JPH06333595A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH06333595A
JPH06333595A JP5146878A JP14687893A JPH06333595A JP H06333595 A JPH06333595 A JP H06333595A JP 5146878 A JP5146878 A JP 5146878A JP 14687893 A JP14687893 A JP 14687893A JP H06333595 A JPH06333595 A JP H06333595A
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
negative electrode
nonaqueous electrolyte
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5146878A
Other languages
Japanese (ja)
Other versions
JP3208226B2 (en
Inventor
Mikiya Yamazaki
幹也 山崎
Seiji Yoshimura
精司 吉村
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14687893A priority Critical patent/JP3208226B2/en
Publication of JPH06333595A publication Critical patent/JPH06333595A/en
Application granted granted Critical
Publication of JP3208226B2 publication Critical patent/JP3208226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide excellent storing property and cycle characteristic by adding benzine and/or its derivative to an nonaqueous electrolyte. CONSTITUTION:In an nonaqueous electrolyte battery BA1, a positive electrode 1 and a negative electrode 2 are housed in a battery case formed by positive and negative electrode systems 4, 5 in opposition to each other through a separator 3 impregnated with an electrolyte. The negative electrode 2 uses a material capable of storing and releasing metal lithium or lithium as the negative electrode material. Benzine and/or its derivative are added to the nonaqueous electrolyte. As the benzine derivatives are given those in which at least one hydrogen of four hydrogen atoms in total of two amino groups in benzine is substituted by a hydrocarbon group such as alkyl group, phenyl group and benzyl group. Thus, the nonaqueous electrolyte is difficult to decompose and deteriorate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水系電解質電池に係わ
り、詳しくは正極側における非水系電解質中の溶媒の分
解劣化に起因する、保存特性、サイクル特性などの低下
を防止することを目的とした当該非水系電解質の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more specifically, to prevent deterioration of storage characteristics, cycle characteristics, etc. due to decomposition and deterioration of a solvent in the non-aqueous electrolyte on the positive electrode side. To improve the non-aqueous electrolyte.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム電池等の非水系電解質電池が、ニッケル・カド
ミウム電池の如き含水電解液を使用した電池と異なり、
水の分解電圧を考慮する必要がないため通常3V以上の
高電圧設計が可能であるなどの理由から、脚光を浴びつ
つある。
2. Description of the Related Art In recent years,
Non-aqueous electrolyte batteries such as lithium batteries differ from batteries that use water-containing electrolytes such as nickel-cadmium batteries,
Since it is not necessary to consider the decomposition voltage of water, it is possible to design a high voltage of 3 V or more, and it is in the spotlight.

【0003】而して、かかる高電圧型の非水系電解質電
池の正極活物質としては、一般に、マンガン、コバル
ト、ニッケル、バナジウム、ニオブなどの金属の酸化物
又はこれらの金属を二種以上含有する複合酸化物が使用
されている。
As a positive electrode active material for such a high voltage type non-aqueous electrolyte battery, generally, an oxide of a metal such as manganese, cobalt, nickel, vanadium or niobium or two or more kinds of these metals are contained. Complex oxides are used.

【0004】しかしながら、上記金属酸化物又は複合酸
化物は、非水系電解質と反応し易く、このため電池を保
存している間に非水系電解質中の溶媒が分解し、その分
解生成物(重合物など)が電極上に付着し、その結果保
存後の電池の内部抵抗(内部インピーダンス)が上昇し
て放電特性が低下したり、二次電池の場合には、さらに
サイクル特性が低下したりするという問題があった。因
みに、このような溶媒の分解反応は、正極が高電位とな
る充電時に顕著に起こる。
However, the above metal oxide or composite oxide easily reacts with the non-aqueous electrolyte, so that the solvent in the non-aqueous electrolyte decomposes during storage of the battery, and its decomposition product (polymerized product). Etc.) adhere to the electrodes, resulting in an increase in the internal resistance (internal impedance) of the battery after storage and a decrease in the discharge characteristics, or in the case of a secondary battery, a further decrease in the cycle characteristics. There was a problem. Incidentally, such a decomposition reaction of the solvent remarkably occurs during charging when the positive electrode has a high potential.

