acid is added to the recovered liquid that is recovered after the attachment.

【0028】なお、本発明の結果から確認されたことで
あるが、BPSG(Boronphosphosilicate Glass)膜の
ようにSi酸化膜中に硼素や燐が含まれている場合は、
フッ酸溶液でSi酸化膜を分解し、その溶液を測定する
ことにより、フッ酸溶液中に硼素と燐を添加したのと同
じ効果が得られる。この結果、直接高温炉分析方法によ
るBPSG膜中のアルミニウムの高感度分析が可能であ
る。
As has been confirmed from the results of the present invention, when the Si oxide film contains boron or phosphorus as in a BPSG (Boronphosphosilicate Glass) film,
By decomposing the Si oxide film with a hydrofluoric acid solution and measuring the solution, the same effect as adding boron and phosphorus to the hydrofluoric acid solution can be obtained. As a result, high-sensitivity analysis of aluminum in the BPSG film is possible by the direct high temperature furnace analysis method.

【0029】以上の説明では主として本発明者によって
なされた発明をその背景となった利用分野である半導体
装置の製造におけるシリコンウエハの表面のシリコン酸
化膜およびシリコンウエハの表面に付着しているアルミ
ニウムの分析技術に適用した場合について説明したが、
それに限定されるものではない。本発明は少なくともア
ルミニウムの汚染やアルミニウムを含む物質のアルミニ
ウム微量分析技術には適用できる。
In the above description, the silicon oxide film on the surface of the silicon wafer and the aluminum adhering to the surface of the silicon wafer in the manufacturing of semiconductor devices, which is the field of application of the invention mainly made by the present inventor, have been described. I explained about applying it to analysis technology,
It is not limited to that. INDUSTRIAL APPLICABILITY The present invention can be applied to at least aluminum microanalysis technology for aluminum contamination and substances containing aluminum.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるアルミニウム微量分析
方法を示すフローチャートである。
FIG. 1 is a flow chart showing an aluminum trace analysis method according to an embodiment of the present invention.

【図2】本発明の一実施例によるアルミニウム微量分析
方法における溶液試料の採取方法を示すフローチャート
的説明図である。
FIG. 2 is a flow chart-like explanatory view showing a method of collecting a solution sample in the aluminum microanalysis method according to one embodiment of the present invention.

【図3】本発明の一実施例によるアルミニウム微量分析
方法におけるフレームレス原子吸光光度計による分析状
態を示すフローチャート的説明図である。
FIG. 3 is a flow chart-like explanatory view showing an analysis state by a flameless atomic absorption spectrophotometer in the aluminum trace analysis method according to the embodiment of the present invention.

【図4】本発明の一実施例によるアルミニウム微量分析
方法における吸光度と硼素濃度との相関を示すグラフで
ある。
FIG. 4 is a graph showing the correlation between the absorbance and the boron concentration in the aluminum microanalysis method according to an example of the present invention.

【図5】本発明の一実施例によるアルミニウム微量分析
方法における吸光度と燐濃度との相関を示すグラフであ
る。
FIG. 5 is a graph showing the correlation between the absorbance and the phosphorus concentration in the aluminum microanalysis method according to one example of the present invention.

【図6】本発明の一実施例によるアルミニウム微量分析
方法におけるアルミニウムの検出限界と燐または硼素濃
度の相関を示すグラフである。
FIG. 6 is a graph showing the correlation between the detection limit of aluminum and the concentration of phosphorus or boron in the method for microanalyzing aluminum according to one embodiment of the present invention.

【図7】従来方法によるフッ酸溶液中の微量アルミニウ
ムの分析感度を示すグラフである。
FIG. 7 is a graph showing the analytical sensitivity of a trace amount of aluminum in a hydrofluoric acid solution according to a conventional method.

【符号の説明】[Explanation of symbols]

