JPH06331593A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPH06331593A
JPH06331593A JP5116133A JP11613393A JPH06331593A JP H06331593 A JPH06331593 A JP H06331593A JP 5116133 A JP5116133 A JP 5116133A JP 11613393 A JP11613393 A JP 11613393A JP H06331593 A JPH06331593 A JP H06331593A
Authority
JP
Japan
Prior art keywords
platinum
electrode
precious metal
oxygen
oxygen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5116133A
Other languages
Japanese (ja)
Inventor
Futoshi Ichiyanagi
太 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP5116133A priority Critical patent/JPH06331593A/en
Publication of JPH06331593A publication Critical patent/JPH06331593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To control air/fuel ratio accurately when temperature is low by forming an electrode with a precious metal constituent where platinum particles are coated with platinum precious metal other than for improving catalyst activity. CONSTITUTION:Electrodes 2 and 3 formed on the inside and outside surfaces of a zirconia tube (substrate) 1 consisting of oxygen ion conductive solid electrolyte which mainly consists of zirconium oxide are constituted by precious metal paste (electrode material paste) which is formed by including approximately 60-80% platinum and 20-40% ceramic constituent. Then, the platinum particle which is the main constituent of the electrode material paste coated with at least one type of platinum precious metals other than platinum such as rhodium, palladium, and ruthenium are used as the electrodes 2 and 3, thus effectively improving its catalyst activity and the low-temperature activity of the title sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸素センサに関し、詳し
くは、酸素分圧比に応じた起電力を発生する酸素センサ
の低温活性を向上させるための技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen sensor, and more particularly to a technique for improving the low temperature activity of an oxygen sensor that generates an electromotive force according to an oxygen partial pressure ratio.

【0002】[0002]

【従来の技術】従来、酸素イオン伝導性固体電解質を用
いた酸素センサとしては、例えば以下に示すようなセン
サ部構造を有したものがある(特開昭58−20436
5号公報、実開昭59−31054号公報等参照)。即
ち、酸化ジルコニウムZrO2 を主成分とする酸素イオ
ン伝導性固体電解質から形成される先端が閉塞されたジ
ルコニアチューブの内表面及び外表面にそれぞれ白金P
t電極を形成すると共に、外側の白金Pt電極の更に外
側に多孔セラミックス保護層を形成する。
2. Description of the Related Art Conventionally, as an oxygen sensor using an oxygen ion conductive solid electrolyte, there is one having a sensor part structure as shown below (Japanese Patent Laid-Open No. 58-20436).
No. 5, Japanese Utility Model Publication No. 59-31054, etc.). That is, platinum P is formed on the inner surface and the outer surface of a zirconia tube having a closed tip formed of an oxygen ion conductive solid electrolyte containing zirconium oxide ZrO 2 as a main component.
A t-electrode is formed, and a porous ceramics protective layer is formed further outside the platinum Pt electrode on the outside.

【0003】かかる構成において、ジルコニアチューブ
の内側空洞に基準気体(例えば大気)を導入する一方、
ジルコニアチューブの外側を被検出気体(例えば内燃機
関の排気)と接触させ、内表面に接触する基準気体の酸
素分圧と、外表面に接触する被検出気体の酸素分圧との
比に応じた起電力を、前記電極間に発生させることによ
って、被検出気体の酸素分圧(酸素濃度)を検出するも
のである。
In such a structure, while a reference gas (for example, the atmosphere) is introduced into the inner cavity of the zirconia tube,
The outside of the zirconia tube is brought into contact with the gas to be detected (for example, exhaust gas from an internal combustion engine), and the oxygen partial pressure of the reference gas that contacts the inner surface and the oxygen partial pressure of the gas that contacts the outer surface are determined according to the ratio. By generating an electromotive force between the electrodes, the oxygen partial pressure (oxygen concentration) of the gas to be detected is detected.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記のよう
なジルコニアタイプの酸素センサにおいて、低温時には
センサ素子の内部抵抗が高いために、図3に示すよう
に、リッチ出力の低下及びリーン出力の浮きが生じる。
このため、前記酸素センサを用いて内燃機関の排気空燃
比を計測させ、該計測結果を目標空燃比に近づけるよう
に機関への燃料供給量をフィードバック制御する空燃比
フィードバック制御を、低温時から実行すると、前記低
温時のセンサ出力特性によって制御点がリーン側にず
れ、排気性状や運転性を悪化させることになってしまう
という問題があり、冷機時における空燃比制御の精度を
確保すべく、酸素センサの低温特性の改善が要望されて
いた。
By the way, in the zirconia type oxygen sensor as described above, since the internal resistance of the sensor element is high at low temperature, as shown in FIG. 3, the rich output is lowered and the lean output is floated. Occurs.
For this reason, the air-fuel ratio feedback control for measuring the exhaust air-fuel ratio of the internal combustion engine using the oxygen sensor and performing feedback control of the fuel supply amount to the engine so as to bring the measurement result close to the target air-fuel ratio is executed from a low temperature. Then, there is a problem that the control point shifts to the lean side due to the sensor output characteristic at the low temperature, and the exhaust property and the drivability are deteriorated.Therefore, in order to ensure the accuracy of the air-fuel ratio control at the time of cooling, the oxygen It has been desired to improve the low temperature characteristics of the sensor.

【0005】本発明は上記実情に鑑みなされたものであ
り、電極の触媒活性を向上させることによって、低温時
における出力特性を改善し、低温時からの高精度な空燃
比フィードバック制御を可能にできる酸素センサを提供
することを目的とする。
The present invention has been made in view of the above circumstances, and by improving the catalytic activity of the electrode, it is possible to improve the output characteristics at low temperature and enable highly accurate air-fuel ratio feedback control from low temperature. An object is to provide an oxygen sensor.

【0006】[0006]

【課題を解決するための手段】そのため本発明にかかる
酸素センサは、酸素イオン伝導性固体電解質からなる基
体の内外表面に電極をそれぞれ形成し、基準気体に接触
させた一方表面の電極と、被検出気体に接触させた他方
表面の電極との間に酸素分圧比に応じた起電力を発生す
る酸素センサであって、白金粉の周囲に白金以外の白金
系貴金属をコーティングしてなる貴金属成分を含んで前
記電極を形成するようにした。
Therefore, in the oxygen sensor according to the present invention, electrodes are formed on the inner and outer surfaces of a substrate made of an oxygen ion conductive solid electrolyte, respectively, and an electrode on one surface brought into contact with a reference gas and An oxygen sensor that generates an electromotive force according to the oxygen partial pressure ratio between the other surface electrode that is in contact with the detection gas and a precious metal component formed by coating platinum powder with a platinum-based precious metal other than platinum. The electrodes are included to form the electrodes.

【0007】[0007]

【作用】上記酸素センサによると、白金粉の周囲にロジ
ウム,パラジウム,ルテニウムなどの白金以外の白金系
貴金属をコーティングしてなる貴金属成分を含んで電極
が形成され、前記白金粉にコーティングされる白金以外
の白金系貴金属によって、白金電極の触媒活性が改善さ
れる。
According to the above oxygen sensor, the platinum is coated on the platinum powder by forming an electrode containing a precious metal component obtained by coating the platinum powder with a platinum-based precious metal other than platinum such as rhodium, palladium, and ruthenium. Other platinum-based noble metals improve the catalytic activity of the platinum electrode.

【0008】[0008]

【実施例】以下に本発明の実施例を説明する。実施例の
酸素センサ構造を示す図1において、酸化ジルコニウム
ZrO2 を主成分とする酸素イオン伝導性固体電解質か
ら形成される先端が閉塞されたジルコニアチューブ1
(基体)の内表面及び外表面にそれぞれ起電力取り出し
用の電極2,3が形成されている。
EXAMPLES Examples of the present invention will be described below. Referring to FIG. 1 showing an oxygen sensor structure of an example, a zirconia tube 1 having a closed tip formed of an oxygen ion conductive solid electrolyte containing zirconium oxide ZrO 2 as a main component.
Electrodes 2 and 3 for extracting electromotive force are formed on the inner surface and the outer surface of the (base), respectively.

【0009】また、前記外表面側の電極3の外側には、
該電極3を保護するための多孔質のセラミックス保護層
4が形成されている。かかる構成において、ジルコニア
チューブ1の内側空洞に基準気体(例えば大気)を導入
する一方、ジルコニアチューブ1の外側を被検出気体
(例えば内燃機関の排気)と接触させ、内表面に接触す
る基準気体の酸素分圧と、外表面に接触する被検出気体
の酸素分圧との比に応じた起電力を、前記電極2,3間
に発生させることによって、被検出気体の酸素分圧(酸
素濃度)を検出し得るものである。
On the outside of the electrode 3 on the outer surface side,
A porous ceramic protective layer 4 for protecting the electrode 3 is formed. In such a configuration, while the reference gas (for example, the atmosphere) is introduced into the inner cavity of the zirconia tube 1, the outside of the zirconia tube 1 is brought into contact with the gas to be detected (for example, the exhaust gas of the internal combustion engine), and the reference gas contacting the inner surface is The oxygen partial pressure (oxygen concentration) of the gas to be detected is generated by generating an electromotive force according to the ratio of the oxygen partial pressure and the oxygen partial pressure of the gas to be detected in contact with the outer surface between the electrodes 2 and 3. Can be detected.

【0010】ここで、上記構成の酸素センサは以下のよ
うにして製造される。まず、ジルコニアチューブ1を作
製し、これを一旦仮焼きする。一方、セラミックス粉を
添加した貴金属ペースト(電極材ペースト)を作製す
る。ここで、前記貴金属ペーストは、貴金属分を60〜80
%、セラミック分を20〜40%程度として形成されるもの
であり、前記貴金属分は、白金Ptを主成分とし、かか
る白金Ptの粒子の周囲にロジウムRh,パラジウムP
d,ルテニウムRuなどの白金以外の白金系貴金属を少
なくとも一種類コーティングしたものを用いる(図2参
照)。
Here, the oxygen sensor having the above structure is manufactured as follows. First, the zirconia tube 1 is produced and is temporarily calcined. On the other hand, a precious metal paste (electrode material paste) to which ceramic powder is added is prepared. Here, the precious metal paste has a precious metal content of 60-80.
%, And a ceramic content of about 20 to 40%. The noble metal content contains platinum Pt as a main component, and rhodium Rh and palladium P are provided around the platinum Pt particles.
At least one platinum-based noble metal other than platinum such as d and ruthenium Ru is coated (see FIG. 2).

【0011】尚、前記白金Pt粒子の粒径は、20μm以
下とすることが好ましい。例えばロジウムRhがコーテ
ィングされた白金粉Ptは、白金Pt粒子と塩化ロジウ
ム酸水溶液とを混合し、かかる混合液を前記塩化ロジウ
ム酸が分解する温度で加熱しながら攪拌することで塩化
ロジウム酸を分解して濃縮することで得られる。
The particle size of the platinum Pt particles is preferably 20 μm or less. For example, platinum powder Pt coated with rhodium Rh decomposes rhodium chloride by mixing platinum Pt particles with an aqueous solution of rhodium chloride and stirring the mixed solution while heating at a temperature at which the rhodium chloride is decomposed. Then, it is obtained by concentrating.

【0012】尚、白金Pt粒子に対するロジウムRh,
パラジウムPd,ルテニウムRuなどの白金以外の白金
系貴金属の添加割合は、1wt%〜20wt%程度とすること
が好ましい。次いで、前記貴金属ペーストを、印刷によ
ってジルコニアチューブ1に塗布した後、貴金属ペース
トとジルコニアチューブ1とを1100〜1300℃程度の高温
で同時に焼結させることで、ジルコニアチューブ1の表
面に電極を形成する。
Rhodium Rh for platinum Pt particles,
The addition ratio of platinum-based noble metals other than platinum such as palladium Pd and ruthenium Ru is preferably about 1 wt% to 20 wt%. Next, the precious metal paste is applied to the zirconia tube 1 by printing, and then the precious metal paste and the zirconia tube 1 are simultaneously sintered at a high temperature of about 1100 to 1300 ° C. to form an electrode on the surface of the zirconia tube 1. .

【0013】尚、貴金属ペーストをジルコニアチューブ
1に塗布する方法としては、上記の印刷の他、ディッピ
ング,刷毛塗り,スプレー噴射などがあるが、特に印刷
が好ましい。上記のようにして、白金Pt粉の周囲にロ
ジウムRh,パラジウムPd,ルテニウムRuなどの白
金以外の白金系貴金属がコーティングされた貴金属成分
を含んで白金電極を形成させるようにすると、白金電極
の触媒活性が、白金Pt粒子の周囲にコーティングされ
たロジウムRh,パラジウムPd,ルテニウムRuなど
によって改善され、酸素センサの低温特性が向上する。
As a method for applying the noble metal paste to the zirconia tube 1, there are dipping, brush coating, spray injection, etc. in addition to the above printing, but printing is particularly preferable. As described above, when the platinum electrode is formed by including the noble metal component in which the platinum-based noble metal other than platinum such as rhodium Rh, palladium Pd, and ruthenium Ru is coated around the platinum Pt powder, the platinum electrode catalyst is formed. The activity is improved by rhodium Rh, palladium Pd, ruthenium Ru, etc. coated around platinum Pt particles, and the low temperature characteristics of the oxygen sensor are improved.

【0014】ここで、白金Pt粉と、ロジウムRh,パ
ラジウムPd,ルテニウムRuなどの白金Pt以外の白
金系貴金属の粒子とを混合させて、貴金属ペーストを作
製しても、白金Ptのみを貴金属成分として電極を形成
させた場合に比べて触媒活性を向上させることができる
が、前述のように白金Pt粒子の周囲にコーティングさ
せることで、ロジウムRh,パラジウムPd,ルテニウ
ムRuなどの貴金属成分を白金Pt粒子の周囲に確実に
集めておくことができ、以て、ロジウムRh,パラジウ
ムPd,ルテニウムRuなどの貴金属成分を添加するこ
とによる特性改善の効果が大きい(図4参照)。
Here, even if platinum precious metal paste is prepared by mixing platinum Pt powder with particles of platinum-based precious metal other than platinum Pt such as rhodium Rh, palladium Pd, ruthenium Ru, only platinum Pt is a precious metal component. Although the catalytic activity can be improved as compared with the case where the electrode is formed as described above, by coating the platinum Pt particles around the platinum Pt particles as described above, noble metal components such as rhodium Rh, palladium Pd, and ruthenium Ru can be added to the platinum Pt. The particles can be surely collected around the particles, so that the addition of the noble metal components such as rhodium Rh, palladium Pd, and ruthenium Ru has a great effect of improving the characteristics (see FIG. 4).

【0015】上記のようにして、触媒活性が改善され低
温作動化が促進されれば、内燃機関の排気中の酸素濃度
を検出するために設けられる場合には、機関の始動直後
から排気中の酸素濃度を精度良く計測することができ、
前記酸素濃度の情報に基づく空燃比フィードバック制御
を早期に行わせて、機関始動時(冷機時)の排気性状を
改善できるようになる。
As described above, if the catalyst activity is improved and the low temperature operation is promoted, if the oxygen concentration is provided to detect the oxygen concentration in the exhaust gas of the internal combustion engine, the amount of oxygen in the exhaust gas immediately after the engine is started. Oxygen concentration can be measured accurately,
The air-fuel ratio feedback control based on the information on the oxygen concentration can be performed at an early stage to improve the exhaust quality at the engine start (when the engine is cold).

【0016】[0016]

【発明の効果】以上説明したように本発明にかかる酸素
センサによると、白金Pt粉の周囲に白金以外のロジウ
ムRh,パラジウムPd,ルテニウムRuなどの白金系
貴金属をコーティングしてなる貴金属成分を含んで電極
を形成するようにしたので、白金の触媒活性を前記コー
ティングされた白金系貴金属によって改善でき、然も、
白金の触媒活性を向上させ得る白金系貴金属を白金粒子
の周囲に確実に集めておくことができ、以て、電極の触
媒活性を有効に向上させて、酸素センサの低温特性を改
善できるという効果がある。
As described above, according to the oxygen sensor of the present invention, the platinum Pt powder contains a noble metal component formed by coating a platinum-based noble metal such as rhodium Rh, palladium Pd, and ruthenium Ru other than platinum. Since the electrode is formed with, the catalytic activity of platinum can be improved by the coated platinum-based noble metal, and still,
The effect that the platinum-based noble metal capable of improving the catalytic activity of platinum can be reliably collected around the platinum particles, and thus the catalytic activity of the electrode can be effectively improved and the low temperature characteristics of the oxygen sensor can be improved. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸素センサ構造例を示す断面図。FIG. 1 is a cross-sectional view showing an example of an oxygen sensor structure.

【図2】電極を形成する白金粒子の構造を示す図。FIG. 2 is a diagram showing a structure of platinum particles forming an electrode.

【図3】酸素センサの出力特性を示す線図。FIG. 3 is a diagram showing an output characteristic of an oxygen sensor.

【図4】コーティングによる効果を説明するための線
図。
FIG. 4 is a diagram for explaining the effect of coating.

【符号の説明】[Explanation of symbols]

1 ジルコニアチューブ 2,3 電極 4 保護層 1 Zirconia tube 2,3 Electrode 4 Protective layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸素イオン伝導性固体電解質からなる基体
の内外表面に電極をそれぞれ形成し、基準気体に接触さ
せた一方表面の電極と、被検出気体に接触させた他方表
面の電極との間に酸素分圧比に応じた起電力を発生する
酸素センサであって、 白金粉の周囲に白金以外の白金系貴金属をコーティング
してなる貴金属成分を含んで前記電極を形成したことを
特徴とする酸素センサ。
1. An electrode is formed on each of the inner and outer surfaces of a substrate made of an oxygen ion conductive solid electrolyte, and the electrode on one surface is in contact with a reference gas and the electrode on the other surface is in contact with a gas to be detected. An oxygen sensor that generates an electromotive force according to the oxygen partial pressure ratio, characterized in that the electrode is formed by including a noble metal component obtained by coating a platinum-based noble metal other than platinum around platinum powder. Sensor.
JP5116133A 1993-05-18 1993-05-18 Oxygen sensor Pending JPH06331593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5116133A JPH06331593A (en) 1993-05-18 1993-05-18 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5116133A JPH06331593A (en) 1993-05-18 1993-05-18 Oxygen sensor

Publications (1)

Publication Number Publication Date
JPH06331593A true JPH06331593A (en) 1994-12-02

Family

ID=14679544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5116133A Pending JPH06331593A (en) 1993-05-18 1993-05-18 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPH06331593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017377A1 (en) * 2017-07-20 2019-01-24 株式会社デンソー Gas sensor
JP2019020386A (en) * 2017-07-20 2019-02-07 株式会社デンソー Gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017377A1 (en) * 2017-07-20 2019-01-24 株式会社デンソー Gas sensor
JP2019020386A (en) * 2017-07-20 2019-02-07 株式会社デンソー Gas sensor

Similar Documents

Publication Publication Date Title
JP6824828B2 (en) Ammonia concentration measuring device, ammonia concentration measuring system, exhaust gas treatment system, and ammonia concentration measuring method
US4136000A (en) Process for producing improved solid electrolyte oxygen gas sensors
US6514397B2 (en) Gas sensor
JPH0668480B2 (en) Electrode structure in oxygen sensor
JP6896577B2 (en) Combustible gas concentration measuring device, flammable gas concentration measuring system, exhaust gas treatment system, flammable gas concentration measuring method, and constant derivation method
JPH01184457A (en) Oxygen sensor element
JP6867921B2 (en) Ammonia concentration measuring device, ammonia concentration measuring system, exhaust gas treatment system, and ammonia concentration measuring method
JP2001318075A (en) NOx GAS DETECTOR
US4650697A (en) Process of manufacturing oxygen sensor
JP5033017B2 (en) Ammonia gas sensor
JP4456839B2 (en) NOx detection cell, manufacturing method thereof, and NOx detection apparatus including the cell
JP2003518619A (en) Sensor element of gas sensor for measuring gas components
US8828206B2 (en) Gas sensor element and gas sensor employing the gas sensor element
JPH06331593A (en) Oxygen sensor
JPS6145962A (en) Threshold current type oxygen sensor
JPH0244244A (en) Manufacture of electrochemical cell
JPS6214055A (en) Oxygen sensor
JP2005530154A (en) Sensor element for measuring sensor for measuring oxygen concentration in exhaust gas of internal combustion engine
JP2002156355A (en) Gas sensor element and gas concentration measuring device having the same
JPS60256045A (en) Electrode for oxygen sensor
JP3152458B2 (en) Oxygen sensor
JP2869836B2 (en) Oxygen sensor
JP4402282B2 (en) Method for manufacturing flammable gas sensor element
JPH06160333A (en) Manufacture of oxygen sensor
JP2007163176A (en) Ammonia gas sensor