【0005】ところで、上述の溶媒の分解反応を抑制し
て保存特性やサイクル特性の向上を図る試みは従来にお
いても行われており、例えばテトラヒドロフラン(TH
F)、1,3−ジオキソラン(DOXL)等の環状エー
テルの水素原子の一部をアルキル基などで置換して安定
化させ、分解劣化し難くする試みが提案されている(J.
L. Goldman, R. M. Mank, J. H. Young and V. R. Koc
h: J. Electrochem. Soc., 127,1461(1980) )。
By the way, attempts to improve the storage characteristics and cycle characteristics by suppressing the decomposition reaction of the above-mentioned solvent have been made in the past, and, for example, tetrahydrofuran (TH
F), 1,3-dioxolane (DOXL) and other cyclic ethers have been proposed in an attempt to stabilize some of the hydrogen atoms by substituting them with an alkyl group or the like to prevent decomposition and deterioration (J.
L. Goldman, RM Mank, JH Young and VR Koc
h: J. Electrochem. Soc., 127,1461 (1980)).

【0006】しかしながら、このような環状エーテルの
アルキル化による改質によっても、非水系電解質を充分
に安定化させることは難しく、高電位の正極側における
非水系電解質の分解反応を有効に抑制するには至ってい
ないのが実情である。特に、二次電池の場合、過充電時
に、正極上で炭酸ガスなどの発生を伴った溶媒の分解反
応が急激に進行し、電池特性が著しく低下するという問
題が指摘されていた。
However, it is difficult to sufficiently stabilize the non-aqueous electrolyte even by such modification by alkylation of the cyclic ether, and it is possible to effectively suppress the decomposition reaction of the non-aqueous electrolyte on the high potential positive electrode side. The reality is that it has not arrived. In particular, in the case of a secondary battery, it has been pointed out that, when overcharged, the decomposition reaction of the solvent accompanied by the generation of carbon dioxide gas on the positive electrode rapidly progresses, and the battery characteristics are significantly deteriorated.

【0007】本発明は、上述の問題を解決するべくなさ
れたものであって、その目的とするところは、保存特
性、サイクル特性等の電池特性に優れた非水系電解質電
池を提供するにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a non-aqueous electrolyte battery having excellent battery characteristics such as storage characteristics and cycle characteristics.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電解質電池(以下、「本発明電
池」と称する。)は、金属リチウム又はリチウムを吸蔵
放出可能な物質を負極材料とする負極と、正極と、非水
系電解質とを備えた非水系電解質電池において、前記非
水系電解質にベンジジン(4,4’−ジアミノビフェニ
ル)及び/又はその誘導体(以下、これらベンジジン及
びその誘導体を総称して「ベンジジン類」と称すること
がある。)が添加されてなる。
A non-aqueous electrolyte battery according to the present invention (hereinafter, referred to as "the battery of the present invention") for achieving the above object is a negative electrode made of metallic lithium or a substance capable of occluding and releasing lithium. In a non-aqueous electrolyte battery including a negative electrode as a material, a positive electrode, and a non-aqueous electrolyte, benzidine (4,4′-diaminobiphenyl) and / or its derivative (hereinafter, these benzidine and its derivative) are contained in the non-aqueous electrolyte. May be collectively referred to as “benzidines”).

【0009】本発明におけるベンジジン誘導体として
は、ベンジジン中の2個のアミノ基の計4個の水素原子
のうちの少なくとも1個の水素原子をアルキル基、フェ
ニル基、ベンジル基などの炭化水素基で置換したものが
挙げられ、具体例としては、N,N,N’,N’−テト
ラメチルベンジジン、N,N,N’,N’−テトラエチ
ルベンジジン、N,N,N’,N’−テトラプロピルベ
ンジジン、N,N,N’,N’−テトラブチルベンジジ
ン及びN,N,N’,N’−テトラフェニルベンジジン
が挙げられる。その他、塩素イオン、臭素イオンなどを
対イオンとする塩も本発明におけるベンジジン誘導体に
含まれる。これらの添加剤は、一種単独を添加してもよ
く、必要に応じて二種以上を併用して添加してもよい。
As the benzidine derivative in the present invention, at least one hydrogen atom out of a total of four hydrogen atoms of two amino groups in benzidine is a hydrocarbon group such as an alkyl group, a phenyl group and a benzyl group. Examples thereof include those substituted with N, N, N ', N'-tetramethylbenzidine, N, N, N', N'-tetraethylbenzidine, N, N, N ', N'-tetra. Examples include propylbenzidine, N, N, N ', N'-tetrabutylbenzidine and N, N, N', N'-tetraphenylbenzidine. In addition, salts having chlorine ion, bromine ion and the like as counter ions are also included in the benzidine derivative of the present invention. These additives may be added alone or in combination of two or more as required.

【0010】本発明におけるベンジジン類は、その酸化
電位が電池の充電電圧よりも貴であり、且つ、非水系電
解質の分解電圧よりも卑である物質でなければならな
い。酸化電位が充電電圧より低いと充電不能となり、ま
た非水系電解質の分解電圧よりも貴であると非水系電解
質の分解を抑制することができなくなるからである。
The benzidines in the present invention must be substances whose oxidation potential is nobler than the charging voltage of the battery and less noble than the decomposition voltage of the non-aqueous electrolyte. This is because if the oxidation potential is lower than the charging voltage, charging becomes impossible, and if it is nobler than the decomposition voltage of the non-aqueous electrolyte, decomposition of the non-aqueous electrolyte cannot be suppressed.

【0011】ベンジジン類の非水系電解質中への添加割
合は、電池内の非水系電解質の総量によっても若干異な
るが、有意な添加効果を挙げる上で通常1×10-3モル
/リットル以上添加する必要がある。0.01〜1モル
/リットルの範囲で添加することが好ましい。添加割合
が0.01モル/リットル未満の場合は添加効果が充分
に発現されず、また1モル/リットルを越えた場合は電
解質の量が相対的に減少することに起因して電導度が低
下したり、過剰のベンジジン類が正極又は負極と徐々に
反応することに起因して保存特性やサイクル特性が低下
したりする傾向があるからである。
The addition ratio of the benzidines to the non-aqueous electrolyte varies slightly depending on the total amount of the non-aqueous electrolyte in the battery, but is usually 1 × 10 −3 mol / liter or more in order to obtain a significant addition effect. There is a need. It is preferably added in the range of 0.01 to 1 mol / liter. If the addition ratio is less than 0.01 mol / l, the effect of addition is not sufficiently exhibited, and if it exceeds 1 mol / l, the conductivity decreases due to the relative decrease in the amount of electrolyte. Or the excess benzidines gradually react with the positive electrode or the negative electrode, so that the storage characteristics and cycle characteristics tend to deteriorate.

【0012】本発明においては、負極材料として金属リ
チウム又はリチウムを吸蔵放出可能な物質が使用され
る。リチウムを吸蔵放出可能な物質としては、リチウム
合金や、黒鉛、コークス等の炭素材料が例示されるが、
リチウムの吸蔵放出量(容量)が多い点で黒鉛が特に好
ましい。
In the present invention, metallic lithium or a substance capable of inserting and extracting lithium is used as the negative electrode material. Examples of the substance capable of inserting and extracting lithium include lithium alloys, carbon materials such as graphite and coke,
Graphite is particularly preferable because it has a large amount of lithium storage and release (capacity).

【0013】本発明における正極材料(活物質)として
は、例えば、3V以上の電池電圧を有する非水系電解質
電池において従来使用されている、マンガン、コバル
ト、ニッケル、バナジウム、ニオブなどの金属の酸化物
(LiMn2 4 、LiCoO2 、LiNiO2 など)
又はこれらの金属を二種以上含有する複合酸化物(Li
Nix Co1-x 2 (但し、0<x<1)など)が挙げ
られる。
The positive electrode material (active material) in the present invention is, for example, an oxide of a metal such as manganese, cobalt, nickel, vanadium or niobium which has been conventionally used in a non-aqueous electrolyte battery having a battery voltage of 3 V or more. (LiMn 2 O 4 , LiCoO 2 , LiNiO 2 etc.)
Alternatively, a composite oxide containing two or more of these metals (Li
Ni x Co 1-x O 2 ( where, 0 <x <1), etc.).

【0014】本発明の効果は、電位が高く非水系電解質
の分解劣化を誘起し易い高電位型の正極材料を使用した
場合に顕著に発現されるが、正極活物質への添加剤とし
て使用されるベンジジン類は、過充電時の非水系電解質
の分解劣化を抑制する機能も有するので、本発明におけ
る正極材料は常態時(保存時又は通常の充電時)におい
て3V以上の高電位を示す上述した材料に必ずしも限定
されない。
The effect of the present invention is remarkably exhibited when a high-potential type positive electrode material having a high potential and which easily induces decomposition and deterioration of a non-aqueous electrolyte is used, but it is used as an additive to a positive electrode active material. Since the benzidines also have a function of suppressing decomposition and degradation of the non-aqueous electrolyte during overcharge, the positive electrode material in the present invention exhibits a high potential of 3 V or higher in the normal state (during storage or normal charging). The material is not necessarily limited.

【0015】本発明は、保存特性、サイクル特性等の電
池特性に優れた非水系電解質電池を得るために非水系電
解質にベンジジン類を添加して分解劣化し難くした点に
特徴を有する。それゆえ、非水系電解質、セパレータな
どの電池を構成する他の部材については特に制限され
ず、非水系電解質電池用として従来使用され、或いは提
案されている種々の材料を特に制限無く使用することが
可能である。
The present invention is characterized in that benzidines are added to a non-aqueous electrolyte to prevent decomposition and deterioration in order to obtain a non-aqueous electrolyte battery having excellent battery characteristics such as storage characteristics and cycle characteristics. Therefore, non-aqueous electrolyte, other members constituting the battery such as a separator is not particularly limited, conventionally used for non-aqueous electrolyte battery, or it is possible to use various proposed materials without particular limitation. It is possible.

【0016】例えば、非水系電解液の溶媒としては、エ
チレンカーボネート、ビニレンカーボネート、プロピレ
ンカーボネートなどの有機溶媒や、これらとジメチルカ
ーボネート、ジエチルカーボネート、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、エトキシメトキ
シエタンなどの低沸点溶媒との混合溶媒が挙げられる。
For example, as the solvent of the non-aqueous electrolyte solution, organic solvents such as ethylene carbonate, vinylene carbonate and propylene carbonate, and these and dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane are used. And a mixed solvent with a low boiling point solvent such as ethoxymethoxyethane.

【0017】また、非水系電解液の溶質としては、過塩
素酸リチウム(LiClO4 )、トリフルオロメタンス
ルホン酸リチウム(LiCF3 SO3 )、ヘキサフルオ
ロリン酸リチウム(LiPF6 )、テトラフルオロホウ
酸リチウム(LiBF4 )、ヘキサフルオロヒ酸リチウ
ム(LiAsF6 )、ヘキサフルオロアンチモン酸リチ
ウム(LiSbF6 )が例示される。
As the solute of the non-aqueous electrolyte, lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4), lithium hexafluoroarsenate (LiAsF 6), lithium hexafluoroantimonate (LiSbF 6) are exemplified.

【0018】なお、本発明における非水系電解質とし
て、上述の液体電解質に代えて固体電解質を使用するこ
とも可能である。
As the non-aqueous electrolyte in the present invention, it is possible to use a solid electrolyte instead of the above liquid electrolyte.

【0019】[0019]

【作用】本発明電池においては、非水系電解質に少なく
とも一種のベンジジン類が添加されているので、長期間
保存したり過充電したりしても、正極活物質と非水系電
解質との反応が起こり難く、非水系電解質が分解劣化し
難い。この理由は、次のように推察される。
In the battery of the present invention, since at least one kind of benzidine is added to the non-aqueous electrolyte, the reaction between the positive electrode active material and the non-aqueous electrolyte occurs even when stored for a long time or overcharged. Difficult to decompose and deteriorate the non-aqueous electrolyte. The reason for this is presumed as follows.

【0020】すなわち、ベンジジン類は分子中に共役二
重結合を有するため分子の共鳴安定効果が高く、このた
め充電などにより正極電位が高くなると正極側で酸化さ
れて、下記の化1に示すようにカチオン(陽イオン)を
生成する。そして、このベンジジン類の酸化電位が非水
系電解質の酸化電位よりも卑であると、化1に示すベン
ジジン類の酸化反応が非水系電解質の酸化反応に優先し
て起こる。換言すれば、ベンジジン類が犠牲(ダミー)
になって酸化され非水系電解質中の溶媒の酸化分解を抑
制するのである。なお、ベンジジン類は酸化還元反応の
可逆性に優れるため、生成したカチオンは非水系電解質
中を拡散し、下記の化2に示すように負極側で還元され
て、再びもとのベンジジン類に戻り、正極側における酸
化反応のダミーとして繰り返し利用される。
That is, since benzidines have a conjugated double bond in the molecule, the resonance stabilizing effect of the molecule is high. Therefore, when the potential of the positive electrode becomes high due to charging or the like, it is oxidized on the positive electrode side, as shown in the following chemical formula 1. Generates cations (cations). When the oxidation potential of the benzidines is lower than the oxidation potential of the non-aqueous electrolyte, the oxidation reaction of the benzidines shown in Chemical formula 1 takes precedence over the oxidation reaction of the non-aqueous electrolyte. In other words, benzidines are sacrificed (dummy)
And is oxidized to suppress the oxidative decomposition of the solvent in the non-aqueous electrolyte. Since benzidines are excellent in the reversibility of redox reaction, the generated cations diffuse in the non-aqueous electrolyte and are reduced on the negative electrode side as shown in the following Chemical formula 2 to return to the original benzidines. , Is repeatedly used as a dummy for the oxidation reaction on the positive electrode side.

【0021】[0021]

【化1】 [Chemical 1]

【0022】[0022]

【化2】 [Chemical 2]

【0023】[0023]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0024】(実施例1)扁平型の非水系電解質二次電
池を作製した。
Example 1 A flat type non-aqueous electrolyte secondary battery was produced.

【0025】〔正極〕正極活物質として、二酸化マンガ
ンを375°Cで加熱処理したものを使用し、これと、
導電剤としてのカーボン粉末と、結着剤としてのフッ素
樹脂粉末とを重量比85:10:5で混合し、次いでこ
の混合物を加圧成形した後、250°Cで加熱処理して
円板状の正極を作製した。
[Cathode] As the cathode active material, manganese dioxide heat-treated at 375 ° C. is used.
Carbon powder as a conductive agent and fluororesin powder as a binder were mixed at a weight ratio of 85: 10: 5, and then this mixture was pressure-molded and then heat-treated at 250 ° C to give a disc shape. The positive electrode of was produced.

【0026】〔負極〕リチウム圧延板を所定寸法に打ち
抜いて円板状の負極を作製した。
[Negative Electrode] A rolled lithium plate was punched into a predetermined size to prepare a disk-shaped negative electrode.

【0027】〔電解液〕エチレンカーボネート(EC)
とプロピレンカーボネート(PC)と1,2−ジメトキ
シエタン(DME)との体積比5:3:2の混合溶媒
に、トリフルオロメタンスルホン酸リチウム(LiCF
3 SO3 )を1Mの割合で溶かした溶液に、N,N,
N’,N’−テトラメチルベンジジンを0.01モル/
リットルの割合で添加して電解液を調製した。
[Electrolyte] Ethylene carbonate (EC)
Lithium trifluoromethanesulfonate (LiCF) in a mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) at a volume ratio of 5: 3: 2.
3 SO 3 ) in a solution of 1M, N, N,
0.01 mol of N ', N'-tetramethylbenzidine /
An electrolytic solution was prepared by adding it at a ratio of 1 liter.

【0028】〔電池の作製〕以上の正負両極及び電解液
を用いて扁平型の本発明電池BA1(外径:20mm、
厚み:2.5mm)を作製した。なお、セパレータとし
ては、ポリプロピレン製の微多孔膜(セラニーズ社製、
商品名「セルガード」)を使用し、これに先の電解液を
含浸させた。
[Production of Battery] A flat type battery BA1 of the present invention (outer diameter: 20 mm;
Thickness: 2.5 mm) was produced. As the separator, a polypropylene microporous film (made by Celanese,
The product name "Celgard") was used and impregnated with the electrolytic solution.

【0029】図1は作製した本発明電池BA1を模式的
に示す断面図であり、同図に示す本発明電池BA1は、
正極1、負極2、これら両電極1,2を互いに離間する
セパレータ3、正極缶4、負極缶5、正極集電体6、負
極集電体7及びポリプロピレン製の絶縁パッキング8な
どからなる。
FIG. 1 is a sectional view schematically showing the produced battery BA1 of the present invention. The battery BA1 of the present invention shown in FIG.
It comprises a positive electrode 1, a negative electrode 2, a separator 3 separating these electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7 and an insulating packing 8 made of polypropylene.

【0030】正極1及び負極2は、電解液を含浸したセ
パレータ3を介して対向して正負両極缶4、5が形成す
る電池ケース内に収納されており、正極1は正極集電体
6を介して正極缶4に、また負極2は負極集電体7を介
して負極缶5に接続され、電池内部で生じた化学エネル
ギーを正極缶4及び負極缶5の両端子から電気エネルギ
ーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative bipolar cans 4 and 5 facing each other with a separator 3 impregnated with an electrolytic solution in between, and the positive electrode 1 includes a positive electrode current collector 6. To the positive electrode can 4 and the negative electrode 2 to the negative electrode can 5 via the negative electrode current collector 7 so that the chemical energy generated inside the battery can be output as electrical energy from both terminals of the positive electrode can 4 and the negative electrode can 5 to the outside. You can take it out.

【0031】(実施例2)電解液の溶質として、トリフ
ルオロメタンスルホン酸リチウムに代えてヘキサフルオ
ロリン酸リチウムを使用したこと以外は実施例1と同様
にして、本発明電池BA2を作製した。
Example 2 A battery BA2 of the present invention was produced in the same manner as in Example 1 except that lithium hexafluorophosphate was used as the solute of the electrolytic solution instead of lithium trifluoromethanesulfonate.

【0032】(実施例3)電解液の溶媒として、エチレ
ンカーボネートとプロピレンカーボネートと1,2−ジ
メトキシエタンとの体積比5:3:2の混合溶媒に代え
て、エチレンカーボネートとプロピレンカーボネートと
エトキシメトキシエタン(EME)との体積比5:3:
2の混合溶媒を使用したこと以外は実施例2と同様にし
て、本発明電池BA3を作製した。
(Example 3) As a solvent for the electrolytic solution, a mixed solvent of ethylene carbonate, propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 5: 3: 2 was used in place of ethylene carbonate, propylene carbonate and ethoxymethoxy. Volume ratio with ethane (EME) 5: 3:
Battery BA3 of the present invention was produced in the same manner as in Example 2 except that the mixed solvent of No. 2 was used.