1…ウエハ(シリコンウエハ)、2…抽出液、3…マイ
クロピペット、4…シリコン酸化膜(SiO2 膜)、5
…溶融液、7…溶液試料、10…グラファイト炉(高温
炉)、11…キュベット、12…灰、13…原子蒸気、
14…ランプ、15…光、16…透過光、17…検出
器。
1 ... Wafer (silicon wafer), 2 ... Extraction liquid, 3 ... Micropipette, 4 ... Silicon oxide film (SiO 2 film), 5
... Melt liquid, 7 ... Solution sample, 10 ... Graphite furnace (high temperature furnace), 11 ... Cuvette, 12 ... Ash, 13 ... Atomic vapor,
14 ... Lamp, 15 ... Light, 16 ... Transmitted light, 17 ... Detector.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムを含む可能性がある物質を
フッ酸系の溶液で溶融させて溶液試料を得る工程と、前
記溶液試料を蒸発乾燥させてアルミニウムの含有量を分
析するアルミニウム微量分析方法であって、前記物質を
溶融するフッ酸系の溶液に燐および硼素を所定量添加し
ておくことを特徴とするアルミニウム微量分析方法。
1. A method of melting a substance which may contain aluminum with a hydrofluoric acid-based solution to obtain a solution sample, and an aluminum microanalysis method of evaporating and drying the solution sample to analyze the content of aluminum. A method for microanalyzing aluminum, characterized in that a predetermined amount of phosphorus and boron are added to a hydrofluoric acid-based solution for melting the substance.
【請求項2】 アルミニウムを含む可能性がある物質を
フッ酸系の溶液で溶解させて溶液試料を得る工程と、前
記溶液試料を高温炉法による分析装置に収容して溶液試
料中の微量アルミニウム元素を灰化、原子化してアルミ
ニウムの含有量を分析するアルミニウム微量分析方法で
あって、前記溶液試料に燐および硼素を所定量添加して
分析を行うことを特徴とするアルミニウム微量分析方
法。
2. A step of dissolving a substance that may contain aluminum in a hydrofluoric acid-based solution to obtain a solution sample, and storing the solution sample in an analyzer by a high-temperature furnace method to store a trace amount of aluminum in the solution sample. A method for microanalyzing aluminum, which comprises ashing and atomizing an element to analyze the content of aluminum, wherein a predetermined amount of phosphorus and boron are added to the solution sample for analysis.
【請求項3】 前記溶液試料をフレームレス原子吸光光
度計によって分析することを特徴とする請求項1または
請求項2記載のアルミニウム微量分析方法。
3. The aluminum trace analysis method according to claim 1 or 2, wherein the solution sample is analyzed by a flameless atomic absorption spectrophotometer.
JP12691493A 1993-05-28 1993-05-28 Microanalytic method for aluminum Pending JPH06337264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12691493A JPH06337264A (en) 1993-05-28 1993-05-28 Microanalytic method for aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12691493A JPH06337264A (en) 1993-05-28 1993-05-28 Microanalytic method for aluminum

Publications (1)

Publication Number Publication Date
JPH06337264A true JPH06337264A (en) 1994-12-06

Family

ID=14947021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12691493A Pending JPH06337264A (en) 1993-05-28 1993-05-28 Microanalytic method for aluminum

Country Status (1)

Country Link
JP (1) JPH06337264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106082293A (en) * 2016-06-08 2016-11-09 白银中天化工有限责任公司 A kind of aluminium fluoride raw materials for production drying system of improvement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106082293A (en) * 2016-06-08 2016-11-09 白银中天化工有限责任公司 A kind of aluminium fluoride raw materials for production drying system of improvement

Similar Documents

Publication Publication Date Title
Cui et al. Development of a hydrophilic interaction liquid chromatography (HILIC) method for the chemical characterization of water-soluble isoprene epoxydiol (IEPOX)-derived secondary organic aerosol
Gregoire Sample introduction techniques for the determination of osmium isotope ratios by inductively coupled plasma mass spectrometry
EP0137409A2 (en) Resolution device for semiconductor thin films
Talmi et al. Induction furnace method in atomic spectrometry
Shabani et al. Recent advanced applications of AAS and ICP-MS in the semiconductor industry
US6248592B1 (en) Method for measuring lead concentrations in blood
Fassett et al. Analytical applications of resonance ionization mass spectrometry (RIMS)
JPH06337264A (en) Microanalytic method for aluminum
Galbács et al. Determination of cadmium in certified reference materials using solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry supplemented with thermogravimetric studies
Hu et al. Determination of ruthenium in photographic materials using solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry
Peng et al. Slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic powders
Messerschmidt et al. Determination of arsenic and bismuth in biological materials by total reflection X-ray fluorescence after separation and collection of their hydrides
Fuyi et al. Use of polytetrafluoroethylene slurry for silica matrix removal in ETAAS direct determination of trace cobalt and nickel in silicon dioxide powder
Okamoto et al. Determination of fluoride ion in aqueous samples by inductively coupled plasma atomic emission spectrometry with tungsten boat furnace vaporiser
Tianyou et al. Electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of trace amounts of impurities in slurries of silicon carbide
Peng et al. Direct analysis of silicon carbide by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry using a slurry sampling technique
JP3613027B2 (en) Analytical method of aluminum in hydrofluoric acid
Fuchs-Pohl et al. Determination of silicon traces in process chemicals for semiconductor production by ETAAS
Laly et al. Optimization of electrothermal vaporization, inductively coupled plasma mass spectrometry conditions for the determination of iron, copper, nickel and zinc in semiconductor grade acids
Park et al. Determination of boron in high-purity sulfuric acid by ester generation and isotope dilution inductively coupled plasma mass spectrometry
Santosa et al. Inductively coupled plasma mass spectrometry for the sequential determination of trace metals in sea water after electrothermal vaporization of their dithiocarbamate complexes in methyl isobutyl ketone
Wang et al. In-situ electrothermal fluorination-assisted matrix removal, slurry sampling, graphite furnace atomic absorption spectrometry for the determination of trace-level chromium, cobalt and vanadium in zirconium dioxide powder
Kometani Flameless atomic absorption spectrometric determination of ultratrace elements in silicon tetrachloride
Tsai Determination of aluminium in nickel-based alloy samples using a longitudinal Zeeman-effect correction transversely heated graphite atomizer and a deuterium background correction end-heated graphite atomizer in electrothermal atomic absorption spectrometry
Verrept et al. Solid sampling by electrothermal vaporization-inductively coupled plasma-atomic emission and-mass spectrometry (ETV-ICP-AES/-MS)