JPH063333A - Continuous ultrasonic measuring instrument - Google Patents

Continuous ultrasonic measuring instrument

Info

Publication number
JPH063333A
JPH063333A JP4166061A JP16606192A JPH063333A JP H063333 A JPH063333 A JP H063333A JP 4166061 A JP4166061 A JP 4166061A JP 16606192 A JP16606192 A JP 16606192A JP H063333 A JPH063333 A JP H063333A
Authority
JP
Japan
Prior art keywords
plate
strip
steel plate
ultrasonic
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4166061A
Other languages
Japanese (ja)
Inventor
Akira Katamine
章 片峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4166061A priority Critical patent/JPH063333A/en
Publication of JPH063333A publication Critical patent/JPH063333A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To prevent a running band-shaped plate from being scratched and, at the same time, to eliminate the influence of disturbance caused by the vibration of the plate by providing caster pairs very closely to the sides of non- contact sensors which scan the plate while the sensors move on the plate forward and backward along the width direction of the plate. CONSTITUTION:Caster pairs 12a-12e and 12a'-12e' are respectively arranged so that they can surround liquid-column ultrasonic sensors 10a-10d and 10a'-10d' and hold a silicon steel plate 14 in between. Therefore, the vibration of the steel plate 14 is suppressed near the sensors and the plate 14 can be stably maintained at a fixed level. Ultrasonic waves 20 transmitted from an ultrasonic wave generator 16a are passed through the steel plate 14 and the damped waves are finally received by an ultrasonic wave receiver 18a which converts the waves into electric signals. Since the electric signals, namely, the output signal of the receiver 18a is made to correspond to the crystal orientation of the steel plate 14, the crystal orientation of the steel plate 14 can be found when the electric signals are processed at a signal processing section.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走行する帯状板の表裏
両面に液柱状超音波センサを対向配置させて、前記帯状
板の測定や探傷を行う装置に係わり、特に、走行する帯
状板に特性劣化や表面疵を発生させることなく、しか
も、前記帯状板の振動による外乱の影響を受けることな
く、前記帯状板の測定や探傷が可能な連続式超音波測定
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring and inspecting a strip-shaped plate by arranging liquid column-shaped ultrasonic sensors on both sides of the strip-shaped plate to face each other. The present invention relates to a continuous ultrasonic measuring device capable of measuring and detecting flaws on a strip without causing characteristic deterioration and surface defects, and without being affected by disturbance caused by vibration of the strip.

【0002】[0002]

【従来の技術】周知の如く、超音波センサは金属材料の
品質評価などに広く利用されているが、超音波センサと
被検査材の間の音響結合を安定的に維持することが常に
大きな課題となっている。
2. Description of the Related Art As is well known, ultrasonic sensors are widely used for quality evaluation of metallic materials, etc., but maintaining stable acoustic coupling between the ultrasonic sensor and the material to be inspected is always a major issue. Has become.

【0003】特に、高速で走行する帯状板の連続測定に
おいては、音響結合流体の供給、被検査材表面の傾き、
超音波センサとの間の距離の変動などが、測定結果に直
接的に影響する。このような影響は、高速で走行する帯
状板を、超音波の共振や干渉を利用して測定する場合
に、とりわけ顕著に現われる。
Particularly in continuous measurement of a strip running at a high speed, the supply of acoustic coupling fluid, the inclination of the surface of the material to be inspected,
Variations in the distance to the ultrasonic sensor directly affect the measurement result. Such an effect is particularly remarkable when a strip plate traveling at high speed is measured by utilizing resonance or interference of ultrasonic waves.

【0004】例えば、特開平1−229962号で開示
されているように、超音波の多重反射干渉強度を用い
て、珪素鋼板の結晶方位を測定すること等が従来から行
なわれている。
For example, as disclosed in Japanese Patent Application Laid-Open No. 1-229962, it has been conventionally practiced to measure the crystal orientation of a silicon steel sheet by using the multiple reflection interference intensity of ultrasonic waves.

【0005】しかし、超音波の多重反射干渉強度を用い
て珪素鋼板の結晶方位を測定する場合には、被測定体で
ある珪素鋼板が振動したり形状不良を起こしたりするた
め、測定位置の変動や測定面の傾きが発生し、究極的
に、大きな検出誤差を生じさせるという問題があった。
However, when the crystal orientation of a silicon steel sheet is measured by using the multiple reflection interference intensity of ultrasonic waves, the silicon steel sheet as the object to be measured vibrates or causes a defective shape, so that the measurement position fluctuates. There is a problem that a tilt of the measurement surface occurs and ultimately causes a large detection error.

【0006】このため、測定装置の前後にピンチローラ
を設置し、珪素鋼板の振動を抑えることによって測定位
置の変動を防止することが一般的に行なわれていた。
又、例えば、特開昭51−29187号で開示されてい
るように、珪素鋼板の張力を上げるなどして珪素鋼板の
振動を抑えることも行われていた。
For this reason, it has been common practice to install pinch rollers in front of and behind the measuring device to suppress the vibration of the silicon steel sheet to prevent the measurement position from fluctuating.
Further, for example, as disclosed in Japanese Patent Laid-Open No. 51-29187, the tension of the silicon steel plate is increased to suppress the vibration of the silicon steel plate.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来例においては、ピンチローラ直下で帯状板の振動を抑
えることができるものの、ピンチローラから測定位置ま
では距離があるため、超音波センサの直下では、再度振
動が発生するという問題があった。
However, in the above-mentioned conventional example, although the vibration of the strip plate can be suppressed just below the pinch roller, there is a distance from the pinch roller to the measurement position. There was a problem that vibration was generated again.

【0008】又、ピンチローラは、軸受や支持構造物が
場所を取るうえ、ピンチローラの曲率半径を小さくする
と帯状板の抑えが不安定になるため、帯状板を超音波セ
ンサの近くで抑えるのが困難であり、帯状板の測定位置
変動を十分に防止することができなかった。
Further, in the pinch roller, the bearing and the supporting structure take up space, and if the radius of curvature of the pinch roller is made small, the restraint of the strip plate becomes unstable. Therefore, the strip plate is restrained near the ultrasonic sensor. However, it was difficult to prevent fluctuations in the measurement position of the strip plate.

【0009】特に、被測定体である帯状板の測定位置変
動を防止できず、該帯状板が部分的に片伸び状態になっ
た場合、超音波センサの前後に設置されるピンチローラ
では対応できないという問題もあった。
In particular, it is not possible to prevent fluctuations in the measurement position of the strip-shaped plate that is the object to be measured, and if the strip-shaped plate is in a partially stretched state, the pinch rollers installed before and after the ultrasonic sensor cannot handle it. There was also a problem.

【0010】又、珪素鋼板の場合、その張力を上げて板
の振動を抑えようとすると、著しい磁性劣化を起こすと
いう制約もあった。
Further, in the case of a silicon steel plate, there is a restriction that if the tension of the silicon steel plate is increased to suppress the vibration of the plate, the magnetic property is significantly deteriorated.

【0011】本発明は、かかる状況に鑑み、上述のよう
な従来例の問題などを解消せんとして成されたものであ
り、走行する帯状板に特性劣化や表面疵を発生させるこ
となく、しかも帯状板の振動による外乱の影響を受ける
ことなく、帯状板の測定や探傷を行うことができる連続
式超音波測定装置を提供することを目的とする。
In view of the above situation, the present invention has been made to solve the above-mentioned problems of the conventional example, and does not cause characteristic deterioration or surface flaws on the running strip plate, and the strip form is not caused. An object of the present invention is to provide a continuous ultrasonic measuring device capable of measuring and detecting flaws on a strip plate without being affected by a disturbance caused by vibration of the plate.

【0012】[0012]

【課題を達成するための手段】本発明は、走行する帯状
板の表裏両面に液柱状超音波センサを対向配置させて、
前記帯状板の測定や探傷を行う連続式超音波測定装置に
おいて、帯状板の幅方向に往復走査する非接触センサ
と、該非接触センサの側方直近に配置された複数個のキ
ャスタ対とを設け、これらのキャスタ対で帯状板を挟持
することにより前記課題を解決したものである。
According to the present invention, liquid column-shaped ultrasonic sensors are arranged to face each other on both front and back surfaces of a running strip.
In a continuous ultrasonic measuring device for measuring and detecting flaws on the strip, a non-contact sensor that reciprocally scans in the width direction of the strip and a plurality of caster pairs arranged laterally near the non-contact sensor are provided. The above problem is solved by sandwiching the strip-shaped plate between these caster pairs.

【0013】[0013]

【作用】一般に、帯状板の振動抑制は、該帯状板を両面
から挟むことにより達成できることに着目し、本発明に
おいては、帯状板を挟む(ピンチする)手段として、帯
状板の表裏両面から帯状板の振動を抑える複数のキャス
タ対を利用する。
In general, it is noted that the vibration suppression of the strip plate can be achieved by sandwiching the strip plate from both sides. Uses multiple pairs of casters to reduce plate vibration.

【0014】即ち、走行する帯状板の表裏両面に対向配
置された非接触式センサとしての液柱式超音波センサの
近くに、該センサの音響結合に悪影響を及ぼさない範囲
で近接させて複数個のキャスタ対を複数個配置し、該帯
状板を表裏両側から挟んで所定位置に保持し、該帯状板
が振動するのを抑制する。
That is, a plurality of liquid column type ultrasonic sensors as non-contact type sensors, which are arranged opposite to each other on the front and back sides of the running strip, are brought close to each other within a range that does not adversely affect acoustic coupling of the sensors. A plurality of caster pairs are arranged, and the strip-shaped plate is sandwiched from both front and back sides and held at a predetermined position to suppress the vibration of the strip-shaped plate.

【0015】前記従来例のピンチローラの場合には、ピ
ンチローラのタッチしていない部分の面積が広く、該部
分で振動が発生するのに対し、キャスタ対を複数個配置
する本発明においては、これらのキャスタ対によって帯
状板のほぼ全面で振動を抑えることができる。
In the case of the conventional pinch roller, the area of the non-touched portion of the pinch roller is large, and vibration is generated in this portion, whereas in the present invention in which a plurality of caster pairs are arranged, With these caster pairs, vibration can be suppressed on almost the entire surface of the strip plate.

【0016】このため、走行する帯状板に特性劣化や表
面疵を発生させることなく、しかも、被測定体である帯
状板の振動による外乱の影響を受けることなく、非接触
式センサとしての液柱式超音波センサにより、帯状板の
測定や探傷を正確かつ高精度に行うことができる。
Therefore, the liquid column as a non-contact type sensor does not cause characteristic deterioration or surface flaws on the running strip plate, and is not affected by the disturbance due to the vibration of the strip plate as the object to be measured. With the ultrasonic ultrasonic sensor, the measurement and flaw detection of the strip plate can be performed accurately and highly accurately.

【0017】特に、前記キャスタ対で帯状板を表裏両面
から挟持すると共に、各キャスタ対を帯状板の板面に垂
直な旋回軸の回りに旋回可能とし、該旋回軸を非接触セ
ンサの架台に固定して非接触センサと一体的に往復走査
するようにした場合には、一層、安定した測定を行うこ
とができる。
In particular, the pair of casters sandwiches the strip-shaped plate from both front and back sides, and each pair of casters can be swiveled around a swivel axis perpendicular to the plate surface of the strip-shaped plate. When the sensor is fixed and reciprocally scanned integrally with the non-contact sensor, more stable measurement can be performed.

【0018】[0018]

【実施例】以下、超音波の多重反射を用いて珪素鋼板の
結晶方位を測定する場合を例示しながら、図面を参照し
て本発明の実施例について詳細に説明する。
EXAMPLES Examples of the present invention will be described in detail below with reference to the drawings while exemplifying a case of measuring the crystal orientation of a silicon steel sheet by using multiple reflection of ultrasonic waves.

【0019】図1は、本実施例のレイアウトを模式的に
示す平面図であり、図2は図1のII−II線に沿う断面図
である。
FIG. 1 is a plan view schematically showing the layout of this embodiment, and FIG. 2 is a sectional view taken along the line II--II of FIG.

【0020】これらの図において、10a 〜10d 、1
0a 〜10d ′は、非接触式センサとしての液柱式超音
波センサ、12a 〜12e 、12a ′〜12e ′は、キ
ャスタ対、14は、図1の太線矢印方向に走行する被測
定体としての珪素鋼板、16a 、18a は、それぞれ液
柱式超音波センサ10a 、10b の一部を構成し、互い
に音響結合される超音波発信器と超音波受信器、20a
は、超音波発信器16a から送信され、珪素鋼板14を
透過し、最終的に超音波受信器18a で受信される超音
波である。
In these figures, 10a to 10d, 1
0a to 10d 'are liquid column type ultrasonic sensors as non-contact type sensors, 12a to 12e, 12a' to 12e 'are caster pairs, and 14 is an object to be measured running in the direction of the thick arrow in FIG. The silicon steel plates 16a and 18a constitute a part of the liquid column type ultrasonic sensors 10a and 10b, respectively, and are ultrasonically coupled to each other by an ultrasonic transmitter and an ultrasonic receiver, 20a.
Is an ultrasonic wave transmitted from the ultrasonic transmitter 16a, transmitted through the silicon steel plate 14, and finally received by the ultrasonic receiver 18a.

【0021】尚、図2の超音波センサ10b 〜10d 、
10b ′〜10d ′も、それらの一部が、超音波センサ
10a 、10a ′の場合と同様、互いに音響結合される
超音波発信器(18b 〜18d )と超音波受信器(18
b ′〜18d ′)で構成されている。
The ultrasonic sensors 10b to 10d shown in FIG.
As for the ultrasonic sensors 10a and 10a ', 10b' to 10d 'also have ultrasonic transmitters (18b to 18d) and ultrasonic receivers (18b) which are acoustically coupled to each other.
b'-18d ').

【0022】図1及び図2のような構成からなる本実施
例において、キャスタ対12a 〜12e 、12a ′〜1
2e ′は、それぞれ超音波センサ10a 〜10d 、10
a ′〜10d ′を取り巻くように多数配置され、これら
のキャスタ対によって珪素鋼板14を挟持している。こ
のため、超音波センサ10a 〜10d 、10a ′〜10
d ′の近傍で珪素鋼板14の振動が抑えられ、珪素鋼板
14が安定した一定レベルを保つことができるようにな
る。
In the present embodiment having the structure as shown in FIGS. 1 and 2, the caster pairs 12a-12e, 12a'-1.
2e 'are ultrasonic sensors 10a to 10d, 10 respectively.
A large number of a'to 10d 'are arranged to sandwich the silicon steel plate 14 between these caster pairs. Therefore, the ultrasonic sensors 10a-10d, 10a'-10
Vibration of the silicon steel plate 14 is suppressed in the vicinity of d ', and the silicon steel plate 14 can maintain a stable and constant level.

【0023】また、図2において、超音波発信器16a
から送信された超音波20a は珪素鋼板14を透過して
減衰した後、最終的に超音波受信器18a で受信されて
電気信号に変換される。この電気信号すなわち超音波受
信器18a の出力信号は、珪素鋼板14の結晶方位に対
応しており、該電気信号を信号処理部(図示せず)で信
号処理することによって珪素鋼板14の結晶方位が求め
られる。
Further, in FIG. 2, the ultrasonic transmitter 16a
The ultrasonic wave 20a transmitted from the ultrasonic wave 20a is transmitted through the silicon steel plate 14 and attenuated, and finally received by the ultrasonic wave receiver 18a and converted into an electric signal. This electric signal, that is, the output signal of the ultrasonic receiver 18a corresponds to the crystal orientation of the silicon steel plate 14, and the crystal orientation of the silicon steel plate 14 is obtained by processing the electric signal by a signal processing unit (not shown). Is required.

【0024】この場合、超音波センサ10a 〜10d 、
10a ′〜10d ′の近傍で、上述のように珪素鋼板1
4の振動が抑えられているため、珪素鋼板14の測定位
置変動が回避され、珪素鋼板14に特性劣化や表面疵を
発生させることなく、しかも珪素鋼板14の振動による
外乱の影響を受けることなく、珪素鋼板14の結晶方位
を求めることができる。
In this case, the ultrasonic sensors 10a to 10d,
In the vicinity of 10a 'to 10d', as described above, the silicon steel plate 1
Since the vibration of No. 4 is suppressed, the measurement position fluctuation of the silicon steel plate 14 is avoided, the characteristic deterioration and the surface flaw are not generated in the silicon steel plate 14, and the influence of the disturbance due to the vibration of the silicon steel plate 14 is not generated. The crystal orientation of the silicon steel plate 14 can be obtained.

【0025】図3は、図1のキャスタ対12b 周辺部分
を拡大して示す平面図であり、図4は、図3のIV−IV線
に沿う断面図である。図3および図4において、図1や
図2と同一記号は同一意味を持たせて使用しここでの重
複説明は省略する。又、22b 、22b ′はそれぞれ珪
素鋼板14に垂直となるように設けられたキャスタ対1
2b 、12b ′用の旋回軸である。
FIG. 3 is an enlarged plan view showing a peripheral portion of the caster pair 12b of FIG. 1, and FIG. 4 is a sectional view taken along line IV-IV of FIG. In FIGS. 3 and 4, the same symbols as those in FIGS. 1 and 2 are used with the same meanings, and duplicate explanations are omitted here. Further, 22b and 22b 'are caster pairs 1 provided so as to be perpendicular to the silicon steel plate 14, respectively.
It is a pivot for 2b and 12b '.

【0026】図3および図4において、キャスタ対12
b は、旋回軸22b の回りに旋回可能であり、該旋回軸
は、非接触センサである液柱式超音波センサ10b の架
台(図示せず)に固定されて、該センサ10b と一体的
に往復走査する。同様に、キャスタ対12b ′は、旋回
軸22b ′の回りに旋回可能であり、該旋回軸は、非接
触センサである液柱式超音波センサ10b ′の架台(図
示せず)に固定されて該センサ10b ′と一体的に往復
走査する。また、キャスタ対12b 、12b ′は、それ
ぞれ旋回軸22b 、22b ′を中心に360°回転可能
であり、走行する珪素鋼板14の振動を効果的に抑える
ことができる。
In FIGS. 3 and 4, the caster pair 12
b is rotatable about a swivel axis 22b, and the swivel axis is fixed to a mount (not shown) of the liquid column type ultrasonic sensor 10b which is a non-contact sensor so as to be integrated with the sensor 10b. Scan back and forth. Similarly, the pair of casters 12b 'can be swiveled around a swivel axis 22b', which is fixed to a mount (not shown) of the liquid column type ultrasonic sensor 10b 'which is a non-contact sensor. Reciprocal scanning is performed integrally with the sensor 10b '. Further, the caster pairs 12b and 12b 'can rotate 360 ° about the swivel shafts 22b and 22b', respectively, so that the vibration of the running silicon steel plate 14 can be effectively suppressed.

【0027】このことは、図1における他のキャスタ対
12a 、12c 〜12e 、12a ′、12c ′〜12e
′についても同様であり、これらのキャスタ対12a
〜12e 、12a ′〜12e ′で珪素鋼板14を挟持す
ることにより、珪素鋼板14の振動を抑えてパスライン
を安定させ、非接触センサである液柱式超音波センサ1
0a 〜10d 、10a ′〜10d ′の水距離の変動を抑
えて、該センサの検出感度を確保する。
This is because the other caster pairs 12a, 12c-12e, 12a ', 12c'-12e in FIG.
The same applies to ′, and these caster pairs 12a
To 12e, 12a 'to 12e' sandwich the silicon steel plate 14 to suppress the vibration of the silicon steel plate 14 and stabilize the pass line, and the liquid column type ultrasonic sensor 1 which is a non-contact sensor.
The fluctuation of the water distance of 0a to 10d, 10a 'to 10d' is suppressed to secure the detection sensitivity of the sensor.

【0028】尚、本発明は上述の実施例に限定されるこ
となく種々の変形が可能であり、例えば、キャスタ対1
2a 〜12e 、12a ′〜12e ′に代えてコロ状のロ
ーラなどを用いても良い。又、珪素鋼板14に代えて他の
鋼板や一般の帯状板の測定に用いても良い。
The present invention is not limited to the above-described embodiment, but various modifications can be made. For example, the caster pair 1
Instead of 2a to 12e and 12a 'to 12e', roller-shaped rollers or the like may be used. Further, instead of the silicon steel plate 14, it may be used for measuring other steel plates or general strip-shaped plates.

【0029】[0029]

【発明の効果】以上詳しく説明したように、本発明にお
いては、走行する帯状板の表裏両面に対向配置された非
接触センサの側方直近に複数個のキャスタを配置し、こ
れらのキャスタ対で帯状板を挟持することにより、該帯
状板の振動を抑えてパスラインを安定させている。この
ため、低張力通板においても、又、平坦度の悪い帯状板
についても、非接触センサである液柱式超音波センサの
水距離の変動を抑えて該センサの検出感度を確保するこ
とができる。
As described in detail above, according to the present invention, a plurality of casters are arranged in the immediate vicinity of the non-contact sensors which are arranged opposite to each other on the front and back surfaces of the traveling strip plate, and the caster pair is used. By sandwiching the strip plate, vibration of the strip plate is suppressed and the pass line is stabilized. Therefore, it is possible to secure the detection sensitivity of the liquid column type ultrasonic sensor, which is a non-contact sensor, by suppressing the fluctuation of the water distance even in the case of a low tension passing plate or a strip plate having poor flatness. it can.

【0030】特に、走行する被測定体である帯状板が板
幅で部分的に片伸び状態になっている場合、すなわち被
測定体である帯状板が平坦となっていない場合であって
も、非接触センサの側方直近に複数個配置されたキャス
タで帯状板を挟持するため、非接触センサの直下で一時
的に平坦化されて拘束された形となり、その結果、帯状
板の振動による外乱の影響を受けることなく、正確かつ
高精度に帯状板の測定や探傷を行うことができるように
なる。
In particular, even when the running strip to be measured is partially stretched in the width of the strip, that is, even if the strip to be measured is not flat, Since the strips are sandwiched by the casters that are placed in the immediate vicinity of the non-contact sensor, the strips are temporarily flattened and constrained just below the non-contact sensor. It is possible to perform accurate and high-precision measurement and flaw detection of the strip plate without being affected by.

【0031】又、上記キャスタ対は、旋回軸を中心に3
60゜回転可能であるため、走行する帯状板の振動を効
果的に抑えることができ、その結果、被測定体である走
行する帯状板に特性劣化や表面疵を発生させることな
く、しかも帯状板の振動による外乱の影響を受けること
なく、正確かつ高精度に帯状板の測定や探傷を行うこと
ができる。
Further, the caster pair is 3 centered around the turning axis.
Since it can rotate by 60 °, it is possible to effectively suppress the vibration of the traveling strip, and as a result, the traveling strip, which is the object to be measured, does not suffer from characteristic deterioration or surface flaws, and the strip does not become damaged. It is possible to perform accurate and high-precision measurement and flaw detection of the strip plate without being affected by the disturbance due to the vibration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例のレイアウトを模式的に示す平面図FIG. 1 is a plan view schematically showing the layout of this embodiment.

【図2】図1のII−II線に沿う断面図FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】図1のキャスタ対周辺部分を拡大して示す平面
FIG. 3 is an enlarged plan view showing the caster pair peripheral portion of FIG. 1;

【図4】図3のIV−IV線に沿う断面図FIG. 4 is a sectional view taken along line IV-IV in FIG.

【符号の説明】[Explanation of symbols]

10a 〜10d 、10a ′〜10d ′…超音波センサ 12a 〜12e 、12a ′〜12e ′…キャスタ対 14…鋼板 16a …超音波発信器 18a …超音波受信器 20a …超音波 22b 、22b ′…旋回軸 10a to 10d, 10a 'to 10d' ... Ultrasonic sensors 12a to 12e, 12a 'to 12e' ... Castor pair 14 ... Steel plate 16a ... Ultrasonic transmitter 18a ... Ultrasonic receiver 20a ... Ultrasonic waves 22b, 22b '... Turning axis

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】走行する帯状板の表裏両面に液柱状超音波
センサを対向配置させて、前記帯状板の測定や探傷を行
う装置において、 前記帯状板の幅方向に往復走査する非接触センサと、 該非接触センサの側方直近に配置された複数個のキャス
タ対とを具備し、 これらのキャスタ対で前記帯状板を挟持することを特徴
とする連続式超音波測定装置。
1. An apparatus for measuring and detecting flaws on a strip-shaped plate by disposing liquid column-shaped ultrasonic sensors on both sides of a strip-shaped plate which is running, and a non-contact sensor that reciprocally scans in the width direction of the strip-shaped plate. A continuous ultrasonic measuring device comprising: a plurality of caster pairs arranged in the immediate vicinity of the non-contact sensor, and sandwiching the strip plate with the caster pairs.
【請求項2】請求項1において、前記キャスタ対は前記
帯状板を表裏両面から挟持すると共に、前記帯状板の板
面に垂直な旋回軸の回りに旋回可能であり、該旋回軸は
前記非接触センサの架台に固定されて、前記非接触セン
サと一体的に往復走査するように構成したことを特徴と
する連続式超音波測定装置。
2. The caster pair according to claim 1, wherein the pair of casters holds the strip plate from both front and back surfaces and is rotatable about a swivel axis perpendicular to a plate surface of the strip plate, the swivel axis being non-rotating. A continuous ultrasonic measuring device, characterized in that it is fixed to a pedestal of a contact sensor and configured to reciprocally scan integrally with the non-contact sensor.
JP4166061A 1992-06-24 1992-06-24 Continuous ultrasonic measuring instrument Pending JPH063333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4166061A JPH063333A (en) 1992-06-24 1992-06-24 Continuous ultrasonic measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4166061A JPH063333A (en) 1992-06-24 1992-06-24 Continuous ultrasonic measuring instrument

Publications (1)

Publication Number Publication Date
JPH063333A true JPH063333A (en) 1994-01-11

Family

ID=15824253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4166061A Pending JPH063333A (en) 1992-06-24 1992-06-24 Continuous ultrasonic measuring instrument

Country Status (1)

Country Link
JP (1) JPH063333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094537A1 (en) 2006-02-14 2007-08-23 Olaworks, Inc. Method and system for tagging digital data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094537A1 (en) 2006-02-14 2007-08-23 Olaworks, Inc. Method and system for tagging digital data

Similar Documents

Publication Publication Date Title
US4976150A (en) Ultrasonic transducers
US5130652A (en) AC magnetic flux leakage flaw detecting apparatus for detecting flaws in flat surfaces with rotating leakage detection element
US8024975B2 (en) Ultrasonic testing method and ultrasonic testing device using this
US4059989A (en) Non-destructive examination of an article particularly a tire, with ultrasonic energy
JPH06186020A (en) Thickness measuring device for running web and web thickness gage
US5678447A (en) On-line web planarity measurement apparatus and method
JPH063333A (en) Continuous ultrasonic measuring instrument
US4655093A (en) Web tension measuring method and device
RU2651431C1 (en) Method of industrial ultrasound diagnostics of vertically oriented defects of prismatic metal products and device for its implementation
JPH0758178B2 (en) Ultrasonic seam detector
JPH1183815A (en) Ultrasonic flaw detecting method and detector
JP2875942B2 (en) Ultrasonic flaw detector
JPH05281213A (en) Oblique-angle probe for ultrasonic flaw detection
JPH05307025A (en) Continuous ultrasonic measuring device
JP2001013118A (en) Electromagnetic ultrasonic probe
JP3119391B2 (en) Online detection device
JP3752807B2 (en) Surface defect detector
JP3096304B2 (en) Structure for measuring properties of foil materials
JP3573967B2 (en) Plate wave ultrasonic inspection method
JP2588838Y2 (en) Textile unevenness defect detection device
JPH0545342A (en) Sensitivity correcting method in ultrasonic surface wave flaw detection
WO1988005168A1 (en) Ultrasonic transducer and a measurement system using the same
JPH1151917A (en) Tire type array probe and measuring device
KR101890866B1 (en) Apparatus for testing
JPS58216950A (en) Ultrasonic flaw detection