【0033】(比較例1)電解液の調製において、N,
N,N’,N’−テトラメチルベンジジンを添加しなか
ったこと以外は実施例1と同様にして、比較電池BC1
を作製した。
Comparative Example 1 In the preparation of the electrolytic solution, N,
Comparative battery BC1 was prepared in the same manner as in Example 1 except that N, N ′, N′-tetramethylbenzidine was not added.
Was produced.

【0034】(比較例2)電解液の溶質として、トリフ
ルオロメタンスルホン酸リチウムに代えてヘキサフルオ
ロリン酸リチウムを使用したこと以外は比較例1と同様
にして、比較電池BC2を作製した。
Comparative Example 2 A comparative battery BC2 was prepared in the same manner as Comparative Example 1 except that lithium hexafluorophosphate was used as the solute of the electrolytic solution instead of lithium trifluoromethanesulfonate.

【0035】(比較例3)電解液の溶媒として、エチレ
ンカーボネートとプロピレンカーボネートと1,2−ジ
メトキシエタンとの体積比5:3:2の混合溶媒に代え
て、エチレンカーボネートとプロピレンカーボネートと
エトキシメトキシエタン(EME)との体積比5:3:
2の混合溶媒を使用したこと以外は比較例2と同様にし
て、比較電池BC3を作製した。
(Comparative Example 3) As a solvent for the electrolytic solution, a mixed solvent of ethylene carbonate, propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 5: 3: 2 was used instead of ethylene carbonate, propylene carbonate and ethoxymethoxy. Volume ratio with ethane (EME) 5: 3:
A comparative battery BC3 was produced in the same manner as in Comparative Example 2 except that the mixed solvent of No. 2 was used.

【0036】〔サイクル特性〕常温(25°C)下、2
mAで充電終止電圧3.5Vまで充電した後、2mAで
4時間放電する工程を1サイクルとする充放電サイクル
試験を行い、各電池のサイクル特性を調べた。なお、放
電時間内に放電電圧が2.4Vに達した時点を各電池の
寿命と決め、その時点で充放電サイクル試験を終了し
た。結果を図2、図3及び図4に示す。
[Cycle characteristics] Under normal temperature (25 ° C), 2
A charging / discharging cycle test in which one cycle includes a step of discharging at 2 mA for 4 hours after charging to a cutoff voltage of 3.5 V at mA, and the cycle characteristics of each battery were investigated. The time when the discharge voltage reached 2.4 V within the discharge time was determined as the life of each battery, and the charge / discharge cycle test was terminated at that time. The results are shown in FIGS. 2, 3 and 4.

【0037】図2〜図4は、各電池のサイクル特性を、
縦軸に各サイクルにおける放電終止電圧(V)を、また
横軸にサイクル数(回)をとって示したグラフであり、
これらの図より、電解液にN,N,N’,N’−テトラ
メチルベンジジンを添加した本発明電池BA1〜BA3
は、それを添加しなかった比較電池BC1〜BC3に比
し、電解液の分解劣化が小さいためサイクル寿命が長
く、サイクル特性に優れていることが分かる。
2 to 4 show the cycle characteristics of each battery,
It is a graph in which the vertical axis represents the discharge end voltage (V) in each cycle, and the horizontal axis represents the number of cycles (times).
From these figures, batteries BA1 to BA3 of the present invention in which N, N, N ′, N′-tetramethylbenzidine was added to the electrolytic solution
Indicates that the cycle life is long and the cycle characteristics are excellent as compared with the comparative batteries BC1 to BC3 in which it was not added, because the decomposition degradation of the electrolytic solution is small.

【0038】〔過充電特性〕本発明電池BA1及び比較
電池BC2をそれぞれ10個づつ作製し、各電池の電池
電圧を通常の充電終止電圧よりも高電圧である4Vに2
0日間保持し(過充電状態)、そのときの各電池の内部
インピーダンス及び電池厚みの変化を調べた。結果を表
1に示す。
[Overcharge Characteristic] Ten batteries BA1 of the present invention and 10 batteries of the comparative battery BC2 were prepared, and the battery voltage of each battery was changed to 4V which was higher than the normal end-of-charge voltage.
It was maintained for 0 days (overcharged state), and changes in the internal impedance and battery thickness of each battery at that time were examined. The results are shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】表1に示すように、本発明電池BA1は、
比較電池BC2に比し、電解液の分解劣化が小さいため
過充電状態での内部インピーダンスの上昇や電池厚みの
増加が総じて小さく、信頼性が高いことが分かる。
As shown in Table 1, the battery BA1 of the present invention is
It can be seen that, as compared with the comparative battery BC2, the decomposition and deterioration of the electrolytic solution is small, so that the increase in the internal impedance and the increase in the battery thickness in the overcharged state are generally small and the reliability is high.

【0041】(実施例4〜7)N,N,N’,N’−テ
トラメチルベンジジン0.01モル/リットルに代え
て、N,N,N’,N’−テトラエチルベンジジン、
N,N,N’,N’−テトラプロピルベンジジン、N,
N,N’,N’−テトラブチルベンジジン又はN,N,
N’,N’−テトラフェニルベンジジンを同割合で使用
したこと以外は実施例1と同様にして、順に本発明電池
BA4〜BA7を作製した。
(Examples 4 to 7) N, N, N ', N'-tetramethylbenzidine, instead of 0.01 mol / liter, N, N, N', N'-tetraethylbenzidine,
N, N, N ', N'-tetrapropylbenzidine, N,
N, N ', N'-tetrabutylbenzidine or N, N,
Inventive batteries BA4 to BA7 were sequentially manufactured in the same manner as in Example 1 except that N ′, N′-tetraphenylbenzidine was used at the same ratio.

【0042】〔サイクル特性〕先と同じ条件で充放電サ
イクル試験を行い、各電池のサイクル特性を調べた。結
果を図2〜図4と同じ座標系のグラフである図5に示
す。図中には、比較のために、先の比較電池BC1のサ
イクル特性も示してある。同図より、電解液にベンジジ
ン類が添加されている本発明電池BA4〜BA7は、無
添加の比較電池BC1に比し、サイクル寿命が長く、サ
イクル特性に優れていることが分かる。
[Cycle Characteristics] A charge / discharge cycle test was conducted under the same conditions as above to examine the cycle characteristics of each battery. The results are shown in FIG. 5, which is a graph of the same coordinate system as in FIGS. For comparison, the cycle characteristics of the comparative battery BC1 described above are also shown in the figure. From the figure, it is understood that the batteries BA4 to BA7 of the present invention in which the benzidines are added to the electrolytic solution have a longer cycle life and excellent cycle characteristics as compared with the comparative battery BC1 without addition.

【0043】叙上の実施例では、本発明を扁平角型の非
水系電解質電池に適用する場合を例に挙げて説明した
が、電池の形状は特に限定されず、円筒型、角型など種
々の形状の非水系電解質電池に適用し得るものである。
In the above embodiments, the case where the present invention is applied to the flat rectangular type non-aqueous electrolyte battery has been described as an example, but the shape of the battery is not particularly limited, and various types such as a cylindrical type and a square type are used. It can be applied to a non-aqueous electrolyte battery having the above shape.

【0044】また、上記実施例では、本発明を二次電池
に適用する場合について説明したが、本発明電池は過充
電状態での内部インピーダンスの上昇や電池厚みの増加
が小さいことから、本発明は過充電状態で保存されるメ
モリーバクアップ用の一次電池などにも好適に適用し得
るものである。
Further, in the above embodiment, the case where the present invention is applied to the secondary battery has been described. However, since the present invention battery does not increase the internal impedance or the battery thickness in the overcharged state, the present invention Can be suitably applied to a primary battery for memory backup which is stored in an overcharged state.

【0045】[0045]

【発明の効果】本発明電池は、非水系電解質にベンジジ
ン及び/又はその誘導体が添加されているので、非水系
電解質の分解劣化が起こりにくく、このため保存特性、
サイクル特性等の電池特性に優れるなど、本発明は優れ
た特有の効果を奏する。
In the battery of the present invention, since benzidine and / or its derivative is added to the non-aqueous electrolyte, decomposition and deterioration of the non-aqueous electrolyte hardly occur.
The present invention has excellent unique effects such as excellent battery characteristics such as cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】扁平型の非水系電解質電池(本発明電池BA
1)の断面図である。
FIG. 1 is a flat type non-aqueous electrolyte battery (invention battery BA
It is a sectional view of 1).

【図2】実施例で作製した本発明電池BA1及び比較電
池BC1のサイクル特性を示したグラフである。
FIG. 2 is a graph showing cycle characteristics of a battery BA1 of the present invention and a comparative battery BC1 manufactured in Examples.

【図3】実施例で作製した本発明電池BA2及び比較電
池BC2のサイクル特性を示したグラフである。
FIG. 3 is a graph showing cycle characteristics of the battery BA2 of the present invention and the comparative battery BC2 manufactured in Examples.

【図4】実施例で作製した本発明電池BA3及び比較電
池BC3のサイクル特性を示したグラフである。
FIG. 4 is a graph showing cycle characteristics of a battery BA3 of the present invention and a comparative battery BC3 manufactured in an example.

【図5】実施例で作製した本発明電池BA4〜BA7及
び比較電池BC1のサイクル特性を示したグラフであ
る。
FIG. 5 is a graph showing cycle characteristics of inventive batteries BA4 to BA7 and comparative battery BC1 produced in Examples.

【符号の説明】[Explanation of symbols]

BA1 非水系電解質電池(本発明電池) 1 正極 2 負極 3 セパレータ BA1 non-aqueous electrolyte battery (the battery of the present invention) 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toshihiko Saito 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属リチウム又はリチウムを吸蔵放出可能
な物質を負極材料とする負極と、正極と、非水系電解質
とを備えた非水系電解質電池において、前記非水系電解
質にベンジジン及び/又はその誘導体が添加されている
ことを特徴とする非水系電解質電池。
1. A non-aqueous electrolyte battery comprising a negative electrode using metallic lithium or a substance capable of inserting and extracting lithium as a negative electrode material, a positive electrode, and a non-aqueous electrolyte, wherein benzidine and / or a derivative thereof is contained in the non-aqueous electrolyte. Is added to the non-aqueous electrolyte battery.
【請求項2】前記誘導体が、N,N,N’,N’−テト
ラメチルベンジジン、N,N,N’,N’−テトラエチ
ルベンジジン、N,N,N’,N’−テトラプロピルベ
ンジジン、N,N,N’,N’−テトラブチルベンジジ
ン及びN,N,N’,N’−テトラフェニルベンジジン
よりなる群から選ばれた少なくとも一種のベンジジン誘
導体である請求項1記載の非水系電解質電池。
2. The derivative is N, N, N ′, N′-tetramethylbenzidine, N, N, N ′, N′-tetraethylbenzidine, N, N, N ′, N′-tetrapropylbenzidine, The non-aqueous electrolyte battery according to claim 1, which is at least one benzidine derivative selected from the group consisting of N, N, N ', N'-tetrabutylbenzidine and N, N, N', N'-tetraphenylbenzidine. .
JP14687893A 1993-05-25 1993-05-25 Non-aqueous electrolyte battery Expired - Fee Related JP3208226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14687893A JP3208226B2 (en) 1993-05-25 1993-05-25 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14687893A JP3208226B2 (en) 1993-05-25 1993-05-25 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH06333595A true JPH06333595A (en) 1994-12-02
JP3208226B2 JP3208226B2 (en) 2001-09-10

Family

ID=15417616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14687893A Expired - Fee Related JP3208226B2 (en) 1993-05-25 1993-05-25 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3208226B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019003928A (en) * 2017-06-16 2019-01-10 パナソニックIpマネジメント株式会社 Flow battery
CN113725488A (en) * 2021-08-30 2021-11-30 中汽创智科技有限公司 Metal battery electrolyte and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019003928A (en) * 2017-06-16 2019-01-10 パナソニックIpマネジメント株式会社 Flow battery
CN113725488A (en) * 2021-08-30 2021-11-30 中汽创智科技有限公司 Metal battery electrolyte and application thereof
CN113725488B (en) * 2021-08-30 2023-07-25 中汽创智科技有限公司 Electrolyte for metal battery and application thereof

Also Published As

Publication number Publication date
JP3208226B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
CA2196493C (en) Additives for improving cycle life of non-aqueous rechargeable lithium batteries
US5352548A (en) Secondary battery
JP4543085B2 (en) Additive for lithium secondary battery
CA2215756C (en) Additives for improving cycle life of non-aqueous rechargeable lithium batteries
EP1936731A1 (en) Rechargeable lithium battery
JP6068789B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
JP2000030703A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JPH07320779A (en) Nonaqueous electrolytic battery
JPH0750165A (en) Non-aqueous electrolyte battery
KR20190058134A (en) Electrolytes for lithium metal secondary battery
JPH11224675A (en) Nonaqueous electrolyte battery
US20110250506A1 (en) Non-aqueous electrolyte secondary battery
JP3182255B2 (en) Non-aqueous electrolyte battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JPH05182689A (en) Nonaqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP2001057235A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP5117649B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3229769B2 (en) Lithium secondary battery
JP2999847B2 (en) Non-aqueous electrolyte battery
JP3208226B2 (en) Non-aqueous electrolyte battery
JPH07320778A (en) Nonaqueous electrolytic battery
JP3123780B2 (en) Non-aqueous electrolyte battery
JP2999862B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees