JPH0633220Y2 - Vehicle driving force transmission structure - Google Patents

Vehicle driving force transmission structure

Info

Publication number
JPH0633220Y2
JPH0633220Y2 JP1986135788U JP13578886U JPH0633220Y2 JP H0633220 Y2 JPH0633220 Y2 JP H0633220Y2 JP 1986135788 U JP1986135788 U JP 1986135788U JP 13578886 U JP13578886 U JP 13578886U JP H0633220 Y2 JPH0633220 Y2 JP H0633220Y2
Authority
JP
Japan
Prior art keywords
shaft
serration
inner ring
serrations
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986135788U
Other languages
Japanese (ja)
Other versions
JPS6345224U (en
Inventor
文雄 星川
善一 福村
澄治 守安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1986135788U priority Critical patent/JPH0633220Y2/en
Publication of JPS6345224U publication Critical patent/JPS6345224U/ja
Application granted granted Critical
Publication of JPH0633220Y2 publication Critical patent/JPH0633220Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、自動車等の駆動系に関し、特に等速自在継
手を使用した車両用駆動力伝達構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a drive system of an automobile or the like, and more particularly to a drive force transmission structure for a vehicle using a constant velocity universal joint.

〔従来の技術〕 第5図はこの考案が適用される後輪駆動で独立懸架車の
後輪サスペンション(以下 IRSという)を示す部分
断面図である。第5図において、エンジンからの駆動力
を車輪20に伝達するため駆動軸21を介して一対の等
速自在継手が使用される。
[Prior Art] FIG. 5 is a partial cross-sectional view showing a rear wheel suspension (hereinafter referred to as IRS) of a rear-wheel drive independent suspension vehicle to which the present invention is applied. In FIG. 5, a pair of constant velocity universal joints is used via a drive shaft 21 to transmit the driving force from the engine to the wheels 20.

IRSでは、例えば車輪20側にはプランジング方式の
ダブルオフセット型等速自在継手22(以下DOJとい
う)が、一方差動装置23側にはフィックス方式のゼッ
パ型等速自在継手24(以下BJという)が夫々使用さ
れる。
In the IRS, for example, a plunging type double offset type constant velocity universal joint 22 (hereinafter referred to as DOJ) is provided on the wheel 20 side, and a fixed type Zeppe type constant velocity universal joint 24 (hereinafter referred to as BJ) is provided on the differential device 23 side. ) Are used respectively.

近年フィーリング等のNVH特性、即ち騒音、振動及び
耳ざわりの対象として、動力伝達系のガタを抑えること
がなされている。この動力伝達系のうち上記等速自在継
手は大きな要因をしめ、この等速自在継手の円周方向の
ガタを極力小さくすることがNVH特性を向上させる鍵
ともなる。等速自在継手の円周方向ガタは、内輪と駆動
軸のガタ及びボールと内輪、外輪間のガタの2つが考え
られる。
In recent years, the backlash of a power transmission system has been suppressed as an object of NVH characteristics such as feeling, that is, noise, vibration, and feeling of the ear. Among the power transmission systems, the constant velocity universal joint is a major factor, and minimizing play in the circumferential direction of the constant velocity universal joint is also the key to improving NVH characteristics. There are two types of circumferential play in the constant velocity universal joint: play in the inner ring and drive shaft, and play between the ball, inner ring and outer ring.

従来、この内輪と駆動軸のガタを抑えるため、内輪と駆
動軸間は、軸セレーションに捩れ角を設け、その嵌合部
のガタをほぼ完全になくすように、またボールと内輪、
外輪間のガタを抑えるために、各部品の選択組合せを行
っている。
Conventionally, in order to suppress the backlash between the inner ring and the drive shaft, a twist angle is provided in the shaft serration between the inner ring and the drive shaft so that the backlash of the fitting portion is almost completely eliminated.
In order to suppress the looseness between the outer rings, the components are selected and combined.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

ところで、軸セレーションに捩れ角を設け、内輪に嵌合
した場合、その捩れ角の方向とトルク負荷方向によっ
て、内輪及び軸の強度、寿命がバラツクという問題点が
あった。
By the way, when the shaft serration is provided with a twist angle and fitted to the inner ring, there is a problem that the strength and life of the inner ring and the shaft are varied depending on the direction of the twist angle and the torque load direction.

それゆえに、この考案の目的は、等速自在継手の使用箇
所と捩れ方向とを規制することにより、内輪と駆動軸の
ガタを抑え、且つ内輪及び軸の強度を向上させることで
ある。
Therefore, an object of the present invention is to suppress backlash between the inner ring and the drive shaft and to improve the strength of the inner ring and the shaft by restricting the use place and the twisting direction of the constant velocity universal joint.

〔課題を解決するための手段〕[Means for Solving the Problems]

この考案は上記問題点を解決するため、駆動源の左右両
側に延びた各駆動軸の軸セレーションを左右の各等速自
在継手の内輪内径面のセレーションに嵌合してなる車両
用駆動力伝達構造において、上記内輪内径面のセレーシ
ョンを軸方向と平行に形成し、上記各駆動軸の軸セレー
ションに左右の各駆動軸で逆方向、かつトルクの伝達方
向に見て主負荷トルクの方向と同じ方向の捩れを付与
し、上記軸セレーションを内輪内径面のセレーションに
圧入した構成としたものである。
In order to solve the above-mentioned problems, the present invention is to transmit the driving force for a vehicle in which the shaft serrations of the drive shafts extending to the left and right sides of the drive source are fitted to the serrations of the inner ring inner diameter surfaces of the left and right constant velocity universal joints. In the structure, serrations on the inner diameter surface of the inner ring are formed in parallel with the axial direction, and are the same as the main load torque direction when viewed in the torque transmission direction in opposite directions to the shaft serrations of the respective drive shafts in the left and right drive shafts. The shaft serrations are twisted in the direction, and the shaft serrations are pressed into the serrations on the inner diameter surface of the inner ring.

〔作用〕[Action]

この考案にかかる等速自在継手の駆動軸は、軸セレーシ
ョンの反軸端側において、トルク負荷時の内輪セレーヨ
ンと軸セレーションの歯面にかかる応力が、圧入による
応力により打ち消されるので、最大応力が軽減され、内
輪及び駆動軸の強度、寿命を向上させる。また、両方の
セレーションは圧入されているので、ガタが生じない。
The drive shaft of the constant velocity universal joint according to the present invention has the maximum stress on the opposite shaft end side of the shaft serration, since the stress applied to the tooth surfaces of the inner ring serration and the shaft serration at the time of torque load is canceled by the stress due to press fitting. The strength and life of the inner ring and drive shaft are improved. Moreover, since both serrations are press-fitted, there is no backlash.

〔考案の実施例〕[Example of device]

第1図は、第5図に示した後輪サスペンションの差動装
置23側のBJ断面図である。
FIG. 1 is a BJ sectional view of the rear wheel suspension shown in FIG. 5 on the differential device 23 side.

内輪1の内径には、軸方向と平行のセレーション4が形
成され、駆動軸2の端部には、これと嵌合する軸セレー
ション3が形成されている。該軸セレーション3は前述
のガタ対策として捩れ角を設け、上記のセレーション4
に圧入している。
A serration 4 parallel to the axial direction is formed on the inner diameter of the inner ring 1, and a shaft serration 3 that fits with the serration 4 is formed on the end of the drive shaft 2. The shaft serration 3 is provided with a twist angle as a measure against the play described above, and the serration 4 is
Is pressed into.

第2図及び第3図は軸セレーション3の捩れ角αの方向
と、トルクT負荷時に内輪1のセレーション4と軸セレ
ーション3に生ずる応力の分布との関係を示す説明図で
ある。
2 and 3 are explanatory diagrams showing the relationship between the direction of the torsion angle α of the shaft serration 3 and the distribution of stress generated in the serration 4 of the inner ring 1 and the shaft serration 3 when the torque T is applied.

第2図は、捩れ角αがトルトTの方向(第2図(ハ)参
照)に対し逆方向に捩れた場合である。上記の捩れ角α
により、圧入時内輪1のセレーション4と軸セレーショ
ン3の歯面には第2図(イ)(ロ)に示すような応力が
発生し、更にトルクTが負荷されると、反軸端側5に生
ずる応力は加算され、PB=P1+P2となる。
FIG. 2 shows a case where the twist angle α is twisted in the direction opposite to the direction of the tort T (see FIG. 2C). Above twist angle α
As a result, stress as shown in FIGS. 2 (a) and 2 (b) is generated on the tooth surfaces of the serration 4 of the inner ring 1 and the shaft serration 3 during press-fitting, and when the torque T is further applied, the opposite shaft end side 5 The stresses generated at 1 are added, and PB = P1 + P2.

なお、P1は軸セレーション3を内輪セレーション4に
圧入したときに生ずる応力、P2はトルクTの負荷時の
応力である。
Note that P1 is a stress generated when the shaft serration 3 is press-fitted into the inner ring serration 4, and P2 is a stress when the torque T is applied.

一方、第3図(A)は駆動軸2の左端のBJについて、
軸セレーション3の捩れ角αがトルクT伝達方向(エン
ジン又は差動装置から車輪を見る方向、以下同じ)に見
て、そのトルクの方向と同方向の場合であり、トルクT
が負荷されると、反軸端側5に生ずる応力PBは減算さ
れ、PB=P2−P1となる。
On the other hand, FIG. 3 (A) shows the BJ at the left end of the drive shaft 2,
This is the case where the twist angle α of the shaft serration 3 is in the same direction as the direction of the torque T as viewed in the torque T transmission direction (the direction in which the wheels are viewed from the engine or the differential, the same applies below).
Is applied, the stress PB generated on the opposite shaft end side 5 is subtracted, and PB = P2-P1.

即ち、トルク負荷時、内輪セレーション4と軸セレーシ
ョン3の歯面にかかる応力Pは、軸端側6に比べ、反
軸端側5の方が大きいが、第3図(A)に示すように、
トルクTの方向と同じ方向の右捩れの捩れ角αを付与し
た軸セレーション3の場合は、上記応力Pに対して圧
入による応力Pが逆方向であるため、反軸端側5に生
ずる最大応力が軽減される。従って内輪1と軸3の寿命
向上に有効である。
That is, the stress P 2 applied to the tooth flanks of the inner ring serration 4 and the shaft serration 3 at the time of torque load is larger on the non-shaft end side 5 than on the shaft end side 6, but as shown in FIG. 3 (A). To
In the case of the shaft serration 3 in which the right-handed twist angle α in the same direction as the torque T is applied, the stress P 1 due to press fitting is opposite to the stress P 2 and therefore occurs on the opposite shaft end side 5. Maximum stress is reduced. Therefore, it is effective for improving the life of the inner ring 1 and the shaft 3.

第3図(B)は、駆動軸2の右端のDOJについて、軸
セレーション3の捩れ角αがトルクTの伝達方向に見て
そのトルクの方向と同方向の場合を示す。この場合も、
トルク負荷時、内輪セレーション4から軸セレーション
3に加えられる応力Pが、反軸端側5において圧入に
よる応力Pと逆方向になるので、最大応力が軽減され
る。
FIG. 3 (B) shows a case where the twist angle α of the shaft serration 3 is the same as the direction of the torque T of the right end DOJ of the drive shaft 2 when viewed in the transmission direction of the torque T. Also in this case,
When torque is applied, the stress P 2 applied from the inner ring serration 4 to the shaft serration 3 is in the opposite direction to the stress P 1 due to press fitting on the opposite shaft end side 5, so that the maximum stress is reduced.

なお、本願考案は、等速自在継手の形式には直接関係な
く、上記DOJがBJに又BJがDOJに、更に他の形
式の等速自在継手に変更されても良い。
The invention of the present application may be changed to a constant velocity universal joint of DOJ to BJ or DOJ, or another type, regardless of the type of constant velocity universal joint.

第4図に具体的な組合せを示す。同図において、15は
エンジン、16は前輪、17は推進軸、18は差動装
置、19は後輪である。
FIG. 4 shows a specific combination. In the figure, 15 is an engine, 16 is a front wheel, 17 is a propulsion shaft, 18 is a differential device, and 19 is a rear wheel.

図は、フロント及びリヤーに等速自在継手を使用した全
輪駆動の場合を示しているが、勿論前輪駆動車であれ
ば、フロントの駆動軸が、後輪駆動車のIRSであれ
ば、リヤーの駆動軸が対象となる。上記のように、軸セ
レーション3の捩れ角αの方向を考慮し、表−1に示す
ような設定によって、駆動軸の強度及び内輪の寿命を最
大限に向上させることができる。
The figure shows the case of all-wheel drive using constant velocity universal joints for the front and rear, but of course in the case of a front-wheel drive vehicle, if the front drive shaft is the IRS of a rear-wheel drive vehicle, the rear drive The drive axis of is targeted. As described above, the strength of the drive shaft and the life of the inner ring can be maximized by considering the direction of the twist angle α of the shaft serration 3 and making the settings shown in Table-1.

ただし、軸セレーションの捩れ角αの方向は、トルクの
伝達方向にみて右ネジの方向を右方向、左ネジの方向を
左方向とする。
However, regarding the direction of the twist angle α of the shaft serration, the direction of the right-hand screw is the right direction and the direction of the left-hand screw is the left direction when viewed in the torque transmission direction.

例えば、前進急発進時、車体はピッチング(車体前部の
浮き上がり)を生じ、リヤー側に負荷されるトルクは大
きくなる。この場合リヤー側は特に表−1のように、左
側駆動軸Lは右方向、逆に右側駆動軸Rは左方向の捩れ
角αを付与した方が、強度、寿命的に有効である。
For example, when the vehicle suddenly starts to move forward, the vehicle body is pitched (the front portion of the vehicle body is lifted), and the torque applied to the rear side is increased. In this case, it is more effective in terms of strength and life that the left side drive shaft L is provided with a rightward twist angle and the right side drive shaft R is provided with a leftward twist angle α on the rear side, in particular, as shown in Table 1.

一方、後退時はこの逆で、急発進する時車両の後部が浮
き上がり、フロント側のトルクは大きくなり、表−1の
ようにフロント側においては、左側駆動軸Lは左方向、
逆に右側駆動軸Rは右方向の捩れ角αを付与した方が有
効といえる。
On the other hand, when moving backward, the reverse is true. When the vehicle suddenly starts, the rear part of the vehicle floats up and the torque on the front side increases, and as shown in Table-1, on the front side, the left drive shaft L moves to the left,
Conversely, it can be said that it is effective to give the right drive shaft R a rightward twist angle α.

上記のいずれを重視するか、即ちいずれを主負荷トルク
をするかに応じて、トルク伝達方向に見て軸セレーショ
ンの捩れ角の方向をその主負荷トルクの方向と一致さ
せ、また左右の駆動軸でその捩れ角を逆方向に設定す
る。
Depending on which of the above is emphasized, that is, which is the main load torque, the direction of the torsion angle of the shaft serrations is made to coincide with the direction of the main load torque as viewed in the torque transmission direction, and the left and right drive shafts are To set the twist angle in the opposite direction.

なお、ギヤー比の関係で、後退時の方がトルクは大きく
なるが、実際上頻度等の関係で軸セレーション或いは内
輪の強度、寿命に影響が大きい前進時を重視する方が有
効である。
Although the torque is greater when the vehicle is retreating due to the gear ratio, it is more effective to prioritize the vehicle when the vehicle is moving forward, which has a large effect on the shaft serration or the strength and life of the inner ring due to the frequency.

〔効果〕〔effect〕

以上のように、この考案によれば、等速自在継手を使用
した車両用駆動力伝達構造であって、左右の各駆動軸の
軸セレーションに、逆方向で、かつ主負荷トルクの方向
と同じ方向の捩れを付与し、これを内輪内径面のセレー
ションに圧入した構成としたので、軸セレーションの反
軸端側において、トルク負荷時に内輪セレーションと軸
セレーションの歯面にかかる応力が、両セレーションの
圧入による応力により打ち消され、最大応力が軽減され
る。その結果内輪及び駆動軸の強度、寿命を向上させ、
また内輪と駆動軸とのガタを抑え、NVH特性を向上さ
せる効果がある。
As described above, according to the present invention, there is provided a vehicle driving force transmission structure using a constant velocity universal joint, which is opposite to the shaft serrations of the left and right drive shafts in the same direction as the main load torque. Since a twist is applied in the direction, and this is press-fitted into the serration of the inner ring inner diameter surface, the stress applied to the tooth surfaces of the inner ring serration and the shaft serration at the time of torque load on the opposite shaft end side of the shaft serration is It is canceled by the stress due to press fitting, and the maximum stress is reduced. As a result, the strength and life of the inner ring and drive shaft are improved,
Further, it has the effect of suppressing the play between the inner ring and the drive shaft and improving the NVH characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案が適用される後輪サスペンションの差動
装置側のBJ断面図、第2図及び第3図(A)及び
(B)は、内輪・軸に生ずる応力の分布を示した説明
図、第4図は、前輪駆動の場合、本考案の実施例を組合
せた説明図、第5図は、本考案が適用される後輪駆動で
独立懸架車の後輪サスペンション(IRS)を示す部分
断面図である。 1……内輪、2……駆動軸、 3……軸セレーション、4……内輪セレーション、 5……反軸端側、α……捩れ角、 T……トルク、L……左側駆動軸、 R……右側駆動軸。
FIG. 1 is a BJ cross-sectional view of a rear wheel suspension to which the present invention is applied, on the differential side, and FIGS. 2 and 3 (A) and (B) show the distribution of stress generated in the inner ring / shaft. FIG. 4 is an explanatory view in which the embodiments of the present invention are combined in the case of front wheel drive, and FIG. 5 is a rear wheel drive to which the present invention is applied, and a rear wheel suspension (IRS) of an independent suspension vehicle. It is a fragmentary sectional view shown. 1 ... Inner ring, 2 ... Drive shaft, 3 ... Shaft serration, 4 ... Inner ring serration, 5 ... Opposite shaft end side, α ... Twist angle, T ... Torque, L ... Left drive shaft, R ...... Right drive shaft.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8207−3J F16D 1/06 Q (56)参考文献 実開 昭62−166328(JP,U) 特公 昭47−47070(JP,B1) 実公 昭57−30494(JP,Y2)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI technical display location 8207-3J F16D 1/06 Q (56) References: 62-166328 (JP, U) Public 47-47070 (JP, B1) Actual Public 57-30494 (JP, Y2)

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】駆動源の左右両側に延びた各駆動軸の軸セ
レーションを左右の各等速自在継手の内輪内径面のセレ
ーションに嵌合してなる車両用駆動力伝達構造におい
て、上記内輪内径面のセレーションを軸方向と平行に形
成し、上記各駆動軸の軸セレーションに左右の各駆動軸
で逆方向、かつトルクの伝達方向に見て主負荷トルクの
方向と同じ方向の捩れを付与し、上記軸セレーションを
内輪内径面のセレーションに圧入したことを特徴とする
車両用駆動力伝達構造。
Claim: What is claimed is: 1. A vehicle drive force transmission structure comprising shaft serrations of drive shafts extending to the left and right sides of a drive source fitted to serrations of inner ring inner diameter surfaces of left and right constant velocity universal joints. The surface serrations are formed parallel to the axial direction, and the axial serrations of the above drive shafts are twisted in the opposite direction on the left and right drive shafts and in the same direction as the main load torque direction when viewed in the torque transmission direction. A driving force transmission structure for a vehicle, wherein the shaft serration is press-fitted into the serration on the inner diameter surface of the inner ring.
JP1986135788U 1986-09-04 1986-09-04 Vehicle driving force transmission structure Expired - Lifetime JPH0633220Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986135788U JPH0633220Y2 (en) 1986-09-04 1986-09-04 Vehicle driving force transmission structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986135788U JPH0633220Y2 (en) 1986-09-04 1986-09-04 Vehicle driving force transmission structure

Publications (2)

Publication Number Publication Date
JPS6345224U JPS6345224U (en) 1988-03-26
JPH0633220Y2 true JPH0633220Y2 (en) 1994-08-31

Family

ID=31038307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986135788U Expired - Lifetime JPH0633220Y2 (en) 1986-09-04 1986-09-04 Vehicle driving force transmission structure

Country Status (1)

Country Link
JP (1) JPH0633220Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097889A (en) * 2010-11-05 2012-05-24 Ntn Corp Constant velocity universal joint
JP2020153460A (en) * 2019-03-20 2020-09-24 トヨタ自動車株式会社 Drive shaft for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6540167B2 (en) 2015-04-02 2019-07-10 株式会社Ihi Spline connection structure and spline shaft

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730494U (en) * 1980-07-30 1982-02-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097889A (en) * 2010-11-05 2012-05-24 Ntn Corp Constant velocity universal joint
JP2020153460A (en) * 2019-03-20 2020-09-24 トヨタ自動車株式会社 Drive shaft for vehicle

Also Published As

Publication number Publication date
JPS6345224U (en) 1988-03-26

Similar Documents

Publication Publication Date Title
US7896749B2 (en) Direct torque flow connection with optimized ratios in attachment methods
US20090215543A1 (en) Slip yoke with internal splines having permanent coating and related method
JPH0633220Y2 (en) Vehicle driving force transmission structure
WO2021005993A1 (en) Power transmission mechanism and vehicle
JP2001323920A (en) Structure for fitting spline shaft for constant velocity joint
JP2001287122A (en) Manufacturing method and fitting structure for spline shaft for constant velocity joint
JP2001343023A (en) Fitting structure of spline shaft for constant velocity joint
JP2508674B2 (en) Power transmission method for four-wheel drive vehicles
JP3005925B2 (en) Spline connection structure
CN216331423U (en) Vehicle and power assembly thereof
JP2007247771A (en) Torque-transmitting mechanism
JP2007247769A (en) Torque-transmitting mechanism
JP7456243B2 (en) power transmission device
KR20220159113A (en) CFRP drive shaft spline press-fit structure
US20180037109A1 (en) Power transfer unit pinion shaft and propeller shaft coupling member for a vehicle, and methods of use and manufacture thereof
JPS6315053Y2 (en)
US20230103985A1 (en) Face spline coupling for drive-wheel arrangement
JP3998292B2 (en) Shock absorption structure of propeller shaft
KR200142825Y1 (en) Structure of propeller shaft
JP4115320B2 (en) Power transmission shaft
JP2022129698A (en) Wheel bearing device and power transmission structure
JP2006077963A (en) Power transmission structure
JP2939938B2 (en) Power transmission device using two-part propeller shaft
JP2007247770A (en) Torque-transmitting mechanism
JP2006077889A (en) Power transmission structure