JPH0633194B2 - Method for producing low thermal expansion ceramic porous body - Google Patents

Method for producing low thermal expansion ceramic porous body

Info

Publication number
JPH0633194B2
JPH0633194B2 JP60134848A JP13484885A JPH0633194B2 JP H0633194 B2 JPH0633194 B2 JP H0633194B2 JP 60134848 A JP60134848 A JP 60134848A JP 13484885 A JP13484885 A JP 13484885A JP H0633194 B2 JPH0633194 B2 JP H0633194B2
Authority
JP
Japan
Prior art keywords
ceramic
porous body
ceramic porous
lithium
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60134848A
Other languages
Japanese (ja)
Other versions
JPS61295283A (en
Inventor
文雄 小▲高▼
博貴 山崎
慧介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP60134848A priority Critical patent/JPH0633194B2/en
Publication of JPS61295283A publication Critical patent/JPS61295283A/en
Publication of JPH0633194B2 publication Critical patent/JPH0633194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車排ガス中のパーティキュレート捕捉材、
自動車排ガスの浄化触媒担体、その他の触媒担体、通気
性断熱材、ガスバーナー用散気板などに好適に使用され
る内部連通空間を有する三次元網状構造をなした低熱膨
張性のセラミック多孔体を製造する方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a particulate trapping material in automobile exhaust gas,
A low-thermal-expansion ceramic porous body having a three-dimensional network structure having an internal communication space that is suitable for use as a catalyst carrier for purifying automobile exhaust gas, other catalyst carriers, breathable heat insulating materials, gas burner diffuser plates, etc. The present invention relates to a manufacturing method.

従来技術およびその問題点 従来より、内部連通空間を有する三次元網状構造の合成
樹脂発泡体、例えば軟質ポリウレタンフォームにセラミ
ック泥漿を付着し、これを乾燥焼成することにより得ら
れたセラミック多孔体を自動車排ガス中のパーティキュ
レート捕捉材、自動車排ガスの浄化触媒担体、その他の
触媒担体、通気性断熱材、ガスバーナー用散気板などの
用途に用いることが知られている。
Conventional technology and its problems Conventionally, a ceramic porous body obtained by adhering a ceramic slurry to a synthetic resin foam having a three-dimensional network structure having an internal communication space, for example, a soft polyurethane foam, and drying and firing the same is used in an automobile. It is known to be used for applications such as particulate matter trapping materials in exhaust gas, automobile exhaust gas purification catalyst carriers, other catalyst carriers, breathable heat insulating materials, and diffusers for gas burners.

しかしながら、これらの用途に使用するにあたっては、
通気抵抗性が小さいことと同時に耐熱性および耐熱衝撃
性が重要な物性として要求される。例えばディーゼル車
排ガスパーティキュレート捕捉材の場合、捕捉したパー
ティキュレートを燃焼除去するにあたっては急激な温度
上昇があり、通常のディーゼル車排ガスの温度の約25
0℃から1〜2分以内に1200℃あるいはそれ以上の
温度に達する場合がある。また、ガソリン車排ガスの温
度や、ガスバーナーの火炎なども使用条件によっては局
部的、時間的に1000℃あるいはそれ以上に上昇する
場合もあり、十分な耐熱性と耐熱衝撃性が要求される。
However, when using for these purposes,
In addition to having low airflow resistance, heat resistance and thermal shock resistance are required as important physical properties. For example, in the case of a diesel vehicle exhaust gas particulate trapping material, there is a rapid temperature rise when burning and removing the trapped particulates, and the temperature of the exhaust gas of a normal diesel vehicle is about 25%.
A temperature of 1200 ° C or higher may be reached within 1 to 2 minutes from 0 ° C. Further, the temperature of exhaust gas from a gasoline vehicle, the flame of a gas burner, etc. may rise locally or temporally to 1000 ° C. or higher depending on use conditions, and sufficient heat resistance and thermal shock resistance are required.

従来、これらの用途には、コーディエライト質セラミッ
クが耐熱性もあり、熱膨張係数が小さく、耐熱性も良い
ため利用されているが、厳しい使用条件下では、耐熱衝
撃性不足に基づく割れや剥離が起こりやすいため、信頼
性にかけるという問題があった。すなわち、コーディエ
ライト質セラミックスは1300℃乃至1350℃程度
の耐熱性はあるにもかかわらず、耐熱衝撃性としては9
00℃乃至950℃程度が限度であり、実用上の最高使
用温度をこの付近の温度に制限せざるを得ない。特に内
部連通空間を有する三次元網状構造の合成樹脂発泡体に
セラミック泥漿を付着し、これを乾燥、焼成することに
より得られるセラミック多孔体の場合は、押し出し成形
の過程でセラミック粒子を配向させることにより望まし
い方向の熱膨張係数を低減することのできるハニカム構
造品とは異なり、熱膨張係数が等方性であるため耐熱衝
撃性に及ぼす熱膨張係数の影響は大きい。このため、ガ
ソリン車排ガス浄化触媒担体としてはコーディエライト
質ハニカム構造品がほぼ問題のない品質レベルにあるの
に対し、三次元網状構造のセラミック多孔体の場合には
耐熱衝撃性の点でハニカム構造品に劣り、実用上問題が
残る。
Conventionally, cordierite-based ceramics have been used for these applications because they also have heat resistance, a small coefficient of thermal expansion, and good heat resistance. Since peeling is likely to occur, there is a problem of reducing reliability. That is, although cordierite ceramics have a heat resistance of about 1300 ° C to 1350 ° C, they have a thermal shock resistance of 9%.
The limit is about 00 ° C. to 950 ° C., and there is no choice but to limit the maximum practical use temperature to a temperature around this. In particular, in the case of a ceramic porous body obtained by adhering ceramic slurry to a synthetic resin foam having a three-dimensional network structure having an internal communication space, drying and firing it, orienting the ceramic particles in the process of extrusion molding. Therefore, unlike a honeycomb structure product in which the coefficient of thermal expansion in the desired direction can be reduced, the coefficient of thermal expansion is isotropic, so that the coefficient of thermal expansion has a large effect on thermal shock resistance. For this reason, while the cordierite honeycomb structure product is at a quality level at which there is almost no problem as a catalyst carrier for purifying exhaust gas from gasoline vehicles, the ceramic porous body having a three-dimensional reticulated structure has a honeycomb structure in terms of thermal shock resistance. It is inferior to structural products, and there are practical problems.

この点を改良するため、本発明者らは、コーディエライ
トより熱膨張係数が小さく、耐熱衝撃性が良いと考えら
れるリチウム−アルミノ珪酸塩を原料として内部連通空
間を有する三次元網状構造セラミック多孔体を作成し
た。しかしながら、リチウム−アルミノ珪酸塩を原料と
した場合には耐熱衝撃性は改良されるが、機械的強度が
低い欠点がある。この場合、機械的強度は焼成温度を上
げることにより多少向上するが、元来リチウム−アルミ
ノ珪酸塩の焼成温度巾は非常に狭く、焼成温度が低すぎ
ると焼結が進まないため機械的強度は極めて低く、一
方、焼成温度が高すぎると前記三次元網状構造セラミッ
ク多孔体では焼成過程での軟化変形が起こり易く、寸法
精度が得られないし、機械的強度レベルも実用上なお不
安が残る。このため機械的強度の一層の向上が必要であ
った。
In order to improve this point, the present inventors have made a three-dimensional reticulated structure ceramic porous material having an internal communication space using lithium-aluminosilicate, which has a smaller thermal expansion coefficient and better thermal shock resistance than cordierite, as a raw material. Created the body. However, when the lithium-aluminosilicate is used as a raw material, the thermal shock resistance is improved, but the mechanical strength is low. In this case, the mechanical strength is slightly improved by raising the firing temperature, but the firing temperature range of lithium-aluminosilicate is originally very narrow, and if the firing temperature is too low, the sintering does not proceed and the mechanical strength is On the other hand, if the firing temperature is too low, on the other hand, if the firing temperature is too high, the three-dimensional reticulated structure ceramic porous body is likely to undergo softening deformation in the firing process, dimensional accuracy cannot be obtained, and the mechanical strength level remains practically uncertain. For this reason, it is necessary to further improve the mechanical strength.

発明の概要 本発明者らは耐熱衝撃性に優れ、かつ機械的強度の改良
された三次元網状構造セラミック多孔体を得るため、焼
結助剤について種々研究した結果、熱膨張係数が比較的
小さいコーディエライトをある特定の組成範囲に入るよ
うにブレンドすることにより、耐熱衝撃性が優れ、機械
的強度も著るしく向上し、かつ焼成も比較的容易である
ことを見出し、本発明をなすに至った。
SUMMARY OF THE INVENTION In order to obtain a three-dimensional reticulated structure ceramic porous body having excellent thermal shock resistance and improved mechanical strength, the present inventors have conducted various studies on sintering aids, and as a result, have a relatively small coefficient of thermal expansion. It was found that by blending cordierite so as to fall within a certain specific composition range, the thermal shock resistance is excellent, the mechanical strength is remarkably improved, and the calcination is relatively easy, and the present invention forms. Came to.

以下、本発明につき更に詳しく説明する。Hereinafter, the present invention will be described in more detail.

発明の構成 本発明に係るセラミック多孔体の製造方法は、内部連通
空間を有する三次元網状構造の合成樹脂発泡体を基材と
し、これをセラミックの泥漿に浸漬して、前記合成樹脂
発泡体にセラミックを付着せしめたのち、乾燥し焼成し
て三次元網状構造のセラミック多孔体を製造する方法に
おいて、前記セラミック泥漿の原料として、リチウム−
アルミノ珪酸塩85〜95重量部にコーディエライト1
5〜5重量部を配合したセラミック原料を使用するよう
にしたものである。
Configuration of the Invention A method for manufacturing a ceramic porous body according to the present invention is based on a synthetic resin foam having a three-dimensional network structure having an internal communication space as a base material, and immersing this in a ceramic slurry to form the synthetic resin foam. In the method for producing a ceramic porous body having a three-dimensional network structure by depositing ceramic, drying and firing, lithium-containing material is used as a raw material of the ceramic slurry.
Cordierite 1 to 85-95 parts by weight of aluminosilicate
A ceramic raw material containing 5 to 5 parts by weight is used.

ここで、セラミック多孔体原料となる合成樹脂発泡体と
しては、内部連通空間を有する三次元網状構造のもので
あれば、いずれのものでもよく、例えば軟質ポリウレタ
ンフォーム、特にセル膜のない軟質ポリウレタンフォー
ムを好適に使用し得る。
Here, the synthetic resin foam used as the raw material for the ceramic porous body may be any one as long as it has a three-dimensional network structure having an internal communication space, for example, a flexible polyurethane foam, particularly a flexible polyurethane foam without a cell membrane. Can be preferably used.

本発明は、この合成樹脂発泡体をセラミック泥漿に浸漬
し、発泡体にセラミック泥漿を付着させるものである
が、この場合セラミック泥漿の組成として、リチウム−
アルミノ珪酸塩85〜95重量部に対し、コーディエラ
イト15〜5重量部を添加して作成したセラミック原料
土を用いるものである。このセラミック泥漿は、このセ
ラミック原料土を水に分散させるものであるが、セラミ
ック泥漿中には、ポリビニルアルコール、カルボキシメ
チルセルロースなどのバインダー、珪酸ナトリウムなど
の解膠剤を配合することが出来る。セラミック泥漿の粘
度は、目的とするセラミック多孔体のセルの大きさ等に
応じ、水の添加量を加減して調整することができる。
In the present invention, the synthetic resin foam is immersed in a ceramic slurry, and the ceramic slurry is attached to the foam. In this case, the composition of the ceramic slurry is lithium-
Ceramic raw material soil prepared by adding 15 to 5 parts by weight of cordierite to 85 to 95 parts by weight of aluminosilicate is used. This ceramic slurry disperses the ceramic raw material soil in water, and a binder such as polyvinyl alcohol or carboxymethyl cellulose, or a deflocculant such as sodium silicate can be added to the ceramic slurry. The viscosity of the ceramic slurry can be adjusted by adjusting the amount of water added according to the size of the cell of the intended ceramic porous body.

次いで、このセラミック泥漿に三次元網状構造の合成樹
脂発泡体を浸漬し引き上げた後、余剰の泥漿を遠心力ま
たは通気などにより除去し、乾燥する。この場合、所定
量のセラミック泥漿が三次元網状構造の合成樹脂発泡体
に付着するまでこの操作を繰り返すことができる。次
に、所定量のセラミック泥漿が付着した合成樹脂発泡体
を乾燥した後、これを炉に入れ、1220℃〜1320
℃の間の好適な焼成温度で焼成することにより、前記合
成樹脂発泡体に対応したセル構造の内部連通空間を有す
る三次元網状構造のセラミック多孔体を得ることが出来
る。
Next, a synthetic resin foam having a three-dimensional network structure is dipped in the ceramic slurry and pulled up, and then excess slurry is removed by centrifugal force or aeration and dried. In this case, this operation can be repeated until a predetermined amount of the ceramic slurry adheres to the synthetic resin foam having the three-dimensional network structure. Next, after drying the synthetic resin foam to which a predetermined amount of ceramic slurry has adhered, this is put in a furnace and the temperature is 1220 ° C to 1320.
By firing at a suitable firing temperature between 0 ° C., it is possible to obtain a ceramic porous body having a three-dimensional network structure having an internal communication space of a cell structure corresponding to the synthetic resin foam.

ここで、リチウム−アルミノ珪酸塩としては、リチウム
に対するアルミニウムの割合が酸化物換算重量比として
Al23/Li2O=3.0〜4.0,またシリカの量
が40%〜75%のものが好ましく、リチウム−アルミ
ノ珪酸塩として、ユークリプタイト、スポジュメン、リ
チウム−フェルスパーなどが使用出来る。
Here, as the lithium-aluminosilicate, the ratio of aluminum to lithium is Al 2 O 3 / Li 2 O = 3.0 to 4.0 as an oxide conversion weight ratio, and the amount of silica is 40% to 75%. As the lithium-aluminosilicate, eucryptite, spodumene, lithium-felspar and the like can be used.

また、コーディエライトは成分組成としてマグネシウム
を酸化物として7〜15重量%、アルミニウムを酸化物
として33〜37重量%、残りの主成分がシリコン酸化
物であり、室温から1000℃までの熱膨張係数が少な
くとも2.4×10-6/℃以下であるコーディエライト
を使用するのが好ましい。
In addition, cordierite has a composition of 7 to 15% by weight of magnesium as an oxide, 33 to 37% by weight of aluminum as an oxide, and the remaining main component is silicon oxide, and has a thermal expansion from room temperature to 1000 ° C. It is preferable to use cordierite having a coefficient of at least 2.4 × 10 −6 / ° C. or less.

発明の効果 本発明のセラミック多孔体の製造方法によれば、上述し
たようにセラミック泥漿のセラミック原料としてリチウ
ム−アルミノ珪酸塩85〜95重量部に、コーディエラ
イト15〜5重量部を添加して作成したセラミック原料
土を用いることにより、リチウム−アルミノ珪酸塩単独
の場合にくらべ機械的強度が大巾に改良され、かつ、コ
ーディエライトにより優れた耐熱衝撃性の三次元網状構
造セラミック多孔体を製造することができ、このため本
発明によって得られたセラミック多孔体は、特にディー
ゼル車排ガス中のパーティキュレート捕捉材、ガソリン
車排ガス浄化触媒担体、通気性断熱材、ガスバーナー用
散気板などの温度変化速度の大きい条件で使用される用
途に好適に使用出来る。
EFFECTS OF THE INVENTION According to the method for producing a ceramic porous body of the present invention, as described above, 15 to 5 parts by weight of cordierite is added to 85 to 95 parts by weight of lithium-aluminosilicate as a ceramic raw material of ceramic slurry. By using the prepared ceramic raw material soil, the mechanical strength is greatly improved compared to the case of using lithium-aluminosilicate alone, and cordierite provides a three-dimensional reticulated ceramic porous body with excellent thermal shock resistance. Therefore, the ceramic porous body obtained by the present invention can be used as a particulate trapping material in exhaust gas of diesel vehicles, a catalyst carrier for purifying exhaust gas of gasoline vehicles, a breathable heat insulating material, a diffuser plate for a gas burner, etc. It can be suitably used for applications where the rate of temperature change is large.

以下、本発明の実施例と比較例を示すが、本発明は下記
の実施例に制限されるものではない。
Hereinafter, examples and comparative examples of the present invention will be shown, but the present invention is not limited to the following examples.

実施例および比較例 第1表に示すセラミック原料土100重量部に対し、ポ
リビニルアルコール4.5重量部、珪酸塩ナトリウム
0.2重量部、シリカゲル4.5重量部および適量の水
を添加して低粘性のセラミック泥漿を作成した。1イン
チあたりセル数が20個の一辺が10cmの立方体形状を
有するセル膜のない三次元網状構造の軟質ポリウレタン
フォームをこの泥漿に含浸した、 余分な泥漿を遠心分離機により除去し、十分に乾燥し
た。適量のセラミックが付着するまで、この操作を繰り
返した。次いで、上下両面を除く側面にセラミック泥漿
を塗布し乾燥した。乾燥品は1270℃で1時間焼成を
行なってセラミック多孔体を得た。
Examples and Comparative Examples To 100 parts by weight of the ceramic raw material soil shown in Table 1, 4.5 parts by weight of polyvinyl alcohol, 0.2 parts by weight of sodium silicate, 4.5 parts by weight of silica gel and an appropriate amount of water were added. A low viscosity ceramic slurry was created. This slurry is impregnated with a soft polyurethane foam with a cubic cell shape having 20 cells per inch and 10 cm on a side, and without a cell membrane. Excess slurry is removed by a centrifuge and dried thoroughly. did. This operation was repeated until a proper amount of ceramic was deposited. Then, ceramic slurry was applied to the side surfaces except the upper and lower surfaces and dried. The dried product was fired at 1270 ° C. for 1 hour to obtain a ceramic porous body.

焼成品から一辺が5cmの立方体を切り出して、風速3m
/秒での圧力損失を測定したのち、圧縮強度を測定し
た。さらに一辺が10cmの焼成品を一定温度に保った電
気炉に一時間放置したのち取り出し、室温に放置する試
験法により耐熱衝撃性試験を実施した。その結果、クラ
ックが入らなかった場合には温度を50℃引き上げて同
様な方法で耐熱衝撃性試験を行なった。これらの結果を
第1表に示す。
A cube with a side of 5 cm is cut out from the fired product and the wind speed is 3 m
The compression strength was measured after measuring the pressure loss in 1 / sec. Further, a fired product having a side of 10 cm was left in an electric furnace kept at a constant temperature for 1 hour, taken out, and then subjected to a thermal shock resistance test by a test method of being left at room temperature. As a result, when no crack was found, the temperature was raised by 50 ° C. and a thermal shock resistance test was conducted by the same method. The results are shown in Table 1.

第1表の結果から明らかに認められる通り、リチウム−
アルミノ珪酸塩単独では機械的強度が極めて低いのに耐
し、リチウム−アルミノ珪酸塩/コーディエライト=9
5/5〜80/20の範囲で耐熱衝撃性を低下させるこ
となく、機械的強度を改良出来る結果がえられた。
As clearly seen from the results in Table 1, lithium-
Aluminosilicate alone withstands extremely low mechanical strength, lithium-aluminosilicate / cordierite = 9
In the range of 5/5 to 80/20, mechanical strength can be improved without lowering thermal shock resistance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】内部連通空間を有する三次元網状構造の合
成樹脂発泡体を基材とし、これをセラミックの泥漿に浸
漬して、前記合成樹脂発泡体にセラミックを付着せしめ
たのち、乾燥し、焼成して、三次元網状構造のセラミッ
ク多孔体を製造する方法において、前記セラミック泥漿
の原料として、リチウム−アルミノ珪酸塩80〜95重
量部にコーディエライト20〜5重量部を添加して作成
したセラミック原料土を用いることを特徴とする低熱膨
張性セラミック多孔体の製造方法。
1. A base material is a synthetic resin foam having a three-dimensional network structure having an internal communication space, which is immersed in a ceramic sludge to adhere the ceramic to the synthetic resin foam, and then dried. In the method for producing a ceramic porous body having a three-dimensional network structure by firing, it was prepared by adding 20 to 5 parts by weight of cordierite to 80 to 95 parts by weight of lithium-aluminosilicate as a raw material of the ceramic slurry. A method for producing a low-thermal-expansion ceramic porous body, which comprises using ceramic raw material soil.
【請求項2】リチウム−アルミノ珪酸塩として、リチウ
ムに対するアルミニウムの割合がAl23/Li2O=
3.0〜4.0であり、かつシリカの含有量が40〜7
5%であるものを用いた特許請求の範囲第1項記載のセ
ラミック多孔体の製造方法。
2. A lithium-aluminosilicate having a ratio of aluminum to lithium of Al 2 O 3 / Li 2 O =
It is 3.0 to 4.0, and the content of silica is 40 to 7.
The method for producing a ceramic porous body according to claim 1, wherein the content is 5%.
JP60134848A 1985-06-20 1985-06-20 Method for producing low thermal expansion ceramic porous body Expired - Fee Related JPH0633194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60134848A JPH0633194B2 (en) 1985-06-20 1985-06-20 Method for producing low thermal expansion ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60134848A JPH0633194B2 (en) 1985-06-20 1985-06-20 Method for producing low thermal expansion ceramic porous body

Publications (2)

Publication Number Publication Date
JPS61295283A JPS61295283A (en) 1986-12-26
JPH0633194B2 true JPH0633194B2 (en) 1994-05-02

Family

ID=15137883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60134848A Expired - Fee Related JPH0633194B2 (en) 1985-06-20 1985-06-20 Method for producing low thermal expansion ceramic porous body

Country Status (1)

Country Link
JP (1) JPH0633194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011066148A3 (en) * 2009-11-30 2011-10-06 Corning Incorporated Beta-spodumene-cordierite composition, article, and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399535A (en) * 1993-08-17 1995-03-21 Rohm And Haas Company Reticulated ceramic products
US5976454A (en) * 1996-04-01 1999-11-02 Basf Aktiengesellschaft Process for producing open-celled, inorganic sintered foam products
DE19619986A1 (en) 1996-05-17 1997-11-20 Basf Ag Process for stabilizing sintered foam and for producing open-cell sintered foam parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011066148A3 (en) * 2009-11-30 2011-10-06 Corning Incorporated Beta-spodumene-cordierite composition, article, and method

Also Published As

Publication number Publication date
JPS61295283A (en) 1986-12-26

Similar Documents

Publication Publication Date Title
US4871495A (en) Process for producing porous ceramic filter for filtering of particulates from diesel exhaust gases
CA1059160A (en) Method of preparing crack-free monolithic polycrystalline cordierite substrates
US4399052A (en) Activated carbonaceous honeycomb body and production method thereof
JP2981034B2 (en) Method for firing ceramic honeycomb structure
US6699429B2 (en) Method of making silicon nitride-bonded silicon carbide honeycomb filters
KR930012633A (en) High porosity cordierite body and its manufacturing method
JPH0252015A (en) Porous ceramic honeycomb filter and its manufacture
JPH0738930B2 (en) Manufacturing method of porous ceramic filter
JP3789579B2 (en) Cordierite honeycomb structure and manufacturing method thereof
CN110790574B (en) Si with hierarchical pore structure3N4-SiCN ceramic and preparation method thereof
JPH03170380A (en) Porous sintered ceramic material and its use
CN102701776A (en) Manufacturing method of filter core of catcher for catching silicon carbide mass particles in diesel engine exhaust
US20020098967A1 (en) Pollucite-based ceramic with low CTE
JPH07138083A (en) Production of porous aluminum titanate sintered compact
JPH0582343B2 (en)
JPH0633194B2 (en) Method for producing low thermal expansion ceramic porous body
JPH0651596B2 (en) Method for manufacturing cordierite honeycomb structure
JP2651170B2 (en) Ceramics porous body
KR930016370A (en) How to reduce the coefficient of thermal expansion of ceramic products
JP2562186B2 (en) Manufacturing method of porous ceramic honeycomb structure
US20130160412A1 (en) Permeable material, articles made therefrom and method of manufacture
JPH0575717B2 (en)
CN112174688A (en) Method for preparing aluminum titanate composite porous ceramic by adopting two-step solid-phase sintering process
KR101157044B1 (en) Fabrication Method dof Porous Silicon Carbide Ceramics
JPH0779935B2 (en) Cordierite gas filter and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees