JPH06335842A - Method for correcting feed quantity of boring tool feeding mechanism by image processing - Google Patents

Method for correcting feed quantity of boring tool feeding mechanism by image processing

Info

Publication number
JPH06335842A
JPH06335842A JP5124183A JP12418393A JPH06335842A JP H06335842 A JPH06335842 A JP H06335842A JP 5124183 A JP5124183 A JP 5124183A JP 12418393 A JP12418393 A JP 12418393A JP H06335842 A JPH06335842 A JP H06335842A
Authority
JP
Japan
Prior art keywords
center
stored
image processing
hole
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5124183A
Other languages
Japanese (ja)
Other versions
JPH0783978B2 (en
Inventor
Takashi Suzuki
隆 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U H T KK
Original Assignee
U H T KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U H T KK filed Critical U H T KK
Priority to JP5124183A priority Critical patent/JPH0783978B2/en
Publication of JPH06335842A publication Critical patent/JPH06335842A/en
Publication of JPH0783978B2 publication Critical patent/JPH0783978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching

Landscapes

  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Drilling And Boring (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To precisely compute the correcting ratio with the substantial moving distance between holes of a boring tool to the theoretical distance between positions to be bored by using image processing. CONSTITUTION:Every time when an original point and a position to be bored are bored by a boring tool 6 moving just under a plurality of positions to be bored provided with a specific interval from an optional original point on a target material through an XY-axial feeding mechanism 5, the hole is photographed by a photographing part 3, and a variable density image signal is binarized by an image processing part 2. The binarized data is stored in an image memory 22, the binarized data is housed in a monitor 4 screen, and the center-of-gravity measurement of the binarized data is also conducted to measure the center of each hole. Each correction ratio of the substantial moving distance of the boring tool 6 between the holes to the theoretical distance between positions to be bored is calculated on the basis of a specific operation expression of a storing part 42 provided with the operation expression, and the correcting ratio is stored to form the parameter to a control means 7 of the XY-axial feeding mechanism 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は画像処理による穿孔具用
送り機構の送り量補正方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting the feed amount of a feed mechanism for punches by image processing.

【0002】[0002]

【従来の技術】プリント基板等では基準孔を穿孔するた
め、銅箔を印刷したターゲットマークが4隅に付設さ
れ、該プリント基板を、各ターゲットマークが撮影部直
下に位置するように移動機構を介して移動させると共
に、そのターゲットマークの中心を所定の手段で計測
し、その計測された中心からの誤差量だけ穿孔具(ドリ
ル)をX、Y軸送り機構を介してX、Y方向に微動させ
て穿孔具(ドリル)の中芯をターゲットマークの中心に
一致させ、その位置から穿孔具(ドリル)を上昇させて
ターゲットマークの中心を孔芯とする基準孔を穿孔して
いる。
2. Description of the Related Art Since a reference hole is formed in a printed circuit board or the like, target marks printed with copper foil are provided at four corners, and the printed circuit board is provided with a moving mechanism so that each target mark is located immediately below a photographing section. Along with the movement of the target mark, the center of the target mark is measured by a predetermined means, and the perforation tool (drill) is finely moved in the X and Y directions by the X and Y axis feeding mechanism by an error amount from the measured center. Then, the center of the punch (drill) is aligned with the center of the target mark, and the punch (drill) is raised from that position to form a reference hole with the center of the target mark as the core.

