JPH0633223A - Film coating product and its production - Google Patents

Film coating product and its production

Info

Publication number
JPH0633223A
JPH0633223A JP21561192A JP21561192A JPH0633223A JP H0633223 A JPH0633223 A JP H0633223A JP 21561192 A JP21561192 A JP 21561192A JP 21561192 A JP21561192 A JP 21561192A JP H0633223 A JPH0633223 A JP H0633223A
Authority
JP
Japan
Prior art keywords
film
substrate
nitrogen
group
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21561192A
Other languages
Japanese (ja)
Inventor
Satoru Nishiyama
哲 西山
Kiyoshi Ogata
潔 緒方
Naoto Kuratani
直人 鞍谷
Akinori Ebe
明憲 江部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP21561192A priority Critical patent/JPH0633223A/en
Publication of JPH0633223A publication Critical patent/JPH0633223A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a film coating product having a film excellent in hardness and toughness on its surface, and to provide its production method. CONSTITUTION:In the film coating product, an the surface of a base body 2, a nitrogen compd. film 6 composed of nitrogen and group IVA elements and group IIIB elements of the periodical table is formed and a mixture layer 4 consisting of the films 6 and 2 is formed on the interface between the relevant intermediate layer 6 and the base body 2. The coated product is obtd. by the vapor deposition of a material containing group IVA elements, vapor deposition of a material containing group IIIB elements, and the, irradiation of ions containing nitrogen ions on the base body 2 in a vacuum chamber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば切削工具、掘
削ビット等の工具、摺動部品等に用いられる膜被着物お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film adherend used for a cutting tool, a tool such as an excavating bit, a sliding part, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来から、工具母材等の基体の耐摩耗
性、摺動性、化学的安定性等を向上させるために、高い
硬度を持つ膜を基体の表面に形成(被着)することが行
われて来た。
2. Description of the Related Art Conventionally, a film having a high hardness is formed (deposited) on the surface of a base material such as a tool base material in order to improve wear resistance, slidability, chemical stability and the like. Things have been done.

【0003】そのような膜を構成する物質の代表的なも
のに、元素周期表の4A族元素であるTi 、Zr 、Hf
の窒化物TiN、ZrN、HfNが挙げられる。これらは
優れた硬度を有し、イオンプレーティング等の手段によ
って膜合成され、各種耐摩耗性分野に広く応用されてい
る。
Typical materials constituting such a film include Ti, Zr and Hf which are elements of Group 4A of the periodic table of elements.
The nitrides TiN, ZrN, and HfN are listed. These have excellent hardness, are subjected to film synthesis by means such as ion plating, and are widely applied to various wear resistance fields.

【0004】また、元素周期表の3B族元素であるB、
Al の窒化物であるBN、AlN、取り分けBNもま
た、耐摩耗性分野での応用が注目されている物質であ
る。
Further, B, which is a 3B group element of the periodic table,
BN, AlN, and especially BN, which are Al nitrides, are also materials which are attracting attention in the field of wear resistance.

【0005】この窒化ホウ素(BN)は、結晶構造によ
って立方晶系閃亜鉛鉱型のもの(c−BN)、六方晶系
のグラファイトと類似した構造のもの(h−BN)、あ
るいは六方晶系のウルツ鉱型のもの(w−BN)等に大
別される。
Depending on the crystal structure, the boron nitride (BN) has a cubic zinc blende type (c-BN), a structure similar to hexagonal graphite (h-BN), or a hexagonal system. Wurtzite type (w-BN).

【0006】中でもc−BNはダイヤモンドに次ぐ高硬
度を有しており、熱的・化学的安定性にも優れているこ
とから、切削工具のような耐摩耗性を必要とする分野に
応用されており、また、電気絶縁性や高熱伝導率を有す
る特徴を活かしてヒートシンク用の材料としても利用さ
れている。w−BNもc−BNより硬度は劣るものの、
他の窒化物より優れた硬度、熱伝導性を有していること
により、c−BNと同様の分野に応用することが期待さ
れている。
Among them, c-BN has high hardness second only to diamond and is excellent in thermal and chemical stability, so that it is applied to a field requiring wear resistance such as a cutting tool. In addition, it is also used as a material for a heat sink by taking advantage of its characteristics of electrical insulation and high thermal conductivity. Although w-BN is inferior in hardness to c-BN,
Since it has hardness and thermal conductivity superior to those of other nitrides, it is expected to be applied to the same field as c-BN.

【0007】これらのc−BNやw−BNは通常は高温
・高圧下で合成され得るものであり、これまでその膜合
成を低温下で行うことは困難であった。しかし近年、真
空蒸着とイオン照射とを併用し、蒸着原子とイオンの衝
突によって蒸着原子を励起し、非熱平衡過程によって低
温下でもc−BN膜を合成できる手法が盛んに試みられ
るようになった。
These c-BN and w-BN can be usually synthesized at high temperature and high pressure, and it has been difficult to synthesize the membrane at low temperature. However, in recent years, a method of synthesizing a c-BN film even at a low temperature by a non-thermal equilibrium process by exciting a vapor deposition atom by collision of the vapor deposition atom with an ion by using both vacuum vapor deposition and ion irradiation has been actively tried. .

【0008】[0008]

【発明が解決しようとする課題】しかしながら、c−B
N、w−BNは高硬度である反面、靱性に欠けるため脆
く、c−BNやw−BNから成る膜を被着した基体を例
えば工具や摺動部品として用いた場合、膜内にクラック
が入り、基体を保護する役割が果たせなくなる。
DISCLOSURE OF THE INVENTION Problem to be Solved by the Invention
Although N and w-BN have high hardness, they are brittle due to lack of toughness. When a substrate coated with a film made of c-BN or w-BN is used as a tool or a sliding part, for example, cracks are generated in the film. It enters and cannot play the role of protecting the substrate.

【0009】また、TiNは比較的靱性に優れているも
のの、硬度はc−BN、w−BNに比較すれば劣るた
め、アブレシブ摩耗の厳しい条件下では、その耐摩耗性
はc−BN、w−BNより劣る。
Further, although TiN is relatively excellent in toughness, it is inferior in hardness to c-BN and w-BN, so that its wear resistance is c-BN, w under severe abrasive wear conditions. -Inferior to BN.

【0010】このように、従来より耐摩耗性分野にてよ
く用いられてきた膜で、硬度および靱性の両方に優れた
膜は未だ見出されていないのが実情である。
As described above, it is the fact that a film which has been conventionally used in the wear resistance field and has excellent hardness and toughness has not yet been found.

【0011】そこでこの発明は、硬度および靱性の両方
に優れた膜を基体の表面に形成した膜被着物およびその
製造方法を提供することを主たる目的とする。
Therefore, the main object of the present invention is to provide a film adherend in which a film excellent in both hardness and toughness is formed on the surface of a substrate and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、この発明の膜被着物は、基体の表面に、元素周期表
の4A族元素、3B族元素および窒素より成る窒素化合
物の膜を形成し、かつ当該膜と基体との界面に両者の構
成元素より成る混合層を形成して成ることを特徴とす
る。
In order to achieve the above object, the film adherend of the present invention forms a film of a nitrogen compound consisting of a group 4A element, a group 3B element and nitrogen of the periodic table on the surface of a substrate. In addition, a mixed layer composed of both constituent elements is formed at the interface between the film and the substrate.

【0013】また、この発明の製造方法は、真空容器内
で基体に対して、元素周期表の4A族元素を含む物質の
蒸着と、元素周期表の3B族元素を含む物質の蒸着と、
窒素イオンを含むイオンの照射とを行うことによって、
前記基体の表面に、4A族元素、3B族元素および窒素
より成る窒素化合物の膜を形成することを特徴とする。
Further, according to the manufacturing method of the present invention, vapor deposition of a substance containing a group 4A element of the periodic table of elements and vapor deposition of a substance containing a group 3B element of the periodic table of elements are performed on a substrate in a vacuum chamber.
By irradiation with ions including nitrogen ions,
A film of a nitrogen compound including a group 4A element, a group 3B element and nitrogen is formed on the surface of the substrate.

【0014】[0014]

【作用】3B族元素の窒化物は一般的に高硬度を有して
いる。一方、4A族元素は一般的に化学的に活性であ
り、これを含む膜は、基体との馴染みが良くなり、内部
応力が発生しにくくなり、靱性に優れたものとなる。し
かもこのような4A族元素の窒化物は、3B族元素の窒
化物ほどではないとしても、硬度も高い。
The nitride of the group 3B element generally has high hardness. On the other hand, the 4A group element is generally chemically active, and a film containing the same becomes better compatible with the substrate, less likely to generate internal stress, and excellent in toughness. Moreover, such a nitride of the 4A group element has a high hardness, though not so much as a nitride of the 3B group element.

【0015】従って、上記膜被着物を構成している、4
A族元素、3B族元素および窒素より成る窒素化合物の
膜は、硬度および靱性の両方に優れたものとなる。しか
もこのような膜と基体との界面に形成された上記のよう
な混合層は、あたかも楔のような作用をするので、基体
に対する膜の密着性も優れたものとなる。
Therefore, the above-mentioned film adherend is constituted by 4
A film of a nitrogen compound including a group A element, a group 3B element and nitrogen has excellent hardness and toughness. Moreover, since the mixed layer as described above formed at the interface between the film and the substrate acts like a wedge, the adhesion of the film to the substrate is also excellent.

【0016】また、上記製造方法によれば、基体の表面
近傍で、照射イオンと蒸着原子との衝突によって蒸着原
子が励起されるので、基体の表面に、4A族元素、3B
族元素および窒素より成る窒素化合物の膜を、基体を高
温に加熱することなく低温下で形成することができる。
しかも、照射イオンと蒸着原子との衝突によって、蒸着
原子が基体の表面に押し込まれるので、上記膜の形成と
併せて、当該膜と基体との界面に上記のような混合層を
低温で形成することができるので、低温下での成膜で
も、膜の基体に対する密着性を向上させることができ
る。
Further, according to the above-mentioned manufacturing method, the vapor deposition atoms are excited near the surface of the substrate by the collision of the irradiation ions and the vapor deposition atoms.
A film of a nitrogen compound including a group element and nitrogen can be formed at a low temperature without heating the substrate to a high temperature.
Moreover, the collision between the irradiation ions and the vapor deposition atoms pushes the vapor deposition atoms onto the surface of the substrate, so that the above-mentioned mixed layer is formed at the interface between the film and the substrate at a low temperature together with the formation of the film. Therefore, the adhesion of the film to the substrate can be improved even when the film is formed at a low temperature.

【0017】[0017]

【実施例】図1は、この発明に係る膜被着物の一例を示
す概略断面図である。この膜被着物は、基体2の表面
に、元素周期表の4A族元素、3B族元素および窒素よ
り成る窒素化合物の膜6を形成し、かつ当該膜6と基体
2との界面に、両者6、2の構成元素より成る混合層4
を形成して成る。
1 is a schematic sectional view showing an example of a film adherend according to the present invention. This film adherent forms a film 6 of a nitrogen compound consisting of 4A group elements, 3B group elements and nitrogen of the periodic table on the surface of the substrate 2, and at the interface between the film 6 and the substrate 2, both 6 Mixed layer 4 composed of 2 constituent elements
Is formed.

【0018】基体2の種類は特定のものに限定されるも
のではなく、例えば高速度工具鋼、超硬合金、あるいは
他の金属、セラミックス、樹脂、更にはその他のもので
も良い。またその形状も特定のものに限定されない。
The type of the substrate 2 is not limited to a particular type, and may be, for example, high speed tool steel, cemented carbide, other metals, ceramics, resins, or other types. Further, the shape is not limited to a particular one.

【0019】膜6を構成する4A族元素にはチタン(T
i)、ジルコニウム(Zr)、ハフニウム(Hf)が属し
ており、3B族元素には例えばホウ素(B)、アルミニ
ウム(Al)が属している。
Titanium (T
i), zirconium (Zr), and hafnium (Hf) belong, and, for example, boron (B) and aluminum (Al) belong to the 3B group element.

【0020】3B族元素の窒化物は一般的に高硬度を有
している。一方、4A族元素は一般的に化学的に活性で
あり、これを含む膜は、基体との馴染みが良くなり、内
部応力が発生しにくくなり、靱性に優れたものとなる。
しかもこのような4A族元素の窒化物は、3B族元素の
窒化物ほどではないとしても、硬度も高い。
The nitride of the 3B group element generally has high hardness. On the other hand, the 4A group element is generally chemically active, and a film containing the same becomes better compatible with the substrate, less likely to generate internal stress, and excellent in toughness.
Moreover, such a nitride of the 4A group element has a high hardness, though not so much as a nitride of the 3B group element.

【0021】従って、上記膜被着物を構成している、4
A族元素、3B族元素および窒素より成る窒素化合物の
膜6は、硬度および靱性の両方に優れたものとなる。そ
の結果、上記膜被着物は、4A族元素の窒化物または3
B族元素の窒化物だけより膜を被着したものよりも、良
好な耐摩耗性、摺動性および化学的安定性を有するよう
になる。しかも、このような膜6と基体2との界面に形
成された上記のような混合層4は、あたかも楔のような
作用をするので、基体2に対する膜6の密着性も優れた
ものとなる。
Therefore, the above-mentioned film adherend is constituted by 4
The film 6 of the nitrogen compound including the group A element, the group 3B element and nitrogen has excellent hardness and toughness. As a result, the film adherent is a nitride of a Group 4A element or 3
It has better wear resistance, slidability and chemical stability than the film-deposited ones containing only Group B element nitrides. Moreover, since the above-mentioned mixed layer 4 formed at the interface between the film 6 and the substrate 2 acts like a wedge, the adhesion of the film 6 to the substrate 2 is also excellent. .

【0022】次に、上記のような膜被着物の製造方法の
例を図2を参照しながら説明する。
Next, an example of a method for manufacturing the above film adherend will be described with reference to FIG.

【0023】図示しない真空排気装置によって真空排気
される真空容器10内に、前述したような基体2を保持
するホルダ12が設けられており、それに向けてこの例
では二つの蒸発源14、16およびイオン源22が配置
されている。また、ホルダ12の近傍には、この例では
膜厚モニタ26およびイオン電流モニタ28が配置され
ている。
A holder 12 for holding the substrate 2 as described above is provided in a vacuum container 10 which is evacuated by a vacuum evacuation device (not shown). To this end, in this example, two evaporation sources 14, 16 and An ion source 22 is arranged. In addition, a film thickness monitor 26 and an ion current monitor 28 are arranged near the holder 12 in this example.

【0024】一方の蒸発源14は、4A族元素を含む物
質18(例えばTi 、Zr 、Hf の単体、あるいはそれ
らの窒化物、酸化物)を蒸発させてそれを基体2の表面
に蒸着させることができる。他方の蒸発源16は、3B
族元素を含む物質20(例えばB、Al の単体、あるい
はそれらの窒化物、酸化物)を蒸発させてそれを基体2
の表面に蒸着させることができる。これらの蒸発源1
4、16の方式は、例えば蒸発材料を電子ビーム加熱、
高周波加熱あるいは抵抗加熱するものであるが、特定の
方式に限定されない。
On the other hand, the evaporation source 14 evaporates a substance 18 containing a group 4A element (for example, a simple substance of Ti, Zr or Hf, or their nitrides or oxides) and deposits it on the surface of the substrate 2. You can The other evaporation source 16 is 3B
A substance 20 containing a group element (for example, a simple substance of B or Al, or a nitride or oxide thereof) is evaporated and the substance is used as a base material
Can be deposited on the surface of. These evaporation sources 1
The methods of 4 and 16 are, for example, electron beam heating of evaporation material,
The heating method is high-frequency heating or resistance heating, but is not limited to a specific method.

【0025】また、上記のような4A族元素を含む物質
の蒸着および3B族元素を含む物質の蒸着は、上記のよ
うな真空蒸着によるものの他に、ターゲットをスパッタ
させるスパッタ蒸着によって行っても良い。
Further, the vapor deposition of the substance containing the group 4A element and the vapor deposition of the substance containing the group 3B element as described above may be performed by the sputter vapor deposition in which a target is sputtered in addition to the above-mentioned vacuum vapor deposition. .

【0026】また、真空蒸着、スパッタ蒸着いずれの場
合も、一つの蒸発源から4A族元素と3B族元素の両方
を含む混合物を加熱あるいはスパッタによって蒸着させ
るようにしても良い。もっともその場合は、両元素より
成る物質の蒸気圧が異なることによって、基体2上に蒸
着される膜の組成比の調整が困難になる場合が多く、そ
の場合は、スパッタ蒸着の方を採用するのが好ましい。
In either of the vacuum vapor deposition and the sputter vapor deposition, a mixture containing both the 4A group element and the 3B group element may be heated or sputtered from one evaporation source. In that case, however, it is often difficult to adjust the composition ratio of the film deposited on the substrate 2 because the vapor pressures of the substances composed of both elements are different. In that case, the sputter deposition is adopted. Is preferred.

【0027】イオン源22は、そこから窒素イオンを含
むイオン24を加速して引き出すことができるものであ
れば、その方式は問わない。例えば、多極磁場型のいわ
ゆるバケット型イオン源が大面積大電流の点で好ましい
が、勿論それ以外のイオン源でも良い。
The ion source 22 may be of any type as long as it can accelerate and extract the ions 24 containing nitrogen ions. For example, a multi-pole magnetic field type so-called bucket type ion source is preferable in terms of large area and large current, but of course, other ion sources may be used.

【0028】図1に示したような膜被着物の製造に際し
ては、まず所望の基体2をホルダ12に取り付けた後、
真空容器10内を真空排気して所定の真空度に保持す
る。その後、蒸発源14および16から前述したような
4A族元素を含む物質18および3B族元素を含む物質
20をそれぞれ蒸発させ、これを基体2の表面に蒸着さ
せる。このとき、膜厚モニタ26を用いて、基体2に到
達する物質18、20の量を計測・調整することができ
る。また、この物質18、20の蒸着と併せて、即ち蒸
着と同時、交互または蒸着後に、イオン源22から前述
したようなイオン24を加速して引き出してこれを基体
2に向けて照射する。このときのイオン24の照射量
は、イオン電流モニタ28で計測・調整することができ
る。
In manufacturing the film adherend as shown in FIG. 1, first, the desired substrate 2 is attached to the holder 12 and then
The inside of the vacuum container 10 is evacuated to maintain a predetermined degree of vacuum. After that, the substance 18 containing the 4A group element and the substance 20 containing the 3B group element as described above are evaporated from the evaporation sources 14 and 16, respectively, and these are evaporated on the surface of the substrate 2. At this time, the film thickness monitor 26 can be used to measure and adjust the amounts of the substances 18 and 20 that reach the substrate 2. Further, in conjunction with the vapor deposition of the substances 18 and 20, that is, simultaneously with vapor deposition, alternately or after vapor deposition, the above-mentioned ions 24 are accelerated and extracted from the ion source 22 and irradiated toward the substrate 2. The irradiation amount of the ions 24 at this time can be measured and adjusted by the ion current monitor 28.

【0029】これによって、基体2の表面に、前述した
ような、4A族元素、3B族元素および窒素より成る窒
素化合物の膜6(図1参照)を形成することができる。
As a result, the film 6 (see FIG. 1) of the nitrogen compound composed of the 4A group element, 3B group element and nitrogen as described above can be formed on the surface of the substrate 2.

【0030】上記の場合のイオン24のエネルギーは、
特定のものに限定されるものではなく、例えば基体2の
種類、特にその耐熱性や成膜膜厚等に応じて決めれば良
い。例えば、金属等の耐熱性の高い基体の場合は、イオ
ン24のエネルギーを2KeV以上にし、樹脂のような
耐熱性の低いものはイオン24のエネルギーを2KeV
未満にすれば良い。
The energy of the ion 24 in the above case is
The material is not limited to a particular one, and may be determined according to, for example, the type of the substrate 2, particularly its heat resistance, film thickness of film formation and the like. For example, in the case of a substrate having a high heat resistance such as metal, the energy of the ions 24 is set to 2 KeV or more, and in the case of a resin having a low heat resistance such as a resin, the energy of the ions 24 is set to 2 KeV.
It should be less than.

【0031】また、形成される膜6内の4A族元素の原
子数、3B族元素の原子数および窒素元素の原子数の比
率も特に限定されないが、例えば、基体2が樹脂のよう
なもので、照射するイオン24のエネルギーとして小さ
いものしか用いることができず、従って膜6と基体2と
の界面に形成される混合層の厚みが大きく取れないもの
は、次のようにしても良い。即ち、膜6と基体2の界面
で4A族元素の原子数が多くなるようにして、それの化
学的活性度の高さを利用して膜6の密着強度を上げ、一
方膜6の表面近傍では膜6の化学的安定性を良くするた
めに、4A族元素の窒化物と3B族元素の窒化物とがそ
れぞれ化学量論的(Stoichiometric)に
なるようにすれば良い。
Further, the ratio of the number of atoms of the 4A group element, the number of atoms of the 3B group element and the number of nitrogen element in the formed film 6 is not particularly limited, but, for example, the substrate 2 is made of resin. If only small energy can be used as the energy of the irradiated ions 24, and therefore the thickness of the mixed layer formed at the interface between the film 6 and the substrate 2 cannot be made large, the following may be performed. That is, the number of atoms of the Group 4A element is increased at the interface between the film 6 and the substrate 2, and the high chemical activity is utilized to increase the adhesion strength of the film 6, while the vicinity of the surface of the film 6 is increased. Then, in order to improve the chemical stability of the film 6, the nitride of the group 4A element and the nitride of the group 3B element may be stoichiometric (Stoichiometric).

【0032】上記のような製造方法によれば、基体2の
表面近傍で、照射イオン24と蒸着原子との衝突によっ
て蒸着原子が励起されるので、基体2の表面に、4A族
元素、3B族元素および窒素より成る窒素化合物の膜6
を、CVD法のように基体2を高温に加熱することなく
例えば室温のような低温下で形成することができる。従
って、基体2の種類が限定されなくなる。
According to the above-described manufacturing method, the vapor deposition atoms are excited by the collision between the irradiation ions 24 and the vapor deposition atoms in the vicinity of the surface of the substrate 2, so that the 4A group element and the 3B group are formed on the surface of the substrate 2. Nitrogen compound film 6 consisting of element and nitrogen
Can be formed at a low temperature such as room temperature without heating the substrate 2 to a high temperature as in the CVD method. Therefore, the type of the base 2 is not limited.

【0033】しかも、照射イオン24と蒸着原子との衝
突によって、蒸着原子が基体2の表面に押し込まれるの
で、上記膜6の形成と併せて、当該膜6と基体2との界
面に、両者6、2の構成元素より成る上記のような混合
層4(図1参照)を同じく低温下で簡単に形成すること
ができる。
Moreover, the collision of the irradiation ions 24 with the vapor deposition atoms pushes the vapor deposition atoms into the surface of the substrate 2. Therefore, at the same time as the formation of the film 6, the vapor deposition atoms 6 are formed at the interface between the film 6 and the substrate 2. The mixed layer 4 (see FIG. 1) as described above composed of the two constituent elements can be easily formed at the same low temperature.

【0034】また、上記のように照射イオン24と蒸着
原子との衝突によって蒸着原子が励起されるので、これ
によって、例えば3B族元素としてホウ素を用いた場
合、膜6内に高温・高圧相である立方晶系閃亜鉛鉱型の
窒化ホウ素(c−BN)や六方晶系ウルツ鉱型の窒化ホ
ウ素(w−BN)が低温下でも形成され、硬度および熱
伝導性に一層優れた膜6を形成することができる。
Further, since the vapor deposition atoms are excited by the collision between the irradiation ions 24 and the vapor deposition atoms as described above, this causes a high temperature / high pressure phase in the film 6 when boron is used as the group 3B element, for example. A cubic cubic zinc blende type boron nitride (c-BN) and a hexagonal wurtzite type boron nitride (w-BN) are formed even at low temperatures, and a film 6 having further excellent hardness and thermal conductivity is formed. Can be formed.

【0035】次に、この発明に従ったより具体的な実施
例と、従来例相当の比較例とについて説明する。
Next, more specific examples according to the present invention and comparative examples corresponding to conventional examples will be described.

【0036】(実施例1)基体2として、高速度工具鋼
(SKH51)を用い、これをホルダ12に設置した
後、真空容器10内を1×10-6Torr以下の真空度
に保った。その後、電子ビームを用いた二つの蒸発源1
6、14より、それぞれホウ素(純度99.5%)とチ
タン(純度99.99%)を加熱、蒸気化して前記基体
2上に蒸着させた。それと同時に、イオン源22内に窒
素ガス(純度99.999%)を導入してイオン化させ
てイオン24として窒素イオンを引き出し、これを前記
基体に加速エネルギー10KeVにて照射した。
(Example 1) As the substrate 2, high speed tool steel (SKH51) was used, which was placed in the holder 12 and then the inside of the vacuum vessel 10 was maintained at a vacuum degree of 1 x 10 -6 Torr or less. After that, two evaporation sources using electron beam 1
From Nos. 6 and 14, boron (purity 99.5%) and titanium (purity 99.99%) were heated and vaporized to be deposited on the substrate 2. At the same time, nitrogen gas (purity 99.999%) was introduced into the ion source 22 and ionized to extract nitrogen ions as ions 24, and the substrate was irradiated with acceleration energy of 10 KeV.

【0037】なお、このとき、形成される膜内に含まれ
るホウ素原子と窒素原子の比(B/N組成比)と、同じ
く形成される膜内に含まれるチタン原子と窒素原子の比
(Ti/N組成比)がそれぞれ1になるように、それぞ
れの元素の蒸発量と窒素イオンの照射量を調整した。
At this time, the ratio of boron atoms to nitrogen atoms contained in the formed film (B / N composition ratio) and the ratio of titanium atoms to nitrogen atoms contained in the formed film (Ti The amount of evaporation of each element and the amount of irradiation of nitrogen ions were adjusted so that each / N composition ratio) was 1.

【0038】このようにして、基体の表面に、B−Ti
−N元素より成る窒素化合物の膜を1μm形成した。
In this way, B-Ti is formed on the surface of the substrate.
A film of a nitrogen compound made of a -N element was formed to a thickness of 1 μm.

【0039】(実施例2)実施例1と同じ基体を用い、
真空容器10内を1×10-6Torr以下の真空度に保
った後、電子ビームを用いた二つの蒸発源16、14よ
りそれぞれアルミニウム(純度99.999%)とチタ
ン(純度99.99%)を加熱、蒸気化して当該基体上
に蒸着させた。それと同時に、イオン源22から実施例
1と同様にして窒素イオンを引き出し、これを基体に加
速エネルギー10KeVにて照射した。
Example 2 Using the same substrate as in Example 1,
After the inside of the vacuum vessel 10 was maintained at a vacuum degree of 1 × 10 −6 Torr or less, aluminum (purity 99.999%) and titanium (purity 99.99%) were respectively supplied from two evaporation sources 16 and 14 using an electron beam. ) Was heated and vaporized to be vapor-deposited on the substrate. At the same time, nitrogen ions were extracted from the ion source 22 in the same manner as in Example 1, and the substrate was irradiated with acceleration energy of 10 KeV.

【0040】なお、このとき、形成される膜内に含まれ
るアルミニウム原子と窒素原子の比(Al/N組成比)
と、同じく形成される膜内に含まれるチタン原子と窒素
原子の比(Ti/N組成比)がそれぞれ1になるよう
に、それぞれの元素の蒸発量と窒素イオンの照射量を調
整した。
At this time, the ratio of aluminum atoms and nitrogen atoms contained in the formed film (Al / N composition ratio).
Then, the evaporation amount of each element and the irradiation amount of nitrogen ions were adjusted so that the ratio of the titanium atom and the nitrogen atom (Ti / N composition ratio) contained in the film similarly formed was 1.

【0041】このようにして、基体の表面に、Al−Ti
−N元素より成る窒素化合物の膜を1μm形成した。
In this way, Al-Ti is formed on the surface of the substrate.
A film of a nitrogen compound made of a -N element was formed to a thickness of 1 μm.

【0042】(実施例3)実施例1と同じ基体を用い、
真空容器10内を1×10-6Torr以下の真空度に保
った後、電子ビームを用いた二つの蒸発源16、14よ
り、それぞれホウ素(純度99.5%)とジルコニウム
(純度99.5%)を加熱、蒸気化して当該基体上に蒸
着させた。それと同時に、イオン源22から実施例1と
同様にして窒素イオンを引き出し、これを基体に加速エ
ネルギー10KeVにて照射した。
Example 3 Using the same substrate as in Example 1,
After the inside of the vacuum vessel 10 was maintained at a vacuum degree of 1 × 10 −6 Torr or less, two evaporation sources 16 and 14 using an electron beam were used to obtain boron (purity 99.5%) and zirconium (purity 99.5), respectively. %) Was heated and vaporized to be vapor-deposited on the substrate. At the same time, nitrogen ions were extracted from the ion source 22 in the same manner as in Example 1, and the substrate was irradiated with acceleration energy of 10 KeV.

【0043】なお、このとき、形成される膜内に含まれ
るホウ素原子と窒素原子の比(B/N組成比)と、同じ
く形成される膜内に含まれるジルコニウム原子と窒素原
子の比(Zr/N組成比)がそれぞれ1になるように、
それぞれの元素の蒸発量と窒素イオンの照射量を調整し
た。
At this time, the ratio of boron atoms to nitrogen atoms contained in the formed film (B / N composition ratio) and the ratio of zirconium atoms to nitrogen atoms contained in the formed film (Zr / N composition ratio) is 1 respectively,
The evaporation amount of each element and the irradiation amount of nitrogen ions were adjusted.

【0044】このようにして、基体の表面に、B−Zr
−N元素より成る窒素化合物の膜を1μm形成した。
In this way, B-Zr is formed on the surface of the substrate.
A film of a nitrogen compound made of a -N element was formed to a thickness of 1 μm.

【0045】(比較例1)実施例1と同じ基体を用い
て、真空容器10内を、1×10-6Torr以下の真空
度に保った後、電子ビームを用いた二つの蒸発源16、
14より、それぞれホウ素(純度99.5%)とチタン
(純度99.99%)を加熱、蒸気化して当該基体上に
蒸着させた。それと同時に、真空容器10内に窒素ガス
(純度99.999%)を導入し、高周波放電による窒
素プラズマを真空容器10内に発生させ、前記蒸発原子
を窒化させた。
Comparative Example 1 Using the same substrate as in Example 1, the inside of the vacuum chamber 10 was maintained at a vacuum degree of 1 × 10 −6 Torr or less, and then two evaporation sources 16 using an electron beam were used.
From No. 14, boron (purity 99.5%) and titanium (purity 99.99%) were heated and vaporized to be vapor-deposited on the substrate. At the same time, nitrogen gas (purity 99.999%) was introduced into the vacuum container 10 to generate nitrogen plasma by high frequency discharge in the vacuum container 10 to nitride the vaporized atoms.

【0046】なお、このとき、形成される膜内に含まれ
るホウ素原子と窒素原子の比(B/N組成比)、同じく
形成される膜内に含まれるチタン原子と窒素原子の比
(Ti/N組成比)がそれぞれ1になるように、それぞ
れの元素の蒸発量と窒素プラズマの照射量を調整した。
At this time, the ratio of boron atoms to nitrogen atoms contained in the formed film (B / N composition ratio) and the ratio of titanium atoms to nitrogen atoms contained in the formed film (Ti / The evaporation amount of each element and the irradiation amount of nitrogen plasma were adjusted so that each N composition ratio) was 1.

【0047】このようにして、基体の表面に、B−Ti
−N元素より成る窒素化合物の膜を1μm形成した。
In this way, B-Ti is formed on the surface of the substrate.
A film of a nitrogen compound made of a -N element was formed to a thickness of 1 μm.

【0048】(比較例2)実施例1と同じ基体を用い、
真空容器10内を1×10-6Torr以下の真空度に保
った後、電子ビームを用いた蒸発源16より、ホウ素
(純度99.5%)を加熱、蒸気化して基体上に蒸着さ
せた。それと同時に、イオン源22から実施例1と同様
にして窒素イオンを引き出し、これを基体に加速エネル
ギー10KeVにて照射した。
(Comparative Example 2) Using the same substrate as in Example 1,
After the inside of the vacuum container 10 was maintained at a vacuum degree of 1 × 10 −6 Torr or less, boron (purity 99.5%) was heated and vaporized by an evaporation source 16 using an electron beam to be deposited on a substrate. . At the same time, nitrogen ions were extracted from the ion source 22 in the same manner as in Example 1, and the substrate was irradiated with acceleration energy of 10 KeV.

【0049】なお、このとき、形成される膜内に含まれ
るホウ素原子と窒素原子の比(B/N組成比)が1にな
るように、ホウ素の蒸発量と窒素イオンの照射量を調整
した。
At this time, the evaporation amount of boron and the irradiation amount of nitrogen ions were adjusted so that the ratio of boron atoms to nitrogen atoms (B / N composition ratio) contained in the formed film was 1. .

【0050】このようにして、基体の表面に、B−N元
素より成る窒素化合物の膜を1μm形成した。
In this way, a film of a nitrogen compound consisting of the BN element was formed to a thickness of 1 μm on the surface of the substrate.

【0051】(比較例3)実施例1と同じ基体を用い、
真空容器10内を1×10-6Torr以下の真空度に保
った後、電子ビームを用いた蒸発源14より、チタン
(純度99.99%)を加熱、蒸気化して当該基体上に
蒸着させた。それと同時に、イオン源22から実施例1
と同様にして窒素イオンを引き出し、これを基体に加速
エネルギー10KeVにて照射した。
(Comparative Example 3) Using the same substrate as in Example 1,
After the inside of the vacuum vessel 10 is maintained at a vacuum degree of 1 × 10 −6 Torr or less, titanium (purity 99.99%) is heated and vaporized by an evaporation source 14 using an electron beam to vapor-deposit it on the substrate. It was At the same time, from the ion source 22 to Example 1
Nitrogen ions were extracted in the same manner as above, and the substrate was irradiated with acceleration energy of 10 KeV.

【0052】なお、このとき、形成される膜内に含まれ
るチタン原子と窒素原子の比(Ti/N組成比)が1と
なるように、チタンの蒸発量と窒素イオンの照射量を調
整した。
At this time, the evaporation amount of titanium and the irradiation amount of nitrogen ions were adjusted so that the ratio of titanium atoms and nitrogen atoms (Ti / N composition ratio) contained in the formed film was 1. .

【0053】このようにして、基体の表面に、Ti−N
元素より成る窒素化合物の膜を1μm形成した。
In this way, Ti-N is formed on the surface of the substrate.
A film of a nitrogen compound containing an element was formed to a thickness of 1 μm.

【0054】(評価)上記実施例1〜3および比較例1
〜3のようにして基体上に窒素化合物の膜を形成した膜
被着物について、10g荷重ビッカース硬度によりその
膜の硬度を測定した。また、AE(アコースティックエ
ミッション)センサ付きスクラッチ試験機によって、膜
の密着強度を測定した。その結果を表1に示す。
(Evaluation) The above Examples 1 to 3 and Comparative Example 1
The hardness of the film was measured by the Vickers hardness under a load of 10 g for the film adherend in which the film of the nitrogen compound was formed on the substrate in the above-described manners. Further, the adhesion strength of the film was measured by a scratch tester with an AE (acoustic emission) sensor. The results are shown in Table 1.

【0055】[0055]

【表1】 [Table 1]

【0056】実施例1〜3のものはいずれも、優れた硬
度と密着性を有していたが、比較例1のものは硬度およ
び密着性のいずれも劣っていた。比較例1のものの硬度
および密着性が劣っていたのは、膜形成時にイオン照射
を用いなかったため、実施例1のように、膜内のBN結
合が硬質のc−BNやw−BNにならず軟質の六方晶系
のグラファイトに類似した構造(h−BN)になってお
り、また膜と基体との界面での混合層の形成が成されな
かったためと考えられる。
All of Examples 1 to 3 had excellent hardness and adhesion, but Comparative Example 1 was inferior in hardness and adhesion. The hardness and adhesion of Comparative Example 1 were inferior because the ion irradiation was not used during the film formation, so that the BN bond in the film was not hard c-BN or w-BN as in Example 1. This is probably because it has a structure (h-BN) similar to that of soft hexagonal graphite and that a mixed layer was not formed at the interface between the film and the substrate.

【0057】また、比較例2、3のものは実施例1、3
と同じような硬度と密着性を有していたが、ビッカース
硬度を測定時の圧痕のクラックの生成状態を比較してみ
ると、実施例1〜3のものには、圧痕の先端にクラック
の生成が認められなかったのに対し、比較例2のもの
は、圧痕の先端にクラックが生じているのが明確に認め
られた。更に、比較例3のものも、僅かではあるが、同
じく圧痕の先端にクラックが生じており、比較例2、3
のものは、いずれも膜の靱性が実施例のものより劣って
いることが判明した。
In Comparative Examples 2 and 3, Examples 1 and 3 are used.
Although it had the same hardness and adhesion as the above, when comparing the generation state of the cracks of the indentation at the time of measuring the Vickers hardness, in Examples 1 to 3, cracks were formed at the tip of the indentation. No generation was observed, whereas in Comparative Example 2, cracks were clearly observed at the tip of the indentation. Further, in Comparative Example 3, cracks were also generated at the tips of the indentations, although the cracks were slightly generated.
It was found that the toughness of each of the films was inferior to that of the example.

【0058】[0058]

【発明の効果】以上のようにこの発明の膜被着物を構成
する膜は、4A族元素、3B族元素および窒素より成る
窒素化合物の膜であるので、硬度および靱性の両方に優
れている。従ってこの発明の膜被着物は、良好な耐摩耗
性、摺動性および化学的安定性を有する。しかもこのよ
うな膜と基体との界面に混合層を形成しているので、基
体に対する膜の密着性も優れたものとなる。
As described above, since the film constituting the film adherend of the present invention is a film of a nitrogen compound consisting of a 4A group element, a 3B group element and nitrogen, it is excellent in both hardness and toughness. Therefore, the film adherend of the present invention has good wear resistance, slidability and chemical stability. Moreover, since the mixed layer is formed at the interface between such a film and the substrate, the adhesion of the film to the substrate becomes excellent.

【0059】また、この発明の製造方法によれば、基体
の表面近傍で、照射イオンと蒸着原子との衝突によって
蒸着原子が励起されるので、基体の表面に、4A族元
素、3B族元素および窒素より成る窒素化合物の膜を、
基体を高温に加熱することなく低温下で形成することが
できる。しかも、照射イオンと蒸着原子との衝突によっ
て、蒸着原子が基体の表面に押し込まれるので、上記膜
の形成と併せて、当該膜と基体との界面に、両者の構成
元素より成る上記のような混合層を同じく低温下で簡単
に形成することができる。その結果、基体の種類に限定
されることなく、密着性に優れた前記膜を形成すること
ができる。
According to the manufacturing method of the present invention, the vapor deposition atoms are excited near the surface of the substrate by the collision between the irradiation ions and the vapor deposition atoms, so that the 4A group element, the 3B group element and A film of nitrogen compound consisting of nitrogen,
It can be formed at low temperatures without heating the substrate to high temperatures. Moreover, since the vapor deposition atoms are pushed into the surface of the substrate due to the collision between the irradiation ions and the vapor deposition atoms, at the same time as the formation of the film, at the interface between the film and the substrate, the constituent elements of both of the above are formed. The mixed layer can likewise easily be formed at low temperatures. As a result, the film having excellent adhesion can be formed regardless of the type of the substrate.

【0060】また、上記のように照射イオンと蒸着原子
との衝突によって蒸着原子が励起されるので、これによ
って、例えば3B族元素としてホウ素を用いた場合、上
記膜内に立方晶系閃亜鉛鉱型の窒化ホウ素(c−BN)
や六方晶系ウルツ鉱型の窒化ホウ素(w−BN)が形成
され、硬度および熱伝導性に一層優れた膜を形成するこ
とができる。
Further, since the vapor deposition atoms are excited by the collision between the irradiation ions and the vapor deposition atoms as described above, when the boron is used as the Group 3B element, for example, cubic cubic sphalerite is contained in the film. Type boron nitride (c-BN)
A hexagonal wurtzite type boron nitride (w-BN) is formed, and a film having more excellent hardness and thermal conductivity can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る膜被着物の一例を示す概略断面
図である。
FIG. 1 is a schematic sectional view showing an example of a film adherend according to the present invention.

【図2】この発明に係る製造方法を実施する装置の一例
を示す概略断面図である。
FIG. 2 is a schematic sectional view showing an example of an apparatus for carrying out the manufacturing method according to the present invention.

【符号の説明】[Explanation of symbols]

2 基体 4 混合層 6 窒素化合物の膜 10 真空容器 14,16 蒸発源 18 4A族元素を含む物質 20 3B族元素を含む物質 22 イオン源 24 窒素イオンを含むイオン 2 Substrate 4 Mixed Layer 6 Nitrogen Compound Film 10 Vacuum Container 14, 16 Evaporation Source 18 4 Substance Containing Group A Element 20 3 Substance Containing Group B Element 22 Ion Source 24 Ion Containing Nitrogen Ion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江部 明憲 京都府京都市右京区梅津高畝町47番地 日 新電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akinori Ebe 47 Umezu Takaunecho, Ukyo-ku, Kyoto City, Kyoto Prefecture Nissin Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基体の表面に、元素周期表の4A族元
素、3B族元素および窒素より成る窒素化合物の膜を形
成し、かつ当該膜と基体との界面に両者の構成元素より
成る混合層を形成して成ることを特徴とする膜被着物。
1. A film of a nitrogen compound consisting of a Group 4A element, a Group 3B element and nitrogen of the periodic table of elements is formed on the surface of a substrate, and a mixed layer consisting of both constituent elements is formed at the interface between the film and the substrate. A film adherend formed by forming.
【請求項2】 真空容器内で基体に対して、元素周期表
の4A族元素を含む物質の蒸着と、元素周期表の3B族
元素を含む物質の蒸着と、窒素イオンを含むイオンの照
射とを行うことによって、前記基体の表面に、4A族元
素、3B族元素および窒素より成る窒素化合物の膜を形
成することを特徴とする膜被着物の製造方法。
2. A substrate in a vacuum chamber, the vapor deposition of a substance containing a group 4A element of the periodic table of elements, the vapor deposition of a substance containing a group 3B element of the periodic table of elements, and the irradiation of ions containing nitrogen ions. Is performed to form a film of a nitrogen compound consisting of a Group 4A element, a Group 3B element and nitrogen on the surface of the substrate by the method described above.
JP21561192A 1992-07-20 1992-07-20 Film coating product and its production Pending JPH0633223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21561192A JPH0633223A (en) 1992-07-20 1992-07-20 Film coating product and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21561192A JPH0633223A (en) 1992-07-20 1992-07-20 Film coating product and its production

Publications (1)

Publication Number Publication Date
JPH0633223A true JPH0633223A (en) 1994-02-08

Family

ID=16675291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21561192A Pending JPH0633223A (en) 1992-07-20 1992-07-20 Film coating product and its production

Country Status (1)

Country Link
JP (1) JPH0633223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763863C1 (en) * 2020-12-11 2022-01-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Method for obtaining acoustic information for monitoring the technological process of surface alloying of ceramic and hard-alloyed tools

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763863C1 (en) * 2020-12-11 2022-01-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Method for obtaining acoustic information for monitoring the technological process of surface alloying of ceramic and hard-alloyed tools

Similar Documents

Publication Publication Date Title
US5264297A (en) Physical vapor deposition of titanium nitride on a nonconductive substrate
WO1991005075A1 (en) Surface-coated hard member for cutting and abrasion-resistant tools
Hilton et al. TiN coatings on M2 steel produced by plasma-assisted chemical vapor deposition
US20110223332A1 (en) Method for depositing cubic boron nitride thin film
JPH0633223A (en) Film coating product and its production
AU648781B2 (en) Physical vapor deposition of titanium nitride on a nonconductive substrate
JPH0718414A (en) Film stuck body and its production
JP2770650B2 (en) Boron nitride-containing film-coated substrate and method for producing the same
JPH06248420A (en) Hard film coated member
JPH05214532A (en) Coated sintered body
JPH0633222A (en) Film coating product and its production
JPH07150337A (en) Production of nitride film
JP2963455B1 (en) Method for forming boron nitride film
JPH0582473B2 (en)
JPH0649637B2 (en) High hardness boron nitride synthesis method
JPH04310515A (en) Highly hard ceramic coating film and its production
JPH07292456A (en) Film coated substrate
JP2861753B2 (en) Substrate coated with boron nitride containing film
JPH1068070A (en) Formation of compound coating
JPS61174378A (en) Production of rigid material coated with boron nitride
JP2961790B2 (en) Method for producing boron nitride-containing thin film-coated substrate
JPH07150336A (en) Film-coated substrate
JPH06330282A (en) Substrate coated with boron nitride-containing film and its production
JPH10204618A (en) Cubic boron nitride-coated composite material and its production
JPH02175694A (en) Diamond coating