JP2022129698A - Wheel bearing device and power transmission structure - Google Patents

Wheel bearing device and power transmission structure Download PDF

Info

Publication number
JP2022129698A
JP2022129698A JP2021028477A JP2021028477A JP2022129698A JP 2022129698 A JP2022129698 A JP 2022129698A JP 2021028477 A JP2021028477 A JP 2021028477A JP 2021028477 A JP2021028477 A JP 2021028477A JP 2022129698 A JP2022129698 A JP 2022129698A
Authority
JP
Japan
Prior art keywords
constant velocity
velocity universal
spline
bearing device
mouth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021028477A
Other languages
Japanese (ja)
Inventor
奈都子 永井
Natsuko Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2021028477A priority Critical patent/JP2022129698A/en
Publication of JP2022129698A publication Critical patent/JP2022129698A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

To provide a wheel bearing device and a power transmission structure that prevents the generation of stick slip sound for a long time, even by the strong torque of an EV motor.SOLUTION: A stem portion 62 is projected out from a bottom portion 61a of a mouth portion 61 of an outside joint member of a constant velocity universal joint. The stem portion is made to be a male spline shaft 65 fitted with a female spline hole of a hub ring. An outer diameter of a mouth side root portion of the male spline shaft is made to be larger than the minimum diameter satisfying torque transmission capacity, and the other part of the male spline shaft is made to be smaller than the outer diameter of the mouth side root portion and satisfy the torque transmission capacity.SELECTED DRAWING: Figure 1

Description

本発明は、自動車等の車両の車輪を支持する車輪用軸受装置、詳しくは、車輪用軸受と等速自在継手とを備え、独立懸架式サスペンションに装着された駆動輪(FF車の前輪、FR車あるいはRR車の後輪、および4WD車の全輪)を懸架装置に対して回転自在に支持する車輪用軸受装置に関するものである。 The present invention relates to a wheel bearing device for supporting a wheel of a vehicle such as an automobile. The present invention relates to a wheel bearing device that rotatably supports a rear wheel of a car or an RR car and all wheels of a 4WD car with respect to a suspension system.

自動車等の車両のエンジン動力を車輪に伝達する動力伝達装置は、エンジンから車輪へ動力を伝達すると共に、悪路走行時における車両のバウンドや車両の旋回時に生じる車輪からの径方向や軸方向変位、およびモーメント変位を許容する必要がある。このため、例えば、エンジン側と駆動車輪側との間に介装されるドライブシャフトの一端が摺動型の等速自在継手を介してデファレンシャルに連結され、他端が固定型の等速自在継手を含む車輪用軸受装置を介して駆動輪に連結されている。 A power transmission device that transmits the engine power of a vehicle such as an automobile to the wheels transmits the power from the engine to the wheels, and also the radial and axial displacement from the wheels that occurs when the vehicle bounces when running on rough roads or when the vehicle turns. , and moment displacement must be allowed. For this reason, for example, one end of a drive shaft interposed between the engine side and the drive wheel side is connected to a differential through a sliding constant velocity universal joint, and the other end is a fixed constant velocity universal joint. is connected to the driving wheels via a wheel bearing device including a

この車輪用軸受装置として従来から種々の構造のものが提案されているが、例えば、図6に示すようなものが知られている。この車輪用軸受装置は、外周に車体に取り付けられるための車体取付フランジ1bを一体に有し、内周に複列の外側転走面1a、1aが一体に形成された外方部材1と、一端部に車輪(図示せず)を取り付けるための車輪取付フランジ4を一体に有し、外周に複列の外側転走面1a、1aの一方に対向する内側転走面2aと、この内側転走面2aから軸方向に延びる円筒状の小径段部2bが形成されたハブ輪2、およびこのハブ輪2の小径段部2bに圧入され、外周に複列の外側転走面1a、1aの他方に対向する内側転走面2aが形成された内輪3からなる内方部材5と、この内方部材5と外方部材1の両転走面間に保持器6、6を介して転動自在に収容された複列のボール7、7と、外方部材1と内方部材5との間に形成される環状空間の開口部に装着されたシール8、9とを備えている。 Various structures have been proposed for this wheel bearing device, and for example, a structure shown in FIG. 6 is known. This wheel bearing device includes an outer member 1 integrally having a vehicle body mounting flange 1b for mounting to a vehicle body on the outer periphery thereof, and having double rows of outer raceway surfaces 1a, 1a integrally formed on the inner periphery thereof; A wheel mounting flange 4 for mounting a wheel (not shown) is integrally provided at one end, and an inner raceway surface 2a facing one of the double-row outer raceway surfaces 1a, 1a on the outer periphery, and the inner raceway surface 2a. A hub wheel 2 formed with a cylindrical small diameter stepped portion 2b extending axially from a raceway surface 2a, and a double row outer raceway surface 1a, 1a which is press-fitted into the small diameter stepped portion 2b of the hub wheel 2 and formed on the outer periphery. An inner member 5 composed of an inner ring 3 having an inner raceway surface 2a facing the other, and rolling between the raceway surfaces of the inner member 5 and the outer member 1 via cages 6, 6. It has double rows of balls 7, 7 which are freely accommodated, and seals 8, 9 which are mounted in openings of an annular space formed between the outer member 1 and the inner member 5. As shown in FIG.

内輪3は、ハブ輪2の小径段部2bの端部を径方向外方に塑性変形させて形成した加締部10によりハブ輪2に対して軸方向に固定されると共に、ハブ輪2に等速自在継手11が連結されている。この等速自在継手11の外側継手部材12は、カップ状のマウス部の底部をなす肩部13と、この肩部13から軸方向に延び、ハブ輪2にセレーション(スプライン)14aを介してトルク伝達可能に内嵌されたステム部14とを一体に有し、肩部13が加締部10と突き合わせ状態で、ハブ輪2と外側継手部材12が固定ナット15を介して軸方向に着脱自在に結合されている。 The inner ring 3 is axially fixed to the hub wheel 2 by a caulking portion 10 formed by radially outwardly plastically deforming the end of the small-diameter stepped portion 2b of the hub wheel 2. A constant velocity universal joint 11 is connected. The outer joint member 12 of the constant velocity universal joint 11 includes a shoulder portion 13 forming the bottom of the cup-shaped mouth portion, and extending axially from the shoulder portion 13 to apply torque to the hub wheel 2 via serrations (splines) 14a. The hub wheel 2 and the outer joint member 12 are axially detachable via a fixing nut 15 with the shoulder portion 13 abutting against the caulking portion 10. is coupled to

こうした車両の車輪には、エンジンから摺動型の等速自在継手11を介してトルクが負荷され、ドライブシャフトに捩じれが生じることが知られている。その結果、ハブ輪2の加締部10と外側継手部材12の肩部13との間に、捩じれによる相対差が生じることになる。ナット15の締付けによる軸力で、加締部10と肩部13の当接面は摩擦抵抗で一緒に動こうとするが、エンジン低速回転時、例えば車両発進時に、更に大きなトルクが負荷され、ドライブシャフトに大きな捩じれが発生した場合、外側継手部材12と内方部材5との当接面が摩擦抵抗に耐えられなくなり、急激なスリップを起こしてスティックスリップ音が発生する。 It is known that torque is applied to the wheels of such a vehicle from the engine through the sliding constant velocity universal joint 11, and the drive shaft is twisted. As a result, a relative difference due to torsion occurs between the caulked portion 10 of the hub wheel 2 and the shoulder portion 13 of the outer joint member 12 . Due to the axial force due to the tightening of the nut 15, the contact surfaces of the caulked portion 10 and the shoulder portion 13 try to move together due to frictional resistance, but when the engine rotates at a low speed, for example, when the vehicle starts, a larger torque is applied. When the drive shaft is greatly twisted, the contact surface between the outer joint member 12 and the inner member 5 cannot withstand the frictional resistance, causing sudden slip and stick-slip noise.

このようなスティックスリップ音を防止する方法としては、従来には、内方部材と外側継手部材の肩部との当接面の摩擦係数を調整するもの(特許文献1)、低摩擦樹脂被膜層を形成したプレートを、内方部材と外側継手部材の肩部との間に介在(挟持)させるもの等があった。 Conventional methods for preventing such stick-slip noise include adjusting the friction coefficient of the contact surface between the inner member and the shoulder portion of the outer joint member (Patent Document 1), low-friction resin coating layer There have been proposals in which a plate formed with a is interposed (sandwiched) between the inner member and the shoulder portion of the outer joint member.

特開2009-149183号公報JP 2009-149183 A 特開2013-082351号公報JP 2013-082351 A

前記特許文献1,2では、トルク伝達に伴う当接面のスティックスリップを抑制するものがあるが、車両使用に伴う経年変化、すなわち、当接面の摩耗や塗膜の剥がれ等により、その効果(スティックスリップを抑制する機能)を長期間に亘り発揮させることが困難であった。 In Patent Literatures 1 and 2, stick-slip of the contact surface due to torque transmission is suppressed, but the effect of the contact surface may deteriorate over time due to use of the vehicle, that is, wear of the contact surface, peeling of the coating film, etc. It was difficult to exert the function (function to suppress stick-slip) for a long period of time.

また、近年、モータやバッテリーの改良により、エンジンを持たない電気駆動の電気自動車(以下、単にEVと呼ぶ場合がある)が、自動車市場において台頭しつつある。EVの特長は、ゼロ発進(停止した状態から走りだすこと)から高速域まで、静かな車となっている。 Also, in recent years, due to improvements in motors and batteries, electric vehicles that do not have an engine (hereinafter simply referred to as EV) are gaining prominence in the automobile market. The feature of EV is that it is a quiet car from zero start (running from a stopped state) to high speed range.

このため、従来の内燃機関の自動車に比べ、僅かなノイズでも気になる。さらに、EV用モータの特性は、発進直後から最大トルクを発生し、車両減速時には回生ブレーキとして使用されることから、当接面には、エンジン車以上の負荷がかかることになる。このため、EV用として、スティックスリップ音を効果的に防止することができるアスクルモジュール(動力伝達構造)が必要であった。 For this reason, compared to conventional automobiles with internal combustion engines, even the slightest noise is noticeable. Furthermore, the characteristic of the EV motor is that it generates a maximum torque immediately after starting and is used as a regenerative brake when decelerating the vehicle, so a load greater than that of an engine vehicle is applied to the contact surface. For this reason, an axle module (power transmission structure) that can effectively prevent stick-slip noise has been required for EVs.

また、当接面でのスティックスリップ音は、高い周波数帯の音、いわゆる、金属音が車体を伝播して聞こえるので、たとえば、タイヤからのロードノイズのように遮音材での対応は困難で、発生源を対策することが必要となる。 In addition, the stick-slip sound on the contact surface is a high-frequency sound, a so-called metallic sound, that can be heard as it propagates through the vehicle body. It is necessary to take countermeasures against the source.

そこで、本願では、スティックスリップの発生源となる、車輪用軸受装置と等速自在継手のスプライン嵌合部でのガタの発生、増大に着目し、該部の嵌合方法(径寸法、雄スプラインの捩れ角等)や強度(雌スプラインの熱処理)を改善することにより、当接面でのスティックスリップ音の発生を防止し、EV用モータの強大なトルクにも、長期間に亘り、
スティックスリップ音が発生しない構造とした車輪用軸受装置および動力伝達構造(アスクルモジュール:一対の等速自在継手と、これらを連結する中間シャフトと、等速自在継手に接続される車輪用軸受装置とを備えたもの)を、提供するものである。
Therefore, in the present application, attention is paid to the occurrence and increase of backlash at the spline fitting portion of the wheel bearing device and the constant velocity universal joint, which is the source of stick-slip, and the fitting method (diameter size, male spline By improving the torsion angle of the spline) and strength (heat treatment of the female spline), it is possible to prevent stick-slip noise from occurring on the contact surface.
Wheel bearing device and power transmission structure that do not generate stick-slip noise (Askul module: a pair of constant velocity universal joints, an intermediate shaft connecting them, and a wheel bearing device connected to the constant velocity universal joint provided).

本発明の車輪用軸受装置は、内周に複列の外側転走面が形成された外方部材と、外周に外側転走面に対向する複列の転走面が形成された内方部材と、外方部材と内方部材との軌道面間に介在される複列の転動体とを備え、内方部材はハブ輪を有し、このハブ輪にスプライン結合を介して等速自在継手のステム部が一体連結される車輪用軸受装置であって、
前記ステム部は、等速自在継手の外側継手部材のマウス部の底部から突出されるとともに、このステム部に、ハブ輪の雌スプライン孔に嵌合する雄スプライン軸を設け、雄スプライン軸のマウス側付け根部の外径を、トルク伝達容量を満たす最小の径よりも大径とするとともに、雄スプライン軸の他の部位をこのマウス側付け根部の外径よりも小径としトルク伝達容量を満たす径としたこものである。
A wheel bearing device of the present invention comprises an outer member having a double-row outer raceway surface formed on its inner periphery and an inner member having a double-row raceway surface opposed to the outer raceway surface formed on its outer periphery. and double-row rolling elements interposed between the raceway surfaces of the outer member and the inner member, the inner member having a hub ring, and a constant velocity universal joint being spline-connected to the hub ring. A wheel bearing device to which the stem portion of is integrally connected,
The stem portion protrudes from the bottom portion of the mouth portion of the outer joint member of the constant velocity universal joint. The outer diameter of the side base is larger than the minimum diameter that satisfies the torque transmission capacity, and the other part of the male spline shaft is made smaller than the outer diameter of the mouth side base to satisfy the torque transmission capacity. This is what I did.

本発明の車輪用軸受装置によれば、等速自在継手のステム部とハブ輪とのスプライン嵌合を、根元側の径を大きくすることができる。これにより、根元側の変形や摩耗を防止できる。 According to the wheel bearing device of the present invention, the spline fitting between the stem portion of the constant velocity universal joint and the hub wheel can be increased in diameter on the root side. As a result, deformation and wear on the root side can be prevented.

前記雄スプライン軸におけるマウス側付け根部のスプライン凸歯に捩れ角を付与するのが好ましい。等速自在継手の雄スプライン軸のスプライン凸歯の捩れ角を、車両の前進時のトルク伝達方向を雄スプライン軸の正回転としたとき、車両発進時に、スプライン凸歯の当たりが、トルク伝達に伴う雄スプライン軸の捩れから解放される方向に、雄スプライン軸のスプライン凸歯に捩れ角を付与することにより、接触圧を緩和でき、ハブ輪の雌スプラインの変形や摩耗を抑制することができる。 It is preferable to impart a twist angle to the spline convex teeth of the mouth-side root portion of the male spline shaft. Assuming that the torsion angle of the convex spline teeth of the male spline shaft of the constant velocity universal joint is the forward rotation of the male spline shaft when the vehicle moves forward, the contact of the convex spline teeth affects the torque transmission when the vehicle starts moving. By imparting a twist angle to the spline convex teeth of the male spline shaft in the direction in which the male spline shaft is released from the accompanying torsion, contact pressure can be alleviated, and deformation and wear of the female spline of the hub wheel can be suppressed. .

前記雄スプライン軸におけるマウス側付け根部のスプライン凸歯の母線形状を円弧状してもよい。このように、円弧状としても、車両発進時に、スプライン凸歯の当たりが、トルク伝達に伴う雄スプライン軸の捩れから解放されるように設定でき、接触圧を緩和でき、ハブ輪の雌スプラインの変形や摩耗を抑制することができる。 The generatrix shape of the spline convex tooth at the root portion on the mouth side of the male spline shaft may be arcuate. In this way, even with the arc shape, when the vehicle starts moving, the contact of the spline convex teeth can be set so as to be released from the torsion of the male spline shaft due to torque transmission, and the contact pressure can be reduced. Deformation and wear can be suppressed.

前記雄スプライン軸におけるマウス側付け根部のスプライン凸歯の母線形状を波型状としてもよい。このように波型とすれば、雄スプライン軸のスプライン凸歯と雌スプライン孔のスプライン凹歯との接触部位が多くなり、荷重が分散されることになる。このため、車両発進時に、スプライン凸歯の当たりが、トルク伝達に伴う雄スプライン軸の捩れから解放されるように設定でき、接触圧を緩和でき、ハブ輪の雌スプラインの変形や摩耗を抑制することができる。 The generatrix shape of the spline convex teeth at the root portion on the mouth side of the male spline shaft may be wave-shaped. Such a corrugated shape increases the number of contact portions between the convex spline teeth of the male spline shaft and the concave spline teeth of the female spline hole, thereby dispersing the load. Therefore, when the vehicle starts moving, the contact of the spline convex teeth can be set so as to be released from the torsion of the male spline shaft due to torque transmission, the contact pressure can be reduced, and the deformation and wear of the female spline of the hub wheel can be suppressed. be able to.

ハブ輪の雌スプライン孔のインボード側開口部の内周部を熱硬化処理部とするのが好ましい。雌スプライン孔のインボード側の開口部は、トルク負荷がかかった際に、変形や摩耗がしやすい部位であるので、このような部位に硬化処理部が形成されていれば、 変形や摩耗を有効に防止できる。 It is preferable that the inner peripheral portion of the inboard side opening of the female spline hole of the hub wheel is heat-cured. The opening of the female spline hole on the inboard side is prone to deformation and wear when a torque load is applied. can be effectively prevented.

本発明の第1の動力伝達構造は、左右一対のドライブシャフトを備えた動力伝達構造であって、各ドライブシャフトは、一対の等速自在継手と、これらの等速自在継手を連結する中間シャフトを備え、左右のドライブシャフトの中間シャフトの軸方向長さが相違し、車輪側に配設される等速自在継手が前記車輪用軸受装置に接続され、左右の等速自在継手におけるマウス側付け根部のスプライン凸歯の捩れ方向を相違させたものである。 A first power transmission structure of the present invention is a power transmission structure comprising a pair of left and right drive shafts, each drive shaft comprising a pair of constant velocity universal joints and an intermediate shaft connecting the constant velocity universal joints. wherein the axial length of the intermediate shaft of the left and right drive shafts is different, the constant velocity universal joint disposed on the wheel side is connected to the wheel bearing device, and the mouth side base of the left and right constant velocity universal joints The torsion direction of the spline convex teeth of the part is made different.

本発明の第2の動力伝達構造は、左右一対のドライブシャフトを備えた動力伝達構造であって、各ドライブシャフトは、一対の等速自在継手と、これらの等速自在継手を連結する中間シャフトを備え、左右のドライブシャフトの中間シャフトの軸方向長さが相違し、車輪側に配設される等速自在継手が前記車輪用軸受装置に接続され、左右の等速自在継手におけるマウス側付け根部のスプライン凸歯の円弧形状を対称としたものである。 A second power transmission structure of the present invention is a power transmission structure comprising a pair of left and right drive shafts, each drive shaft comprising a pair of constant velocity universal joints and an intermediate shaft connecting the constant velocity universal joints. wherein the axial length of the intermediate shaft of the left and right drive shafts is different, the constant velocity universal joint disposed on the wheel side is connected to the wheel bearing device, and the mouth side base of the left and right constant velocity universal joints The arc shape of the spline convex teeth of the part is symmetrical.

本発明の第3の動力伝達構造は、左右一対のドライブシャフトを備えた動力伝達構造であって、各ドライブシャフトは、一対の等速自在継手と、これらの等速自在継手を連結する中間シャフトを備え、左右のドライブシャフトの中間シャフトの軸方向長さが相違し、車輪側に配設される等速自在継手が前記車輪用軸受装置に接続され、少なくとも、スプライン凸歯に捩れ角を付与すること、スプライン凸歯の母線形状を円弧状とすること、スプライン凸歯の母線形状を波型状とすることのいずれかを採用し、かつ、左右の等速自在継手におけるマウス側付け根部のスプライン凸歯形状を相違させたものである。 A third power transmission structure of the present invention is a power transmission structure comprising a pair of left and right drive shafts, each drive shaft comprising a pair of constant velocity universal joints and an intermediate shaft connecting the constant velocity universal joints. , the axial length of the intermediate shaft of the left and right drive shafts is different, the constant velocity universal joint disposed on the wheel side is connected to the wheel bearing device, and at least the spline convex tooth is given a twist angle , making the generatrix shape of the spline convex teeth circular, or making the generatrix shape of the spline convex teeth wavy, and the mouth-side root portion of the left and right constant velocity universal joints It has a different spline convex tooth shape.

本発明では、ハブ輪と等速自在継手のステム部とのスプライン嵌合において、急激なトルク伝達が起こる場合(EV車の発進時等)でも、接触面圧が上昇する部位を強化することができ、嵌合部でのガタの発生を抑制し、長期に亘って内方部材(ハブ輪)と等速自在継手の外側継手部材との間で発生するスティックスリップ音を緩和することができる。 In the present invention, even when abrupt torque transmission occurs in the spline fitting between the hub wheel and the stem portion of the constant velocity universal joint (such as when an EV vehicle starts moving), the portion where the contact surface pressure increases can be strengthened. It is possible to suppress the occurrence of looseness in the fitting portion, and reduce the stick-slip noise generated between the inner member (hub wheel) and the outer joint member of the constant velocity universal joint over a long period of time.

本発明に係る車輪用軸受装置のハブ輪に連結される等速自在継手の外側継手部材のステム部を示す側面図である。FIG. 4 is a side view showing the stem portion of the outer joint member of the constant velocity universal joint that is connected to the hub wheel of the wheel bearing device according to the present invention; 本発明に係る車輪用軸受装置の断面図である。1 is a cross-sectional view of a wheel bearing device according to the present invention; FIG. 本発明の動力伝達構造(アスクルモジュール)の簡略図である。1 is a simplified diagram of a power transmission structure (askle module) of the present invention; FIG. 雄スプライン軸と雌スプライン孔を示し、(a)は大径部の断面図であり、(b)は小径部の断面図である。The male spline shaft and the female spline hole are shown, (a) is a cross-sectional view of the large diameter portion, and (b) is a cross-sectional view of the small diameter portion. 雄スプライン軸のスプライン凸歯と雌スプライン孔のスプライン凹歯との関係を示し、(a)はスプライン凸歯に捩れ角を付与した場合の簡略図であり、(b)はスプライン凸歯の母線形状が円弧状である場合の簡略図であり、(c)はスプライン凸歯の母線形状が波型である場合の簡略図である。The relationship between the spline convex teeth of the male spline shaft and the spline concave teeth of the female spline hole is shown, (a) is a simplified diagram when the twist angle is given to the spline convex teeth, and (b) is the generatrix of the spline convex teeth. It is a simplified diagram when the shape is an arc shape, and (c) is a simplified diagram when the generatrix shape of the spline convex tooth is a wavy shape. 従来の車輪用軸受装置の断面図である。FIG. 2 is a cross-sectional view of a conventional wheel bearing device;

以下本発明の実施形態を図1~図5に基づいて説明する。図3は、本発明に動力伝達構造を示し、この動力伝達構造は、一対のドライブシャフト51A,52Bを備えたものであり、各ドライブシャフト51A,52Bは、一対の等速自在継手53A,54A、53B,54Bと、その一対の等速自在継手53A,54A、53B,54Bを連結する中間シャフト55A,55Bとを備える。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. FIG. FIG. 3 shows a power transmission structure according to the present invention, which includes a pair of drive shafts 51A, 52B each connected to a pair of constant velocity universal joints 53A, 54A. , 53B, 54B, and intermediate shafts 55A, 55B connecting the pair of constant velocity universal joints 53A, 54A, 53B, 54B.

等速自在継手53A,53Bは、固定式等速自在継手が用いられ、等速自在継手54A,54Bは摺動式等速自在継手が用いられる。固定式等速自在継手は、外側継手部材60と、外側継手部材60の内側に配された内側継手部材(図示省略)と、外側継手部材60と内側継手部材との間に介在してトルクを伝達する複数のトルク伝達部材(図示省略)と、外側継手部材60と内側継手部材との間に介在してトルク伝達部材としてのボールを保持するケージ(図示省略)とを主要な部材として構成される。内側継手部材はその孔部内径に中間シャフトの端部を圧入することによりスプライン嵌合してシャフト55(55A,55B)とトルク伝達可能に結合されている。 Fixed constant velocity universal joints are used for the constant velocity universal joints 53A and 53B, and sliding constant velocity universal joints are used for the constant velocity universal joints 54A and 54B. The fixed constant velocity universal joint includes an outer joint member 60, an inner joint member (not shown) disposed inside the outer joint member 60, and a torque interposed between the outer joint member 60 and the inner joint member. A plurality of torque transmission members (not shown) that transmit torque, and a cage (not shown) interposed between the outer joint member 60 and the inner joint member and holding balls as torque transmission members are configured as main members. be. The inner joint member is spline-fitted by press-fitting the end of the intermediate shaft into the inner diameter of the hole to be coupled to the shaft 55 (55A, 55B) so that torque can be transmitted.

外側継手部材60はマウス部61と軸部(ステム部とも呼ばれる)62とからなり、マウス部61は一端にて開口した椀状で、その内球面に、軸方向に延びた複数のトラック
溝が円周方向等間隔に形成されている。そのトラック溝はマウス部の開口端まで延びている。内側継手部材は、その外球面に、軸方向に延びた複数のトラック溝が円周方向等間隔に形成されている。
The outer joint member 60 is composed of a mouth portion 61 and a shaft portion (also called a stem portion) 62. The mouth portion 61 is bowl-shaped with one end open and has a plurality of axially extending track grooves on its inner spherical surface. They are formed at equal intervals in the circumferential direction. The track groove extends to the open end of the mouth portion. The inner joint member has a plurality of axially extending track grooves formed at equal intervals in the circumferential direction on its outer spherical surface.

また、マウス部61の開口部はブーツ63にて塞がれている。ブーツ63は、大径部63aと、小径部63bと、大径部63aと小径部63bとを連結する蛇腹部63cとからなる。大径部63aがマウス部61の開口部に外嵌され、この状態でブーツバンド64にて締結される。また、小径部63bがシャフト55のブーツ装着部に外嵌され、この状態でブーツバンド64にて締結されている。 Also, the opening of the mouth portion 61 is closed with a boot 63 . The boot 63 includes a large diameter portion 63a, a small diameter portion 63b, and a bellows portion 63c connecting the large diameter portion 63a and the small diameter portion 63b. The large-diameter portion 63a is fitted over the opening of the mouth portion 61 and fastened with a boot band 64 in this state. Also, the small diameter portion 63b is fitted onto the boot mounting portion of the shaft 55, and is fastened with the boot band 64 in this state.

摺動式等速自在継手は、外側継手部材70と、内側継手部材と、外側継手部材70と内側継手部材との間に介在されるトルク伝達部材としてのボールと、このボールを保持するポケットを有するケージとを備えたものである。外側継手部材はその孔部内径に中間シャフト55(55A,55B)の端部を圧入することによりスプライン嵌合してシャフトとトルク伝達可能に結合されている。 The sliding constant velocity universal joint includes an outer joint member 70, an inner joint member, a ball as a torque transmission member interposed between the outer joint member 70 and the inner joint member, and a pocket for holding the ball. and a cage having The outer joint member is spline-fitted by press-fitting the end of the intermediate shaft 55 (55A, 55B) into the inner diameter of the hole to be coupled to the shaft so that torque can be transmitted.

外側継手部材70はマウス部71と軸部(ステム部とも呼ばれる)72とからなり、その内径面に、軸方向に延びた複数のトラック溝が円周方向等間隔に形成され、内側継手部材は、その外径面に、軸方向に延びた複数のトラック溝が円周方向等間隔に形成されている。 The outer joint member 70 is composed of a mouth portion 71 and a shaft portion (also called a stem portion) 72. A plurality of axially extending track grooves are formed on the inner diameter surface of the outer joint member 70 at regular intervals in the circumferential direction. , a plurality of axially extending track grooves are formed at equal intervals in the circumferential direction on the outer diameter surface thereof.

また、マウス部71の開口部はブーツ73にて塞がれている。ブーツ73は、大径部73aと、小径部73bと、大径部73aと小径部73bとを連結する蛇腹部73cとからなる。大径部がマウス部の開口部に外嵌され、この状態でブーツバンド74にて締結される。また、小径部73bがシャフト55のブーツ装着部に外嵌され、この状態でブーツバンド74にて締結されている。 Also, the opening of the mouth portion 71 is closed with a boot 73 . The boot 73 includes a large diameter portion 73a, a small diameter portion 73b, and a bellows portion 73c connecting the large diameter portion 73a and the small diameter portion 73b. The large-diameter portion is fitted over the opening of the mouth portion and fastened with a boot band 74 in this state. Also, the small diameter portion 73b is fitted onto the boot mounting portion of the shaft 55, and is fastened with a boot band 74 in this state.

ところで、固定式等速自在継手は角度変位だけを許容するものであり、摺動式等速自在継手は、角度変位だけでなく軸方向変位(プランジング)も可能であり、固定式等速自在継手には、トラック溝の溝底が円弧部のみからなるバーフィールド型等速自在継手(BJ)と、トラック溝の溝底が円弧部と直線部とからなるアンダーカットフリー型等速自在継手(UJ)等がある。また、摺動式等速自在継手には、トリポード型等速自在継手、ダブルオフセット型等速自在継手、クロスグルーブ型等速自在継手などがある。本発明において、これらの種々のタイプの等速自在継手を用いることができる。 By the way, a fixed constant velocity universal joint allows only angular displacement, and a sliding constant velocity universal joint allows not only angular displacement but also axial displacement (plunging). Joints include a Barfield type constant velocity universal joint (BJ) in which the groove bottom of the track groove consists only of an arc part, and an undercut-free type constant velocity universal joint in which the groove bottom of the track groove consists of an arc part and a straight part ( UJ), etc. Further, sliding constant velocity universal joints include tripod constant velocity universal joints, double offset constant velocity universal joints, cross groove constant velocity universal joints, and the like. These various types of constant velocity universal joints can be used in the present invention.

摺動式等速自在継手54A,54Bの外側継手部材70のステム部72は、モータ、減速機、デフ(デファレンシャル)を含む動力部75に連結される。そして、固定式等速自在継手53A,53Bの外側継手部材60,60が車輪用軸受装置に接続される。 A stem portion 72 of the outer joint member 70 of the sliding constant velocity universal joints 54A, 54B is connected to a power portion 75 including a motor, a speed reducer, and a differential. Then, the outer joint members 60, 60 of the fixed constant velocity universal joints 53A, 53B are connected to the wheel bearing device.

車輪用軸受装置は、図2に示すように、外方部材22、ハブ輪23、内輪24、転動体としてのボール25および保持器26を主な構成とし、所謂、第3世代と称される構成を備えている。以下の説明では、車両に組み付けた状態で車両の外側寄りとなる側をアウター側(図2の左側)、中央寄りとなる側をインナー側(図2の右側)という。 As shown in FIG. 2, the wheel bearing device is mainly composed of an outer member 22, a hub ring 23, an inner ring 24, balls 25 as rolling elements, and a retainer 26, and is called a so-called third generation. It has configuration. In the following description, the side that is closer to the outside of the vehicle when assembled to the vehicle is called the outer side (left side in FIG. 2), and the side that is closer to the center is called the inner side (right side in FIG. 2).

内方部材21は、ハブ輪23と内輪24とから構成されている。ハブ輪23は、その外周に外方部材22の複列の外側軌道面27、27の一方(アウター側)に対向する内側軌道面29が直接形成され、アウター側の端部に車輪(図示省略)を取り付けるための車輪取付フランジ(図示省略)が一体に形成されている。 The inner member 21 is composed of a hub ring 23 and an inner ring 24 . The hub wheel 23 has an inner raceway surface 29 directly formed on its outer periphery that faces one (outer side) of the double-row outer raceway surfaces 27 of the outer member 22, and a wheel (not shown) at the end on the outer side. ) is integrally formed with a wheel mounting flange (not shown).

ハブ輪23の外周には内側軌道面29から軸方向にインナー側に延びる円筒状の小径段部30が形成され、この小径段部30に内輪24が所定の締め代で圧入されている。内輪24の外周には、外方部材22の複列の外側軌道面27、27の他方(インナー側)に対向する内側軌道面29が形成されている。外方部材22の外側軌道面27、27と内方部材21の内側軌道面29、29との間に複数のボール25、25が組み込まれ、ボール25は保持器26に周方向所定間隔で収容されている。 A cylindrical small-diameter stepped portion 30 extending axially toward the inner side from the inner raceway surface 29 is formed on the outer periphery of the hub wheel 23, and the inner ring 24 is press-fitted into the small-diameter stepped portion 30 with a predetermined interference. An inner raceway surface 29 is formed on the outer circumference of the inner ring 24 so as to face the other (inner side) of the double-row outer raceway surfaces 27 , 27 of the outer member 22 . A plurality of balls 25, 25 are incorporated between the outer raceway surfaces 27, 27 of the outer member 22 and the inner raceway surfaces 29, 29 of the inner member 21, and the balls 25 are accommodated in the retainer 26 at predetermined intervals in the circumferential direction. It is

また、ハブ輪23のアウター側の端面には、アウター側へ延びる短円筒形状のパイロット23aが設けられている。このパイロット23aが、図示省略のディスクブレーキのロータの内径面(内周)を案内する。また、外方部材22と内方部材21との間に形成された環状空間の開口を一対の密封装置31,32にて密閉している。 A short cylindrical pilot 23a extending toward the outer side is provided on the outer end face of the hub wheel 23 . This pilot 23a guides the inner diameter surface (inner circumference) of the rotor of a disc brake (not shown). Also, the opening of the annular space formed between the outer member 22 and the inner member 21 is sealed by a pair of sealing devices 31 and 32 .

等速自在継手53の外側継手部材60は、図1に示すように、カップ状のマウス部61の底部をなす肩部61aと、この肩部61aから軸方向に延びるステム部62とを有する。そして、このステム部62は、雄スプライン軸65と、この雄スプライン軸65からねじ部66(図3参照)とが形成されている。 As shown in FIG. 1, the outer joint member 60 of the constant velocity universal joint 53 has a shoulder portion 61a forming the bottom of a cup-shaped mouth portion 61 and a stem portion 62 extending axially from the shoulder portion 61a. The stem portion 62 is formed with a male spline shaft 65 and a screw portion 66 (see FIG. 3) extending from the male spline shaft 65 .

そして、図2に示すように、ハブ輪23には雌スプライン孔67が設けられ、この雌スプライン孔67に外側継手部材60のステム部62の雄スプライン軸65が嵌合(嵌入)され、雌スプライン孔67から突出したステム部62のねじ部66にナット部材が螺着する。これによって、ハブ輪23と等速自在継手の外側継手部材とが一体化される。 As shown in FIG. 2, the hub wheel 23 is provided with a female spline hole 67, into which the male spline shaft 65 of the stem portion 62 of the outer joint member 60 is fitted (inserted). A nut member is screwed onto the threaded portion 66 of the stem portion 62 protruding from the spline hole 67 . As a result, the hub wheel 23 and the outer joint member of the constant velocity universal joint are integrated.

この場合、雄スプライン軸65は、図4(a)(b)に示すように、その外径面に、スプライン凸歯68aと、スプライン凹歯68bとが交互に周方向に沿って形成されたものであり、マウス側付け根部の外径を、トルク伝達容量を満たす最小の径よりも大径とするとともに、雄スプライン軸65の他の部位をこのマウス側付け根部の外径よりも小径としトルク伝達容量を満たす径としている。すなわち、図1に示すように、雄スプライン軸65がマウス側付け根部を大径部65aとして、この大径部65aよりもねじ部側を小径部65bとしている。 In this case, as shown in FIGS. 4(a) and 4(b), the male spline shaft 65 has spline convex teeth 68a and spline concave teeth 68b alternately formed along the circumferential direction on its outer diameter surface. The outer diameter of the base on the mouse side is made larger than the minimum diameter that satisfies the torque transmission capacity, and the other part of the male spline shaft 65 is made smaller than the outer diameter of the base on the mouse side. It has a diameter that satisfies the torque transmission capacity. That is, as shown in FIG. 1, the male spline shaft 65 has a large diameter portion 65a at the base on the mouth side and a small diameter portion 65b at the screw portion side of the large diameter portion 65a.

マウス側付け根部の外径、つまり、大径部65aの外径とは、スプライン凸歯68aの歯先の先端面中央が描く円の直径であり、小径部65bの径(外径)もスプライン凸歯68aの歯先の先端面中央が描く円の直径である。すなわち、大径部65aの外径をD1(図4(a)参照)とし、小径部65bの外径をD2(図4(b)参照)とした際に、D1>D2とし、D1が例えば、32.2mmから24.4mm程度であれば、D1-D2を例えば、1mmから2mm程度に設定する。 The outer diameter of the root portion on the mouse side, that is, the outer diameter of the large diameter portion 65a is the diameter of the circle drawn by the center of the tip surface of the tooth tip of the spline convex tooth 68a. It is the diameter of the circle drawn by the center of the tip surface of the tip of the convex tooth 68a. That is, when the outer diameter of the large-diameter portion 65a is D1 (see FIG. 4A) and the outer diameter of the small-diameter portion 65b is D2 (see FIG. 4B), D1>D2, and D1 is, for example, , 32.2 mm to 24.4 mm, D1-D2 is set to, for example, 1 mm to 2 mm.

また、雄スプライン軸65の全長をLとし、大径部65aの長さをL1とし、小径部65bの長さをL2としたときに、L=L1+L2となり、L1:L2=1:2程度とする。雄スプライン軸65のスプライン凸歯68aの断面形状としては、図例では、台形状であったが、頂部が凸アール形状の山形形状のものであってよい。 Further, when the total length of the male spline shaft 65 is L, the length of the large diameter portion 65a is L1, and the length of the small diameter portion 65b is L2, then L=L1+L2 and L1:L2=1:2. do. The cross-sectional shape of the spline convex tooth 68a of the male spline shaft 65 is trapezoidal in the illustrated example, but may be a chevron shape with a convex rounded top.

雌スプライン孔67は、図4(a)(b)に示すように、ハブ輪23の軸心孔の内径面に、スプライン凸歯69aと、スプライン凹歯69bとが交互に周方向に沿って形成されたものであり、雄スプライン軸65に対応して、インボード側に大径部67aが形成され、この大径部67aからアウトボード側が小径部67bとされている。大径部67aの外径をD3とし、小径部67bの外径をD4とした際に、D3>D4とし、D3-D4を例えば、1mmから2mm程度に設定する。 As shown in FIGS. 4(a) and 4(b), the female spline hole 67 has spline convex teeth 69a and spline concave teeth 69b alternately arranged along the inner diameter surface of the axial hole of the hub wheel 23 along the circumferential direction. Corresponding to the male spline shaft 65, a large diameter portion 67a is formed on the inboard side, and a small diameter portion 67b is formed on the outboard side from the large diameter portion 67a. When the outer diameter of the large-diameter portion 67a is D3 and the outer diameter of the small-diameter portion 67b is D4, D3>D4, and D3-D4 is set to, for example, about 1 mm to 2 mm.

また、雌スプライン孔67の全長をL5とし、大径部67aの長さをL3とし、小径部67bの長さをL4としたときに、L5=L3+L4となり、L3:L4=1:2程度とする。雌スプライン孔67のスプライン凸歯69aの断面形状としては、図例では、台形状であったが、頂部が凸アール形状の山形形状のものであってよい。 Further, when the total length of the female spline hole 67 is L5, the length of the large diameter portion 67a is L3, and the length of the small diameter portion 67b is L4, L5=L3+L4, and L3:L4=1:2. do. The cross-sectional shape of the spline convex tooth 69a of the female spline hole 67 is trapezoidal in the illustrated example, but may be a mountain-like shape with a convex rounded top.

本発明の車輪用軸受装置によれば、等速自在継手53のステム部62とハブ輪23とのスプライン嵌合を、根元側の径を大きくすることができる。これにより、根元側の変形や摩耗を防止できる。ハブ輪23と等速自在継手53のステム部62とのスプライン嵌合において、急激なトルク伝達が起こる場合(EV車の発進時等)でも、接触面圧が上昇する部位を強化することができ、嵌合部でのガタの発生を抑制し、長期に亘って内方部材21(ハブ輪23)と等速自在継手53の外側継手部材60との間で発生するスティックスリップ音を緩和することができる。 According to the wheel bearing device of the present invention, the spline fitting between the stem portion 62 of the constant velocity universal joint 53 and the hub wheel 23 can be increased in diameter on the root side. As a result, deformation and wear on the root side can be prevented. In the spline fitting between the hub wheel 23 and the stem portion 62 of the constant velocity universal joint 53, even when sudden torque transmission occurs (when an EV vehicle starts moving, etc.), the portion where the contact surface pressure increases can be reinforced. and to suppress the occurrence of backlash at the fitting portion, and to alleviate the stick-slip noise generated between the inner member 21 (hub wheel 23) and the outer joint member 60 of the constant velocity universal joint 53 over a long period of time. can be done.


ところで、前記実施形態では、雄スプライン軸65のスプライン凸歯68aは、ステム部62の軸心に沿って伸びるものであったが、図5(a)に示すように、捩れ角θが付与されたものであってもよい。このように、捩れ角θが付与され場合、雌スプライン孔67のスプライン凹歯69bに対して、強く当たる部位と、緩衝部位とが生じる。この捩れθとして、例えば、6 ′から14 ′程度に設定される。

By the way, in the above embodiment, the spline convex teeth 68a of the male spline shaft 65 extend along the axis of the stem portion 62, but as shown in FIG. It can be anything. Thus, when the torsion angle θ is given, the spline concave tooth 69b of the female spline hole 67 is strongly hit and a cushioning portion is generated. This twist .theta. is set, for example, from about 6' to 14'.

等速自在継手53の雄スプライン軸65のスプライン凸歯68aの捩れ角θを、車両の前進時のトルク伝達方向を雄スプライン軸65の正回転としたとき、車両発進時に、スプライン凸歯68aの当たりが、トルク伝達に伴う雄スプライン軸65の捩れから解放される方向に、雄スプライン軸65のスプライン凸歯68aに捩れ角θを付与することにより、接触圧を緩和でき、ハブ輪23の雌スプライン孔67の変形や摩耗を抑制することができる。 When the torsion angle θ of the spline convex teeth 68a of the male spline shaft 65 of the constant velocity universal joint 53 is assumed to be the positive rotation of the male spline shaft 65 when the vehicle is moving forward, the spline convex teeth 68a are set to the following values when the vehicle starts moving. By giving the spline convex teeth 68a of the male spline shaft 65 a torsion angle θ in the direction in which contact is released from the torsion of the male spline shaft 65 accompanying torque transmission, the contact pressure can be alleviated, Deformation and wear of the spline hole 67 can be suppressed.

また、雄スプライン軸65のスプライン凸歯68aとして、図5(b)に示すように、母線形状を円弧状としてもよい。このように、円弧状としても、車両発進時に、スプライン凸歯68aの当たりが、トルク伝達に伴う雄スプライン軸65の捩れから解放されるように設定でき、接触圧を緩和でき、ハブ輪23の雌スプライン孔の変形や摩耗を抑制することができる。 Moreover, as shown in FIG. 5(b), the spline convex teeth 68a of the male spline shaft 65 may have an arc-shaped generatrix. In this manner, even when the arc shape is used, the contact of the spline convex tooth 68a can be set so as to be released from the torsion of the male spline shaft 65 due to torque transmission when the vehicle is started, so that the contact pressure can be reduced and the hub wheel 23 can be disengaged. Deformation and wear of the female spline hole can be suppressed.

雄スプライン軸65におけるマウス側付け根部のスプライン凸歯68aの母線形状を波型状としてもよい。このように波型とすれば、雄スプライン軸65のスプライン凸歯68aと雌スプライン孔67のスプライン凹歯69bとの接触部位が多くなり、荷重が分散されることになる。このため、車両発進時に、スプライン凸歯68aの当たりが、トルク伝達に伴う雄スプライン軸65の捩れから解放されるように設定でき、接触圧を緩和でき、ハブ輪23の雌スプライン孔67の変形や摩耗を抑制することができる。波型状とする場合、回転方向側において強く当たる部位が3個以上とすることができる。 The generatrix shape of the spline convex tooth 68a at the root portion on the mouth side of the male spline shaft 65 may be wavy. Such a corrugated shape increases the number of contact portions between the convex spline teeth 68a of the male spline shaft 65 and the concave spline teeth 69b of the female spline hole 67, thereby dispersing the load. Therefore, when the vehicle starts moving, the contact of the spline convex tooth 68a can be set to be released from the twist of the male spline shaft 65 due to torque transmission, the contact pressure can be reduced, and the female spline hole 67 of the hub wheel 23 can be deformed. and wear can be suppressed. In the case of the corrugated shape, it is possible to have three or more portions that strongly hit in the direction of rotation.

また、本車輪用軸受装置のハブ輪23では、雌スプライン孔67のインボード側の開口部には、硬化処理部80が形成されている。熱硬化処理としては、レーザー焼入れ、高周波焼入れや浸炭焼入れ等の種々の熱処理を採用することができる。ここで、高周波焼入れとは、高周波電流の流れているコイル中に焼入れに必要な部分を入れ、電磁誘導作用により、ジュール熱を発生させて、伝導性物体を加熱する原理を応用した焼入れ方法である。また、浸炭焼入れとは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入れを行う方法である。レーザー焼入れとは、高エネルギー密度のレーザービームを部品の表面に照射して焼入硬化させる焼入れ方法である。レーザー照射装置には、炭酸ガスレーザー、固体レーザー(YAGレーザー)、半導体レーザーなどがある。レーザー焼入れが施された箇所は凸状に膨張して硬化する。 Further, in the hub wheel 23 of this wheel bearing device, a hardened portion 80 is formed in the opening of the female spline hole 67 on the inboard side. Various heat treatments such as laser hardening, induction hardening, and carburizing hardening can be employed as the heat hardening treatment. Induction quenching is a quenching method that applies the principle of heating a conductive object by inserting a portion necessary for quenching into a coil through which high-frequency current is flowing and generating Joule heat through electromagnetic induction. be. Carburizing and quenching is a method of infiltrating/diffusing carbon from the surface of a low-carbon material and then performing quenching. Laser hardening is a method of quenching and hardening by irradiating the surface of a component with a laser beam of high energy density. Laser irradiation devices include carbon dioxide lasers, solid-state lasers (YAG lasers), semiconductor lasers, and the like. The part that has undergone laser hardening expands into a convex shape and hardens.

すなわち、雌スプライン孔67のインボード側の開口部は、トルク負荷がかかった際に、変形や摩耗がしやすい部位であるので、このような部位に硬化処理部80が形成されていれば、 変形や摩耗を有効に防止できる。 That is, the inboard-side opening of the female spline hole 67 is a portion that is likely to be deformed or worn when a torque load is applied. Deformation and wear can be effectively prevented.

ところで、図3に示すようなアスクルモジュールでは、一対(左右)のドライブシャフトの中間シャフト55の長さ(軸方向長さ)が相違する(捩り剛性が違う)場合があり、このため、左右の固定式等速自在継手では、雄スプライン軸65における捩れ角θをそれぞれ調整するのが好ましい。また、図3に示すようなアスクルモジュールでは、左右の雄スプライン軸65のスプライン凸歯68aとして、同種のものであっても、異種のものであってもよい。 By the way, in the ASKUL module as shown in FIG. 3, the length (axial length) of the intermediate shafts 55 of the pair of (right and left) drive shafts may differ (different torsional rigidity). In the fixed type constant velocity universal joint, it is preferable to adjust the torsion angle θ of the male spline shaft 65 respectively. Further, in the ASKUL module as shown in FIG. 3, the spline convex teeth 68a of the left and right male spline shafts 65 may be of the same type or of different types.

ここで、同種としては、いずれもが、捩り角θを付与したものであり、いずれもが、母線形状が円弧上であり、いずれもが、母線形状が波型である場合である。異種としては、左右の等速自在継手におけるマウス側付け根部のスプライン凸歯形状を相違させたものである。 Here, as the same type, all have a torsion angle θ, all have a circular arc-shaped generatrix, and all have a corrugated generatrix. As for the different types, the spline convex tooth shapes of the mouth-side root portions of the left and right constant velocity universal joints are different.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、前記実施形態では、トルク伝達手段としての転動体として、ボールを用いたが、円錐ころを用いたものであってもよい。また、車輪軸受装置として、車輪用軸受装置には、第1世代と称される複列の転がり軸受を単独に使用する構造から外方部材に車体取付フランジを一体に有する第2世代に進化し、さらに、車輪取付フランジを一体に有するハブ輪の外周に複列の転がり軸受の一方に内側転走面が一体に形成された第3世代、さらには、ハブ輪に等速自在継手が一体化され、この等速自在継手を構成する外側継手部材の外周に複列の転がり軸受の他方の内側転走面が一体に形成された第4世代のものまで開発されている。このため、本車輪用軸受装置としては、第1世代から第4世代の車輪用軸受装置であってよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications are possible. However, tapered rollers may also be used. In addition, as a wheel bearing device, the wheel bearing device has evolved from a structure that uses a double-row rolling bearing alone, which is called the first generation, to a second generation that has a vehicle body mounting flange integrally with the outer member. Furthermore, the third generation, in which the inner raceway surface is formed integrally with one of the double-row rolling bearings on the outer periphery of the hub ring having the wheel mounting flange integrally, and the constant velocity universal joint is integrated with the hub ring. Further, even the fourth generation has been developed in which the other inner rolling surface of the double-row rolling bearing is integrally formed on the outer circumference of the outer joint member that constitutes the constant velocity universal joint. Therefore, the present wheel bearing device may be a first to fourth generation wheel bearing device.

なお、雄スプライン軸65の形成は、転造ラックによる転造加工(冷間加工)で行うことができるが、雌スプライン孔67の形成は、段付き部を有するので、通常のブローチ加工では不可である。このため、振動プレス加工を行うことで可能となる。 The male spline shaft 65 can be formed by rolling (cold working) using a rolling rack, but the female spline hole 67 cannot be formed by normal broaching because it has a stepped portion. is. Therefore, it becomes possible by performing vibration press working.

21 内方部材
22 外方部材
25 ボール
27 外側軌道面
28 車輪取付フランジ
29 内側軌道面
51A,52B ドライブシャフト
53、53A,53B、54A,54B 等速自在継手
55、55A,55B 中間シャフト
60 外側継手部材
61 マウス部
62 ステム部
65 雄スプライン軸
67 雌スプライン孔
67a 大径部
67b 小径部
68a スプライン凸歯
80 硬化処理部
θ 捩れ角
21 Inner member 22 Outer member 25 Ball 27 Outer raceway surface 28 Wheel mounting flange 29 Inner raceway surface 51A, 52B Drive shafts 53, 53A, 53B, 54A, 54B Constant velocity universal joints 55, 55A, 55B Intermediate shaft 60 Outer joint Member 61 Mouth 62 Stem 65 Male spline shaft 67 Female spline hole 67a Large diameter portion 67b Small diameter portion 68a Spline convex tooth 80 Hardened portion θ Torsion angle

Claims (8)

内周に複列の外側転走面が形成された外方部材と、外周に外側転走面に対向する複列の転走面が形成された内方部材と、外方部材と内方部材との軌道面間に介在される複列の転動体とを備え、内方部材はハブ輪を有し、このハブ輪にスプライン結合を介して等速自在継手のステム部が一体連結される車輪用軸受装置であって、
前記ステム部は、等速自在継手の外側継手部材のマウス部の底部から突出されるとともに、このステム部に、ハブ輪の雌スプライン孔に嵌合する雄スプライン軸を設け、雄スプライン軸のマウス側付け根部の外径を、トルク伝達容量を満たす最小の径よりも大径とするとともに、雄スプライン軸の他の部位をこのマウス側付け根部の外径よりも小径としトルク伝達容量を満たす径としたことを特徴とする車輪用軸受装置。
An outer member having a double-row outer raceway surface formed on its inner circumference, an inner member having an outer circumference formed with a double-row raceway surface facing the outer raceway surface, an outer member and an inner member The inner member has a hub ring, and the stem portion of the constant velocity universal joint is integrally connected to the hub ring via a spline connection. A bearing device for
The stem portion protrudes from the bottom portion of the mouth portion of the outer joint member of the constant velocity universal joint. The outer diameter of the side base is larger than the minimum diameter that satisfies the torque transmission capacity, and the other part of the male spline shaft is made smaller than the outer diameter of the mouth side base to satisfy the torque transmission capacity. A wheel bearing device characterized by:
前記雄スプライン軸におけるマウス側付け根部のスプライン凸歯に捩れ角を付与したことを特徴とする請求項1に記載の車輪用軸受装置。 2. A wheel bearing device according to claim 1, wherein a twist angle is imparted to the spline convex teeth of the mouth-side root portion of the male spline shaft. 前記雄スプライン軸におけるマウス側付け根部のスプライン凸歯の母線形状を円弧状としたことを特徴とする請求項1に記載の車輪用軸受装置。 2. A wheel bearing device according to claim 1, wherein the generatrix of the convex spline teeth at the mouth-side root portion of the male spline shaft is arcuate. 前記雄スプライン軸におけるマウス側付け根部のスプライン凸歯の母線形状を波型状としたことを特徴とする請求項1に記載の車輪用軸受装置。 2. A wheel bearing device according to claim 1, wherein the generatrix shape of the convex spline teeth of the root portion on the mouth side of the male spline shaft is wavy. ハブ輪の雌スプライン孔のインボード側開口部の内周部を熱硬化処理部としたことを特徴とする請求項1から請求項4のいずれか1項に記載の車輪用軸受装置。 5. The wheel bearing device according to any one of claims 1 to 4, wherein the inner peripheral portion of the inboard side opening of the female spline hole of the hub wheel is a heat-cured portion. 左右一対のドライブシャフトを備えた動力伝達構造であって、
各ドライブシャフトは、一対の等速自在継手と、これらの等速自在継手を連結する中間シャフトを備え、左右のドライブシャフトの中間シャフトの軸方向長さが相違し、車輪側に配設される等速自在継手が前記請求項2に記載する車輪用軸受装置に接続され、左右の等速自在継手におけるマウス側付け根部のスプライン凸歯の捩れ方向を相違させたことを特徴とする動力伝達構造。
A power transmission structure comprising a pair of left and right drive shafts,
Each drive shaft has a pair of constant velocity universal joints and an intermediate shaft that connects the constant velocity universal joints. A power transmission structure, wherein the constant velocity universal joint is connected to the wheel bearing device according to claim 2, and the torsion directions of the spline convex teeth of the mouth-side root portions of the left and right constant velocity universal joints are different. .
左右一対のドライブシャフトを備えた動力伝達構造であって、
各ドライブシャフトは、一対の等速自在継手と、これらの等速自在継手を連結する中間シャフトを備え、左右のドライブシャフトの中間シャフトの軸方向長さが相違し、車輪側に配設される等速自在継手が前記請求項3に記載する車輪用軸受装置に接続され、左右の等速自在継手におけるマウス側付け根部のスプライン凸歯の円弧形状を対称としたことを特徴とする動力伝達構造。
A power transmission structure comprising a pair of left and right drive shafts,
Each drive shaft has a pair of constant velocity universal joints and an intermediate shaft that connects the constant velocity universal joints. A power transmission structure characterized in that the constant velocity universal joint is connected to the wheel bearing device according to claim 3, and the circular arc shapes of the spline convex teeth of the mouth-side base portions of the left and right constant velocity universal joints are symmetrical. .
左右一対のドライブシャフトを備えた動力伝達構造であって、
各ドライブシャフトは、一対の等速自在継手と、これらの等速自在継手を連結する中間シャフトを備え、左右のドライブシャフトの中間シャフトの軸方向長さが相違し、車輪側に配設される等速自在継手が前記請求項1に記載する車輪用軸受装置に接続され、少なくとも、スプライン凸歯に捩れ角を付与すること、スプライン凸歯の母線形状を円弧状とすること、スプライン凸歯の母線形状を波型状とすることのいずれかを採用し、かつ、左右の等速自在継手におけるマウス側付け根部のスプライン凸歯形状を相違させたことを特徴とする動力伝達構造。
A power transmission structure comprising a pair of left and right drive shafts,
Each drive shaft has a pair of constant velocity universal joints and an intermediate shaft that connects the constant velocity universal joints. A constant velocity universal joint is connected to the bearing device for a wheel according to claim 1, and at least the convex spline teeth are provided with a twist angle, the generatrix shape of the convex spline teeth is an arc, and the convex spline teeth 1. A power transmission structure, characterized in that either a wave-shaped generatrix is adopted, and spline convex tooth shapes of mouth-side base portions of left and right constant velocity universal joints are made different.
JP2021028477A 2021-02-25 2021-02-25 Wheel bearing device and power transmission structure Pending JP2022129698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021028477A JP2022129698A (en) 2021-02-25 2021-02-25 Wheel bearing device and power transmission structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021028477A JP2022129698A (en) 2021-02-25 2021-02-25 Wheel bearing device and power transmission structure

Publications (1)

Publication Number Publication Date
JP2022129698A true JP2022129698A (en) 2022-09-06

Family

ID=83150947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021028477A Pending JP2022129698A (en) 2021-02-25 2021-02-25 Wheel bearing device and power transmission structure

Country Status (1)

Country Link
JP (1) JP2022129698A (en)

Similar Documents

Publication Publication Date Title
JP2005003061A (en) Wheel bearing device
JP2004068891A (en) Bearing device for driving wheel
JP4306903B2 (en) Wheel bearing device
WO2009081554A1 (en) Bearing device for wheel
JP4198242B2 (en) Wheel bearing unit
JP3902415B2 (en) Drive wheel bearing device
WO2014069578A1 (en) Bearing device for wheel
JP2001130209A (en) Bearing device for driving wheel
JP2002178706A (en) Wheel driving bearing unit
JP4279301B2 (en) Drive wheel bearing device
JP2004353724A (en) Bearing device for driving wheel
JP2022129698A (en) Wheel bearing device and power transmission structure
JP2007069704A (en) Bearing device for driving wheel
JP2001343023A (en) Fitting structure of spline shaft for constant velocity joint
JP2004256039A (en) Bearing device for driving wheel
JP2003074569A (en) Bearing device for wheel
JP2003072308A (en) Bearing system for driving wheel and its manufacturing method
JP3902392B2 (en) Drive wheel bearing device
JP2003175702A (en) Bearing device for driving wheel
JP2004338584A (en) Manufacturing method of bearing unit for driving wheel and drive unit for wheel
JP2005319889A (en) Bearing device for driving wheel
JP5301175B2 (en) Drive wheel bearing device
JP3910768B2 (en) Drive wheel bearing unit
JP2004299643A (en) Bearing device for driving wheel
JP2003237305A (en) Bearing device for drive wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240822