【0003】[0003]

【発明が解決しようとする課題】ところで、穿孔具の
X、Y軸送り機構は理論値通りの送りを制御手段に指令
しても現実的にはボルトネジまたはベルト等の送り誤差
のために、穿孔具を理論値通りに精確に移動させること
ができず、穿孔位置精度が悪い問題があった。従来、上
記送り精度の悪さを補正するために、穿孔具の理論上の
送り量毎における実際の送り量を測定機を使用して測定
し、その測定した値をパラメータとして送り機構の制御
手段に記憶している。しかし、いちいち測定機を使用し
て人為的に測定する面倒で且つ煩雑な作業を必要とし、
効率的ではないばかりでなく測定精度も決して良いもの
ではなかった。
By the way, the X- and Y-axis feeding mechanism of the punching tool actually punches the punching tool due to the feeding error of the bolt screw or the belt even if the control means is instructed to perform the feeding according to the theoretical value. There was a problem in that the tool could not be moved exactly according to the theoretical value and the drilling position accuracy was poor. Conventionally, in order to correct the poor feed accuracy, the actual feed amount for each theoretical feed amount of the punch is measured using a measuring machine, and the measured value is used as a parameter for the feed mechanism control means. I remember. However, it requires a laborious and cumbersome work of manually measuring with a measuring machine,
Not only was it inefficient, but the measurement accuracy was not good either.

【0004】本発明は従来事情に鑑みてなされたもの
で、その技術的課題は理論上の穿孔対象部位間距離に対
する同孔間への穿孔具の実質移動距離との補正率を、画
像処理を使用して精確に得ることである。
The present invention has been made in view of the conventional circumstances, and its technical problem is to perform image processing on the correction rate of the theoretical distance between the holes to be punched and the actual movement distance of the punching tool between the holes. Use it to get exactly.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に講じた技術的手段はX、Y軸送り機構を介して対象物
に任意の原点から定間隔をもって付設した複数の穿孔対
象部位直下に移動する穿孔具によって原点及び穿孔対象
部位を穿孔する度にその孔を撮影部で撮影し、該濃淡画
像信号を画像処理部で2値化してその2値化データを画
像メモリに記憶し、該2値化データをモニタ画面内に収
め且つ同2値化データの重心計測を行なって各孔の中心
を計測し、理論上の穿孔対象部位間距離に対する同孔間
への穿孔具の実質移動距離との各々の補正率を、所定の
演算式を記憶した記憶部のその演算式に基づいて各々算
出し、各補正率を記憶して前記X、Y軸送り機構の制御
手段へのパラメータにすることを要旨とする。
[Means for Solving the Problems] The technical means taken to achieve the above-mentioned object is to provide a plurality of perforation target sites directly below a plurality of perforations, which are attached to an object at regular intervals from an arbitrary origin via an X and Y axis feeding mechanism. Every time the moving punch is used to punch the origin and the target area, the hole is photographed by the photographing unit, the grayscale image signal is binarized by the image processing unit, and the binarized data is stored in the image memory. The binarized data is stored in the monitor screen, and the center of gravity of the binarized data is measured to measure the center of each hole, and the actual movement distance of the punching tool between the holes with respect to the theoretical distance between the target holes. And the respective correction factors are calculated based on the calculation formulas of the storage unit that stores the predetermined calculation formulas, and the correction factors are stored and used as parameters for the control means of the X and Y axis feed mechanism. That is the summary.

【0006】[0006]

【作用】上記技術的手段によればX、Y軸送り機構の制
御手段へのパラメータにされる理論上の穿孔対象部位間
距離に対する同孔間への穿孔具の実質移動距離との補正
率に則って、例えばターゲットマークの中心を所望の手
段で計測し且つその計測による中心直下に位置するよう
にその誤差量だけX、Y軸送り機構を介して穿孔具を、
X、Y方向に微動(補正動)させなければならない場合
等において、X、Y軸送り機構の理論上の送り量を、パ
ラメータとして記憶され且つその送り量と適合する理論
上の穿孔部位間距離の補正率で補正して、穿孔具を上記
ターゲットマーク中心下に精確に位置させることができ
る。
According to the above-mentioned technical means, the correction ratio between the theoretical distance between the holes to be punched and the actual movement distance of the punching tool between the holes, which is used as a parameter for the control means of the X and Y axis feeding mechanism, can be obtained. Accordingly, for example, the center of the target mark is measured by a desired means, and the punching tool is moved by the amount of the error through the X and Y axis feeding mechanism so as to be located immediately below the center of the measurement,
In the case where fine movements (correction movements) have to be made in the X and Y directions, the theoretical feed distance of the X and Y axis feed mechanism is stored as a parameter and is the theoretical distance between the drilling sites that matches the feed amount. It is possible to accurately position the perforating tool under the center of the target mark by making a correction with the correction rate of.

【0007】[0007]

【発明の効果】本発明は以上にように画像処理によって
理論上の穿孔対象部位間距離に対する同孔間への穿孔具
の実質移動距離との補正率を演算処理し、その数パター
ンの補正率をX、Y軸送り機構の制御手段へのパラメー
タとして記憶するようにして、そのパラメータに基づい
て穿孔具の実質移動距離をその都度補正でき、業々穿孔
具の理論上の送り量毎における実際の送り量を測定機を
使用して測定する先行技術のように煩雑な作業を業々行
うことなく精確な補正率を簡単に得ることができる。
As described above, according to the present invention, the correction ratio between the theoretical distance between the holes to be punched and the actual movement distance of the punching tool between the holes is calculated by the image processing as described above, and the correction rate of several patterns thereof is calculated. Is stored as a parameter to the control means of the X- and Y-axis feed mechanism, and the actual movement distance of the punch can be corrected each time based on the parameter. It is possible to easily obtain an accurate correction rate without performing the complicated work such as the prior art of measuring the feed amount of the sheet using a measuring machine.

【0008】[0008]

【実施例】次に、本発明の実施例を図面に基づいて説明
する。図1乃至図3は本実施例画像処理による穿孔具用
送り機構の送り量補正方法を実行する装置及びフローチ
ャートを示している。
Embodiments of the present invention will now be described with reference to the drawings. 1 to 3 show an apparatus and a flow chart for executing a feed amount correction method of a feed mechanism for a punching tool by image processing of this embodiment.

【0009】図1において、符号1は穿孔対象となるプ
リント基板であり、4隅に基準孔穿孔用のターゲットマ
ーク11が付設してある。このターゲットマーク11は銅箔
を印刷によって施してなり、直径を1mm程度とし、撮
影部3、即ちカメラ直下にターゲットマーク11が位置す
るようにその都度自動制御でもって移動させることがで
きるようになっている。
In FIG. 1, reference numeral 1 is a printed circuit board to be punched, and target marks 11 for punching reference holes are provided at four corners. The target mark 11 is made of copper foil by printing, has a diameter of about 1 mm, and can be moved by automatic control each time so that the target mark 11 is located directly under the photographing section 3, that is, the camera. ing.

【0010】符号2は画像処理部であり、A/D変換器
(図示せず)によってディジタル信号に変換された映像
情報(濃淡画像信号の映像情報)を2値化等の演算処理
をする画像処理回路12と、その2値化データを記憶する
画像メモリ22と、所定のプログラムを実行する中央処理
装置32と、その中央処理装置32への必要なデータを記憶
する記憶部42等とを備えており、上記ターゲットマーク
11の濃淡画像信号を画像処理回路12で2値化して、画像
メモリ22内に書き込むことができるようになっている。
尚、符号4はモニタである。
Reference numeral 2 denotes an image processing unit, which is an image for performing arithmetic processing such as binarization on video information (video information of a grayscale image signal) converted into a digital signal by an A / D converter (not shown). A processing circuit 12, an image memory 22 for storing the binarized data thereof, a central processing unit 32 for executing a predetermined program, a storage unit 42 for storing necessary data for the central processing unit 32, and the like. And above target mark
The 11 grayscale image signals can be binarized by the image processing circuit 12 and written in the image memory 22.
Reference numeral 4 is a monitor.

【0011】上記する装置では、その中央処理装置32が
X、Y軸送り機構5の送り量補正プログラムを実行する
ように制御され、ターゲットマーク11が撮影部3直下に
位置するように移動機構(図示せず)を介してプリント
基板1を移動させた後、そのターゲットマーク11の中心
を所定の手段で計測すると共に計測されたターゲットマ
ーク11の中心からの誤差量だけ穿孔具(ドリル)6を
X、Y軸送り機構5を介してX、Y方向に微動(補正
動)させてターゲットマーク11の中心と穿孔具(ドリ
ル)6の中芯とを一致させる際のX、Y軸送り機構5の
ボルトネジ(図示せず)またはベルト(図示せず)等の
送り誤差を補正できるようになっている。
In the above-mentioned apparatus, the central processing unit 32 is controlled to execute the feed amount correction program of the X and Y axis feeding mechanism 5, and the moving mechanism (so that the target mark 11 is located directly below the photographing unit 3). After moving the printed circuit board 1 through (not shown), the center of the target mark 11 is measured by a predetermined means, and the punch 6 is moved by an error amount from the measured center of the target mark 11. The X and Y axis feed mechanism 5 when the center of the target mark 11 and the center of the perforator (drill) 6 are aligned by finely moving (correction movement) in the X and Y directions via the X and Y axis feed mechanism 5 It is possible to correct the feed error of the bolt screw (not shown) or the belt (not shown).

【0012】図3がその送り量補正プログラムを示した
フローチャートである。
FIG. 3 is a flow chart showing the feed amount correction program.

【0013】次に本実施例画像処理による穿孔具用送り
機構の送り量補正方法を図2に示すモニタ4画面及び図
3のフローチャートに基づいて具体的に説明する。この
送り量補正プログラムはX、Y軸送り機構5の送り誤差
量を測定して、理論値と実動値との補正率を事前に調査
するため、穿孔対象は穿孔可能な板材であれば何を使用
しても構わない。まず、穿孔対象とする板材に仮設され
た原点に孔0を穿ち、その孔Oを重心計測してその孔O
の中心を求め、これを記憶部42であるRAMにいったん
記憶する。次に△Lだけ前記X、Y軸送り機構5を介し
て板材を移動させてその位置で孔Aを穿つ。そして、そ
の孔Aを重心計測してその孔Aの中心を求め、これを前
記と同様に記憶しておく。次に、孔Oと孔Aとの中心間
距離の理論値(理論上の穿孔対象部位間距離)Lと穿孔
具(ドリル)6の実質移動距離lとの補正率を演算処理
し(演算式:移動指示点×(L/l))、これを記憶部
42に記憶する。更に、△L量だけ同方向或いは逆方向に
移動させながら孔B、C、Dを各々穿ち、前記と同様に
重心計測にて各中心を求め、前記演算式に則って各々の
補正率を演算処理し、これを前記記憶部42であるRAM
に記憶してX、Y軸送り機構5への制御手段であるX、
Y軸のドライバ回路7へのパラメータとする。即ち、孔
Aと孔B(後述ではAB称する)、孔0と孔C(後述で
はBCと称する)、孔Oと孔C(後述ではOCと称す
る)、孔Cと孔D(後述ではCDと称する)各々との中
心間距離の理論値Lと穿孔具(ドリル)6の実質移動距
離lとの補正率を前記する演算式に従って演算処理し、
これを随時記憶する。またフローチャートには示してい
ないが、孔Oと孔Bとの中心間距離の理論値Lと穿孔具
(ドリル)6の実質移動距離lとの補正率は、上記0A
とABの補正率を加えて2分することで得られ、また孔
Oと孔Dとの中心間距離の理論値Lと穿孔具(ドリル)
6の実質移動距離lとの補正率は、上記上記OCとCD
との補正率を加えて2分して得られる。
Next, a method of correcting the feed amount of the feed mechanism for the punching tool by the image processing of this embodiment will be specifically described with reference to the monitor 4 screen shown in FIG. 2 and the flow chart of FIG. Since this feed amount correction program measures the feed error amount of the X and Y axis feed mechanism 5 and investigates the correction ratio between the theoretical value and the actual value in advance, what is perforated is a plate material that can be perforated. May be used. First, a hole 0 is made at the origin temporarily provided in the plate material to be punched, the center of gravity of the hole O is measured, and the hole O is made.
The center of is calculated and is temporarily stored in the RAM which is the storage unit 42. Next, the plate material is moved by ΔL via the X- and Y-axis feed mechanism 5, and the hole A is drilled at that position. Then, the center of gravity of the hole A is measured to obtain the center of the hole A, which is stored in the same manner as described above. Next, the correction ratio between the theoretical value L of the center distance between the holes O and A (theoretical distance between target holes for drilling) L and the actual movement distance l of the drilling tool (drill) 6 is calculated (calculation formula). : Movement instruction point x (L / l)), this is the storage unit
Store in 42. Further, each of the holes B, C, and D is drilled while moving in the same direction or the opposite direction by the amount of ΔL, each center is obtained by measuring the center of gravity in the same manner as described above, and each correction factor is calculated according to the above calculation formula. RAM which is the storage unit 42
Stored in the X, Y axis feed mechanism 5 as a control means X,
It is used as a parameter for the Y-axis driver circuit 7. That is, hole A and hole B (hereinafter referred to as AB), hole 0 and hole C (hereinafter referred to as BC), hole O and hole C (hereinafter referred to as OC), hole C and hole D (hereinafter referred to as CD). The correction ratio between the theoretical value L of the center-to-center distance from each of them and the actual movement distance l of the drilling tool (drill) 6 is calculated according to the above-mentioned calculation formula,
This is memorized at any time. Although not shown in the flow chart, the correction ratio between the theoretical value L of the center distance between the holes O and B and the actual movement distance l of the drilling tool (drill) 6 is 0A above.
It is obtained by adding the correction factors of AB and AB and halving, and the theoretical value L of the center distance between the holes O and D and the drilling tool (drill).
The correction rate of the actual moving distance 1 of 6 is the above OC and CD.
It is obtained by adding the correction factor of 2 and 2 minutes.

【0014】従って、計測されたターゲットマーク11の
中心からの誤差量だけ穿孔具(ドリル)6をX、Y軸送
り機構5を介してX、Y方向に微動(補正動)させてタ
ーゲットマーク11の中心と穿孔具(ドリル)6の中芯と
を一致させる際に、その微動距離及び方向(原点に対し
て後退か前進か)の双方に適合する中心間距離((O
A)(AB)(OC)(CD)(OB)(OD))の理
論値Lに基づく補正率をもって制御手段7である前記
X、Y軸のドライバ回路を制御してX、Y軸送り機構5
を作動させて穿孔具(ドリル)6をターゲットマーク11
の中心直下まで移動させ、ソレノイド、エアーシリンダ
からなるZ軸送り機構8を介して上昇させてターゲット
マーク11の中心に穿孔する。
Therefore, the perforation tool (drill) 6 is finely moved (corrected) in the X and Y directions via the X and Y axis feed mechanism 5 by an amount of error from the center of the measured target mark 11 to make the target mark 11. When the center of the hole and the center of the drilling tool (drill) 6 are matched, the center-to-center distance ((O
A) (AB) (OC) (CD) (OB) (OD)) The correction means based on the theoretical value L controls the X and Y axis driver circuit which is the control means 7 to control the X and Y axis feed mechanism. 5
The target mark 11 by operating the drilling tool (drill) 6
Is moved to a position right below the center of the target mark 11 and is raised through a Z-axis feed mechanism 8 including a solenoid and an air cylinder to punch the center of the target mark 11.

【0015】上記(OA)(AB)(OC)(CD)の
孔間隔は定間隔とは言っても、穿孔具(ドリル)6の微
動(補正動)そのものが小量(1.5mm程度)である
ことから、0.2mm間隔乃至0.5mm間隔の中から
設定する。また穿孔具(ドリル)6の微動(補正動)は
大きくなればなるほど、X、Y軸送り機構5の誤差動も
大きくなることを前提とすれば上記(AB)(CD)各
々のあいだで測定点を追加してより多数点で補正率を求
めることができるようにすることも自由であるし、更に
B点やD点の外側に更にE点やF点を設けてターゲット
マーク11の中心と穿孔具(ドリル)6中心との誤差量が
大きい場合に対処できるようにするのも勿論自由であ
る。また、本実施例では原点を交差する斜線上に穿孔対
象部を定間隔をおいて設けた場合について説明している
が、原点を交差する十字直線上や放射線上に穿孔対象部
を定間隔をおいて設けたりして方向自在性のある補正率
をパラメータとして入手できる構成にするも任意であ
る。このようにすると、ターゲットマーク11の中心に対
する穿孔具(ドリル)6の誤差方向に一番近い方向の中
から適合する補正率を選択でき、より補正精度を高くす
ることが可能である。
Although the hole intervals of the above (OA), (AB), (OC) and (CD) are constant, the fine movement (correction movement) of the perforating tool (drill) 6 itself is a small amount (about 1.5 mm). Therefore, it is set from 0.2 mm intervals to 0.5 mm intervals. Assuming that the larger the fine movement (correction movement) of the perforation tool (drill) 6, the larger the error movement of the X- and Y-axis feed mechanism 5, the measurement is performed between the above (AB) and (CD). It is also free to add a point so that the correction factor can be obtained from a larger number of points, and further, an E point and an F point are provided outside the B point and the D point to form the center of the target mark 11. Of course, it is also possible to deal with the case where the amount of error from the center of the punch 6 is large. In addition, in the present embodiment, the case where the perforation target portions are provided at regular intervals on the diagonal lines that intersect the origin is described, but the perforation target portions are regularly spaced on the cross line or the radiation that intersects the origin. It is also optional to provide the correction factor with directionality as a parameter by providing it in advance. By doing so, it is possible to select a suitable correction rate from the direction closest to the error direction of the punch 6 with respect to the center of the target mark 11, and it is possible to further increase the correction accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例画像処理による穿孔具用送り機構の送
り量補正方法を実施する装置のブロック図。
FIG. 1 is a block diagram of an apparatus that implements a feed amount correction method for a punching tool feed mechanism by image processing according to the present embodiment.

【図2】モニタ画面と孔O、孔A、孔B、孔C、孔Dと
の関係を示すモニタ画面の正面図。
FIG. 2 is a front view of the monitor screen showing the relationship between the monitor screen and holes O, A, B, C, and D.

【図3】フローチャート。FIG. 3 is a flowchart.

【符号の説明】[Explanation of symbols]

5:X、Y軸送り機構 6:穿孔具
(ドリル) 2:画像処理部 3:撮影部 4:モニタ 22:画像メ
モリ 7:制御手段(X、Y軸のドライバ回路)
5: X, Y axis feeding mechanism 6: Drilling tool (drill) 2: Image processing section 3: Imaging section 4: Monitor 22: Image memory 7: Control means (X, Y axis driver circuit)

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04N 1/411 9070−5C Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H04N 1/411 9070-5C

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 X、Y軸送り機構を介して対象物に任意
の原点から定間隔をもって付設した複数の穿孔対象部位
直下に移動する穿孔具によって原点及び穿孔対象部位を
穿孔する度にその孔を撮影部で撮影し、該濃淡画像信号
を画像処理部で2値化してその2値化データを画像メモ
リに記憶し、該2値化データをモニタ画面内に収め且つ
同2値化データの重心計測を行なって各孔の中心を計測
し、理論上の穿孔対象部位間距離に対する同孔間への穿
孔具の実質移動距離との各々の補正率を、所定の演算式
を記憶した記憶部のその演算式に基づいて各々算出し、
各補正率を記憶して前記X、Y軸送り機構の制御手段へ
のパラメータにすることを特徴とする画像処理による穿
孔具用送り機構の送り量補正方法。
1. A hole is punched each time the origin and the punching target portion are punched by a punching tool which is attached to an object through an X- and Y-axis feeding mechanism and which is attached to a target from a given origin at a fixed interval and moves directly below the punching target portion. Is photographed by the photographing unit, the grayscale image signal is binarized by the image processing unit, the binarized data is stored in the image memory, the binarized data is stored in the monitor screen, and the binarized data of the binarized data is stored. The center of gravity is measured to measure the center of each hole, and a correction unit for each of the theoretical correction distance between the theoretical distance between target holes and the actual movement distance of the punching tool between the holes is stored in a storage unit that stores a predetermined arithmetic expression. Each is calculated based on the calculation formula of
A method for correcting the feed amount of a feed mechanism for a perforation tool by image processing, characterized in that each correction factor is stored and used as a parameter for the control means of the X and Y axis feed mechanism.
JP5124183A 1993-05-26 1993-05-26 Feed amount correction method of feed mechanism for punching tool by image processing Expired - Lifetime JPH0783978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5124183A JPH0783978B2 (en) 1993-05-26 1993-05-26 Feed amount correction method of feed mechanism for punching tool by image processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5124183A JPH0783978B2 (en) 1993-05-26 1993-05-26 Feed amount correction method of feed mechanism for punching tool by image processing

Publications (2)

Publication Number Publication Date
JPH06335842A true JPH06335842A (en) 1994-12-06
JPH0783978B2 JPH0783978B2 (en) 1995-09-13

Family

ID=14879039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5124183A Expired - Lifetime JPH0783978B2 (en) 1993-05-26 1993-05-26 Feed amount correction method of feed mechanism for punching tool by image processing

Country Status (1)

Country Link
JP (1) JPH0783978B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535026A (en) * 2017-09-29 2020-12-03 フェスツール ゲーエムベーハー Portable machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535026A (en) * 2017-09-29 2020-12-03 フェスツール ゲーエムベーハー Portable machine tool
US11426808B2 (en) 2017-09-29 2022-08-30 Festool Gmbh Mobile machine tool

Also Published As

Publication number Publication date
JPH0783978B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
US6205364B1 (en) Method and apparatus for registration control during processing of a workpiece particularly during producing images on substrates in preparing printed circuit boards
DE602005000512T2 (en) METHOD AND DEVICE FOR MOUNTING COMPONENTS
CN100412873C (en) System and method for modifying electronic design data
US6493064B2 (en) Method and apparatus for registration control in production by imaging
CN113778513B (en) Automatic generation method, device, equipment and storage medium for PCB drilling program
CN106061108B (en) A kind of anti-welding aligning structure of printed circuit board
TW201007401A (en) Substrate expansion and contraction conditions display device, method for displaying substrate expansion and contraction conditions, and information recording medium
JP3030749B2 (en) Drilling method and apparatus for printed circuit board
CN105101653B (en) A kind of preparation method of overlength flexible circuit board
JP3091424B2 (en) Perforator
JP3337228B2 (en) Sample cut generation and evaluation method
KR960006833B1 (en) Method for machining printed circuit board
JPH06335842A (en) Method for correcting feed quantity of boring tool feeding mechanism by image processing
JP2609808B2 (en) How to check holes in printed circuit boards
DE19835303B4 (en) Process for generating and evaluating a sample engraving
JP3005515B2 (en) Centering method of drilling machine
JP7356608B1 (en) Soldering system, equipment and robot using it
JPH0744359B2 (en) Component mounting method
JPH06331312A (en) Detection of center position of target mark by image processing
JP2680135B2 (en) Method for drilling holes in printed wiring boards
JPH05210712A (en) Method for correcting packaged data
JPH04311087A (en) Boring method of printed board
DE69031554T2 (en) Method and device for filling out forms
JPH08323519A (en) Printed wiring board perforating method
JPH01115508A (en) Numerically controlled borer