JPH06331326A - Three-dimensional shape measuring apparatus - Google Patents

Three-dimensional shape measuring apparatus

Info

Publication number
JPH06331326A
JPH06331326A JP11946693A JP11946693A JPH06331326A JP H06331326 A JPH06331326 A JP H06331326A JP 11946693 A JP11946693 A JP 11946693A JP 11946693 A JP11946693 A JP 11946693A JP H06331326 A JPH06331326 A JP H06331326A
Authority
JP
Japan
Prior art keywords
image
spot
difference signal
measured
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11946693A
Other languages
Japanese (ja)
Inventor
Satoshi Yamazaki
敏 山崎
Yasuharu Jin
康晴 神
Akashi Yamaguchi
証 山口
Taizo Yoshida
泰三 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO PLANT KENSETSU KK
Kobe Steel Ltd
Original Assignee
SHINKO PLANT KENSETSU KK
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO PLANT KENSETSU KK, Kobe Steel Ltd filed Critical SHINKO PLANT KENSETSU KK
Priority to JP11946693A priority Critical patent/JPH06331326A/en
Publication of JPH06331326A publication Critical patent/JPH06331326A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a three-dimensional shape even when a large object to be measured is vibrated by constituting an imaging means of a polyhedral split type optical sensor equipped with a plurality of imaging surfaces outputting the electric signals corresponding to the intensities of the spot images caught by the respective imaging surfaces. CONSTITUTION:A second theodolite 15 is constituted of a polyhedral split type optical sensor 14 having a plurality of imaging surfaces corresponding to the image receiving areas of the spot images caught by the respective imaging surfaces. The spot images on the image receiving surfaces are moved by a second drive part 18 and the spot lights 10 applied to a vibrated object 2 to be measured are imaged by the optical sensor 14 and the difference signal of the output signals from the respective imaging surfaces is detected and the position coordinates of the spot lights are operated on the basis of the imaging angle of the second theodolite 15 wherein the difference signal attains a predetermined balance state. By this constitution, even in such a state that the object 2 to be measured is vibrated, the position coordinates of the spot lights can be operated on the basis of an imaging angle wherein the different signal attains a predetermined balance state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,3次元形状計測装置の
改良に係り,詳しくはビル構造物,車体,船体,圧力容
器等の大型の被測定物が振動している時にも,その形状
等を簡便に高精度,高速度で計測し得る3次元形状計測
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a three-dimensional shape measuring device, and more particularly, to the shape of a large object to be measured such as a building structure, car body, hull, pressure vessel, etc. The present invention relates to a three-dimensional shape measuring device capable of simply measuring high precision and high speed.

【0002】[0002]

【従来の技術】従来,被測定物の3次元形状を非接触で
計測する方法として,AM光位相差計測法やスポット光
投影法等の各種計測方法が提案されている。そのうち,
以下に延べるように非測定物にスポット光を投光するス
ポット光投影法は三角測量の原理を用いており,一般的
に信頼性が高く高精度の測定ができることが知られてい
る。図7は,上記スポット光投影法を用いた3次元形状
計測装置の一例を示している。この3次元形状計測装置
51は,被測定物52に例えばレーザー光53を投光角
可変に投光するセオドライト54と上記被測定物52上
に投射されたスポット光55を撮像するTVカメラ56
とを具備している。上記セオドライト54と上記TVカ
メラ56とは,図8に模式的に示すように所定距離(例
えばL)隔てて配置されている。上記セオドライト54
から投光されたレーザ光53により形成されたスポット
光55が上記TVカメラ56により撮像され,同TVカ
メラ56の所定点(例えば中心点)に来るようにTVカ
メラ56が回転制御され,同スポット光55が追尾され
る。この3次元形状計測装置51では,上記回転制御速
度を高速とするために画像処理装置57を用いてリアル
タイムで画像処理を行っている。そして,上記撮像され
たスポット像がTVカメラ56の中心点に来た時のレー
ザ光53の投光角度(例えば図8に示すθ1 ,φ1 ),
TVカメラ56により撮像されたスポット像の撮像角度
(同図のθ2 ,φ2 ),および上記距離Lの値から同距
離Lの中点58を原点とする被測定物52上のスポット
光55の位置座標(X,Y,Z)が三角測量の原理に基
づき例えば次式に従って求められ,この被測定物52の
3次元形状が計測される。 X=L(tan θ2 +tan θ
1 )/2(tan θ2 −tan θ1 ) Y=Ltan θ2tanθ1 /(tan θ2 −tan θ1 ) Z=Ltan θ2tanθ1tanφ1 / tan θ2 −tan θ1 )
sin θ1=Ltan θ2tanθ1tanφ2 /(tan θ2 −tan
θ1 )sin θ2 このような3次元形状計測装置の高精度化,高速度化の
ために,本件出願人は,図9に示すような特開平3−2
26615号公報に開示された従来技術を開発してい
る。この3次元形状計測装置は,被測定物52にレーザ
光61を投光角可変に投光する投光用のセオドライト6
2と,上記被測定物52上に投射されたスポット光63
を追尾して受像する受像用のセオドライト64とを具備
しており,両セオドライト62,64は例えば2〜10
mの所定距離Lを隔てて配置されている。両セオドライ
ト62,64には,その光軸角度を読み取るエンコーダ
65,66が設けられており,両エンコーダ65,66
の検出信号がCPU70へ入力されている。CPU70
は,入力される検出信号に基づいて両セオドライト6
2,64の光軸角度をサンプリングし,被測定物52上
のスポット光63の3次元座標値を算出することによ
り,被測定物52の形状を計測するようになっている。
上記投光用のセオドライト62には,光源68とレンズ
系69とが内蔵されており,光源68からの出力ビーム
がレンズ系69で集束されて被測定物52上にスポット
光63として投射される。一方,受像用のセオドライト
64には,4分割受像面を有する4分割光学センサ73
とレンズ系74とが内蔵されており,この4分割光学セ
ンサ73の各受像面での検出信号が像位置検出部71へ
出力される。図10に示すように,上記4分割光学セン
サ73の各受像面a,b,c,dは,4分割光学センサ
73の中心を通過するX軸,Y軸両方向の2本の直線で
4分割されており,各受像面a,b,c,dへの入射光
の強度を個別に検出し得る。各受像面a〜dの検出信号
は,像位置検出部75の演算増幅器76,77で増幅さ
れ,両演算増幅器76,77の出力は和信号生成用の演
算増幅器78および差信号生成用の演算増幅器79へ入
力されている。上記和信号生成用の演算増幅器78では
全受像面a〜dからの出力を加算した和信号を生成し,
上記差信号生成用の演算増幅器79では,各受像面a,
bの出力和信号と各受像面c,dの出力和信号との差信
号を生成している。このような3次元形状計測装置にお
いて,上記受像用のセオドライト64がスポット光63
を追尾すると,図11(A)に示すように,各受像面a
〜d上をスポット光63のスポット像80が位置81か
ら位置82へ移動するようになっている。このとき,図
11(B)に示すように,受像用のセオドライト64の
回転角θに対して像位置検出部71の和信号V1 および
差信号V2 の出力信号Vが変化する。和信号V1 は,ス
ポット像80が各受像面a〜d上を移動する時には,出
力信号Vがほぼ一定の状態になり,この和信号V1 によ
りスポット像80の受光状態が検知される。一方,上記
差信号V2 は,スポット像80が4分割光学センサ73
の中心に位置した時に,差信号V2 が零となる。このよ
うな差信号V2の変化により,上記セオドライト64の
光軸と,被測定物52上のスポット光63の投影位置の
1次元位置ずれが検出される。したがって,像位置検出
部71からの差信号V2 を上記エンコーダ66に入力
し,差信号V2 が零となるようにセオドライト64の光
軸角度を調整することにより,上記した三角測量の手法
により被測定物52の3次元形状が計測される。
2. Description of the Related Art Conventionally, various measuring methods such as an AM optical phase difference measuring method and a spot light projecting method have been proposed as a method for measuring a three-dimensional shape of an object to be measured without contact. Of which
The spot light projection method, which projects the spot light onto the non-measurement object, uses the principle of triangulation, and is generally known to be highly reliable and highly accurate. FIG. 7 shows an example of a three-dimensional shape measuring apparatus using the spot light projection method. The three-dimensional shape measuring apparatus 51 includes a theodolite 54 that projects a laser beam 53 on the object to be measured 52 with a variable projection angle, and a TV camera 56 that images the spot light 55 projected on the object to be measured 52.
It has and. The theodolite 54 and the TV camera 56 are arranged at a predetermined distance (for example, L) from each other as schematically shown in FIG. The theodolite 54
The spot light 55 formed by the laser beam 53 emitted from the TV camera 56 is imaged by the TV camera 56, and the TV camera 56 is rotationally controlled so as to come to a predetermined point (for example, the center point) of the TV camera 56, and the spot is spotted. The light 55 is tracked. In this three-dimensional shape measuring device 51, the image processing device 57 is used to perform image processing in real time in order to increase the rotation control speed. Then, the projection angle of the laser light 53 when the imaged spot image reaches the center point of the TV camera 56 (eg, θ 1 and φ 1 shown in FIG. 8),
The angle of the spot image captured by the TV camera 56 (θ2, φ2 in the figure), and the position of the spot light 55 on the DUT 52 whose origin is the midpoint 58 of the same distance L from the value of the distance L. Coordinates (X, Y, Z) are obtained based on the principle of triangulation, for example, according to the following equation, and the three-dimensional shape of the measured object 52 is measured. X = L (tan θ2 + tan θ
1) / 2 (tan θ2 −tan θ1) Y = Ltan θ2 tan θ1 / (tan θ2 −tan θ1) Z = Ltan θ2 tan θ1 tan φ1 / tan θ2 −tan θ1)
sin θ1 = Ltan θ2 tan θ1 tan φ2 / (tan θ2 −tan
θ1) sin θ2 In order to improve the accuracy and speed of such a three-dimensional shape measuring apparatus, the applicant of the present application has disclosed in Japanese Unexamined Patent Publication No. 3-2 shown in FIG.
The conventional technique disclosed in Japanese Patent No. 26615 is being developed. This three-dimensional shape measuring apparatus is a theodolite 6 for light projection, which projects a laser light 61 on a measured object 52 with a variable projection angle.
2 and the spot light 63 projected on the DUT 52.
The theodolites 62 and 64 for image reception for tracking and receiving the images are provided.
It is arranged at a predetermined distance L of m. Both theodolites 62, 64 are provided with encoders 65, 66 for reading the optical axis angles thereof.
Detection signal is input to the CPU 70. CPU70
Are the theodolites 6 based on the input detection signal.
The shape of the object to be measured 52 is measured by sampling the optical axis angles of 2, 64 and calculating the three-dimensional coordinate value of the spot light 63 on the object to be measured 52.
A light source 68 and a lens system 69 are built in the above-mentioned theodolite 62 for projecting light, and an output beam from the light source 68 is focused by the lens system 69 and projected as spot light 63 on the object to be measured 52. . On the other hand, the theodolite 64 for image reception has a four-division optical sensor 73 having a four-division image receiving surface.
And a lens system 74 are built in, and a detection signal on each image receiving surface of the four-division optical sensor 73 is output to the image position detecting section 71. As shown in FIG. 10, each image receiving surface a, b, c, d of the four-division optical sensor 73 is divided into four by two straight lines passing through the center of the four-division optical sensor 73 in both X-axis and Y-axis directions. The intensity of the incident light on each image receiving surface a, b, c, d can be individually detected. The detection signals of the image receiving surfaces a to d are amplified by the operational amplifiers 76 and 77 of the image position detection unit 75, and the outputs of both operational amplifiers 76 and 77 are the operational amplifier 78 for generating the sum signal and the operation for generating the difference signal. It is input to the amplifier 79. The operational amplifier 78 for generating the sum signal generates a sum signal by adding the outputs from all the image receiving surfaces a to d,
In the operational amplifier 79 for generating the difference signal, each image receiving surface a,
A difference signal between the output sum signal of b and the output sum signal of each of the image receiving surfaces c and d is generated. In such a three-dimensional shape measuring apparatus, the theodolite 64 for receiving the image is the spot light 63.
11A, each image-receiving surface a is tracked as shown in FIG.
The spot image 80 of the spot light 63 is moved from the position 81 to the position 82 on the upper part of FIG. At this time, as shown in FIG. 11B, the output signal V of the sum signal V1 and the difference signal V2 of the image position detector 71 changes with respect to the rotation angle θ of the image receiving theodolite 64. The output signal V of the sum signal V1 becomes substantially constant when the spot image 80 moves on each of the image receiving surfaces a to d, and the light receiving state of the spot image 80 is detected by the sum signal V1. On the other hand, the difference signal V2 indicates that the spot image 80 has a four-division optical sensor 73.
When located at the center of, the difference signal V2 becomes zero. Due to such a change in the difference signal V2, a one-dimensional displacement between the optical axis of the theodolite 64 and the projection position of the spot light 63 on the object to be measured 52 is detected. Therefore, the difference signal V2 from the image position detector 71 is input to the encoder 66, and the optical axis angle of the theodolite 64 is adjusted so that the difference signal V2 becomes zero. The three-dimensional shape of the object 52 is measured.

【0003】[0003]

【発明が解決しようとする課題】図9に示す3次元形状
計測装置の従来技術では,被測定物52の3次元形状を
高速,高精度で計測することができるが,被測定物52
が振動している状態では,3次元形状を計測することが
できない。その理由は,上記従来技術では4分割光学セ
ンサ73,像位置検出部71,エンコーダ66からなる
光軸角度制御系によりセオドライト64の光軸をスポッ
ト光63に一致させるように光軸角度を制御する必要が
あるが,被測定物52が振動している状態では,上記4
分割光学センサ73の各受像面a〜d上でスポット像8
0が移動して,スポット像80の位置が変化してしま
い,光軸角度を正常に制御することができなくなるから
である。例えば,被測定物52の振動周波数が,上記光
軸制御系の応答周波数よりも低い時には,セオドライト
64の光軸がスポット光63の振動による位置変化に追
随して振動してしまう。一方,被測定物52の振動周波
数が,上記光軸制御系の応答周波数よりも高い時には,
スポット光63の位置をセオドライト64の光軸が追尾
することができなくなる。このように,いずれの場合で
も,被測定物52が振動している場合には,上記スポッ
ト光63の位置を演算することができず,上記した三角
測量の原理による3次元形状計測が不可能になるという
問題がある。本発明は,このような従来の技術における
課題を解決するために,ビル構造物や車体等の大型の被
測定物が振動している時にも,その3次元形状を計測す
ることができる3次元形状計測装置を提供することを目
的としてなされたものである。
In the prior art of the three-dimensional shape measuring apparatus shown in FIG. 9, the three-dimensional shape of the object to be measured 52 can be measured at high speed and with high accuracy.
It is not possible to measure a three-dimensional shape when the is vibrating. The reason is that in the above-mentioned conventional technique, the optical axis angle is controlled by the optical axis angle control system including the four-division optical sensor 73, the image position detector 71, and the encoder 66 so that the optical axis of the theodolite 64 coincides with the spot light 63. Although it is necessary, when the DUT 52 is vibrating, the above 4
The spot image 8 is formed on each of the image receiving surfaces a to d of the split optical sensor 73.
This is because 0 moves and the position of the spot image 80 changes, so that the optical axis angle cannot be normally controlled. For example, when the vibration frequency of the object to be measured 52 is lower than the response frequency of the optical axis control system, the optical axis of the theodolite 64 vibrates following the position change due to the vibration of the spot light 63. On the other hand, when the vibration frequency of the DUT 52 is higher than the response frequency of the optical axis control system,
The optical axis of the theodolite 64 cannot track the position of the spot light 63. As described above, in any case, when the DUT 52 is vibrating, the position of the spot light 63 cannot be calculated, and the three-dimensional shape measurement based on the above-described triangulation principle is impossible. There is a problem that becomes. In order to solve the problems in the conventional technique, the present invention can measure a three-dimensional shape even when a large object to be measured such as a building structure or a vehicle body is vibrating. The purpose of the present invention is to provide a shape measuring device.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,被測定物にスポット光を投光角度可変に投
光する投光手段と,上記スポット光の投光角度を検出す
る投光角検出手段と,上記投光手段に対して所定距離隔
てて配置され,上記被測定物上に投射されたスポット像
を撮像する撮像手段と,上記撮像手段を回転させて該撮
像手段により撮像されたスポット像を移動させる像移動
手段と,上記撮像手段の回転量を検出し上記スポット像
の撮像角度を検出する撮像角検出手段とを具備し,上記
像移動手段により撮像手段に撮像されたスポット像を該
撮像手段の所定位置に移動させ,その時投光角検出手段
により検出されたスポット光の投光角度,撮像角検出手
段により検出されたスポット像の撮像角度および上記投
光手段と上記撮像手段との間の距離の値から被測定物上
のスポット光の位置座標を演算する3次元形状計測装置
において,上記撮像手段を各撮像面に捉えられた上記ス
ポット像の強度に応じた電気信号を出力する複数の撮像
面を具備する多面分割型光学センサにより構成し,前記
像移動手段によりスポット像を移動させると共に,振動
している上記被測定物上のスポット光を上記多面分割型
光学センサで撮像して上記各撮像面からの出力信号の差
信号を検出し,上記差信号が所定のバランス状態となる
前記撮像角度に基づいてスポット光の位置座標を演算し
てなることを特徴とする3次元形状計測装置として構成
される。上記所定のバランス状態は,上記スポット像検
出信号の差信号の直流成分が零となる状態として捉える
ことができる。また,上記所定のバランス状態は,被測
定物の振動の1周期における上記差信号の電圧が正電圧
となる時間と負電圧となる時間との比が,一定となる状
態として捉えることができる。更には,上記所定のバラ
ンス状態は,被測定物の振動により上記差信号の電圧が
正負両方向へ波動する時に,その振幅の比が一定となる
状態として捉えることができる。
In order to achieve the above object, the present invention detects a light projecting means for projecting a spot light onto an object to be measured with a variable light projecting angle, and detecting the light projecting angle of the spot light. Projection angle detection means, imaging means arranged at a predetermined distance from the projection means, for imaging the spot image projected on the object to be measured, and the imaging means for rotating the imaging means. An image moving means for moving the imaged spot image, and an imaging angle detecting means for detecting a rotation amount of the imaging means to detect an imaging angle of the spot image are provided. The spot image is moved to a predetermined position of the image pickup means, at which time the light projection angle of the spot light detected by the light projection angle detection means, the image pickup angle of the spot image detected by the image pickup angle detection means, and the light projection means Imaging above In a three-dimensional shape measuring apparatus for calculating the position coordinates of spot light on an object to be measured from the value of the distance from the step, an electric signal corresponding to the intensity of the spot image captured by each of the image capturing means on each image capturing surface. A multi-faceted optical sensor having a plurality of image pickup surfaces for outputting, and moving the spot image by the image moving means, and causing the spot light on the vibrating object to be measured to be the multi-faceted optical sensor. And detecting the difference signal of the output signals from the respective image pickup surfaces, and calculating the position coordinates of the spot light based on the image pickup angle at which the difference signal is in a predetermined balanced state. It is configured as a three-dimensional shape measuring device. The predetermined balance state can be understood as a state in which the DC component of the difference signal of the spot image detection signal is zero. The predetermined balance state can be understood as a state in which the ratio of the time when the voltage of the difference signal becomes a positive voltage and the time when the voltage of the difference signal becomes a negative voltage in one cycle of the vibration of the measured object becomes constant. Further, the predetermined balance state can be understood as a state in which the amplitude ratio becomes constant when the voltage of the difference signal oscillates in both the positive and negative directions due to the vibration of the measured object.

【0005】[0005]

【作用】本発明によれば,撮像手段を各撮像面に捉えら
れたスポット像の受像面積に応じた複数の撮像面を具備
する多面分割型光学センサにより構成し,像移動手段に
より受像面上での上記スポット像を移動させると共に,
振動している上記被測定物上のスポット光を上記多面分
割型光学センサで撮像して上記各撮像面からの出力信号
の差信号を検出し,この差信号が所定のバランス状態と
なる撮像手段の撮像角度に基づいてスポット光の位置座
標を演算するので,上記被測定物が振動している状態で
も上記スポット光の位置座標を上記差信号が所定のバラ
ンス状態となる前記撮像角度に基づいて演算することが
可能になる。その結果,被測定物が振動している状態で
も,スポット光の位置座標が演算され,振動している被
測定物の3次元形状計測が可能になる。例えば,上記ス
ポット像検出信号の差信号の直流成分が零となる状態を
差信号のバランス状態として,振動している被測定物上
のスポット光の位置座標を演算することができる。ま
た,被測定物の振動の1周期における上記差信号の電圧
が正電圧となる時間と負電圧となる時間との比を,一定
となる状態が差信号のバランス状態として振動している
被測定物上のスポット光の位置座標を演算することも可
能である。更に,被測定物の振動により上記差信号の電
圧が正負両方向へ波動する時に,その振幅の比が一定と
なる状態を差信号のバランス状態として振動している被
測定物上のスポット光の位置座標を演算することが可能
である。
According to the present invention, the image pickup means is composed of a multi-plane split type optical sensor having a plurality of image pickup surfaces corresponding to the image receiving areas of the spot images captured on the respective image pickup surfaces, and the image moving means is provided on the image receiving surface. While moving the above spot image in
Imaging means for picking up the vibrating spot light on the object to be measured by the multifaceted optical sensor to detect a difference signal of the output signals from the respective image pickup surfaces, and the difference signal being in a predetermined balance state. Since the position coordinates of the spot light are calculated based on the image pickup angle of, the position coordinates of the spot light are calculated based on the image pickup angle at which the difference signal is in a predetermined balanced state even when the object to be measured is vibrating. It becomes possible to calculate. As a result, even when the measured object is vibrating, the position coordinates of the spot light are calculated, and the three-dimensional shape of the vibrating measured object can be measured. For example, the position coordinate of the spot light on the vibrating object to be measured can be calculated with the state where the DC component of the difference signal of the spot image detection signal becomes zero as the balance state of the difference signal. Also, the ratio of the time when the voltage of the difference signal becomes a positive voltage and the time when the voltage of the difference signal becomes a negative voltage in one cycle of vibration of the DUT vibrates as a balanced state of the difference signal when the ratio is constant. It is also possible to calculate the position coordinates of the spot light on the object. Furthermore, when the voltage of the difference signal oscillates in both the positive and negative directions due to the vibration of the DUT, the position of the spot light on the DUT that vibrates is defined as the state where the amplitude ratio is constant as the balance state of the difference signal. It is possible to calculate the coordinates.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性質のものではない。図1は
本発明の第一実施例に係る3次元形状計測装置の概略構
成を示すブロック図,図2(A)は像位置検出部を示す
構成図,図2(B)は直流分検出器を示す回路図,図3
(A)は4分割光学センサを模式的に示す説明図,図3
(B)は被測定物の振動に伴う差信号の変化を示すグラ
フである。図1に示すようにこの3次元形状計測装置1
は,振動している被測定物2に光源3からの例えばレー
ザ光4をレンズ5,6,7を介して投光する第1セオド
ライト8と,上記被測定物2上に投射されたスポット光
10をレンズ11,12,13を介して撮像する4分割
光学センサ14を具備する第2セオドライト15とを有
している。この3次元形状計測装置1の制御回路は,マ
イクロコンピュータCPU等からなる制御部16を中枢
として構成され,上記制御部16に,上記第1セオドラ
イト8を回転駆動する第1駆動部17,上記第2セオド
ライト15を回転駆動する第2駆動部18,上記4分割
光学センサ14からの出力信号を処理する像位置検出部
19,および上記被測定物2が振動する場合にも4分割
光学センサ14の差信号から所定のバランス状態を検出
するための直流分検出器20が接続されている。上記第
1駆動部17により,上記第1セオドライト8がこの図
1に示すように回転駆動され,上記レーザ光4の投光角
度(θ1 ,φ1 )が制御される。上述したレーザ光4を
投光角度可変に投光する機能を実現する第1セオドライ
ト8および第1駆動部17が投光手段の一例である。ま
た,上記レーザ光4の投光角度(θ1 ,φ1 )は上記第
1駆動部17に内蔵されたモータに取り付けられたエン
コーダ17a,17bにより検出され,制御部16に入
力される。上記エンコーダ17a,17bが投光角検出
手段の一例である。上記第2セオドライト15は,上記
第1セオドライト8に対して所定距離(例えばL)隔て
て配置され,上記スポット光10をレンズ11等を介し
て4分割光学センサ14の受像面上に撮像する。上記第
2セオドライト15が撮像手段の一例である。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. Note that the following embodiments are examples of embodying the present invention and are not of a nature limiting the technical scope of the present invention. 1 is a block diagram showing a schematic configuration of a three-dimensional shape measuring apparatus according to a first embodiment of the present invention, FIG. 2 (A) is a configuration diagram showing an image position detector, and FIG. 2 (B) is a DC component detector. Circuit diagram showing
3A is an explanatory view schematically showing a four-division optical sensor, FIG.
(B) is a graph showing the change of the difference signal due to the vibration of the object to be measured. As shown in FIG. 1, this three-dimensional shape measuring device 1
Is a first theodolite 8 that projects, for example, a laser beam 4 from a light source 3 onto the vibrating DUT 2 through lenses 5, 6 and 7, and spot light projected on the DUT 2. The second theodolite 15 includes a four-division optical sensor 14 that images 10 through the lenses 11, 12, and 13. The control circuit of the three-dimensional shape measuring apparatus 1 is configured with a control unit 16 including a microcomputer CPU or the like as a center, and the control unit 16 includes a first drive unit 17 for rotationally driving the first theodolite 8 and the first drive unit 17. The second drive unit 18 that rotationally drives the 2 theodolite 15, the image position detection unit 19 that processes the output signal from the four-division optical sensor 14, and the four-division optical sensor 14 even when the DUT 2 vibrates. A DC component detector 20 for detecting a predetermined balance state from the difference signal is connected. The first driving unit 17 rotationally drives the first theodolite 8 as shown in FIG. 1, and controls the projection angle (θ1, φ1) of the laser beam 4. The first theodolite 8 and the first drive unit 17, which realize the function of projecting the laser light 4 in a variable projection angle, are an example of a projecting unit. Further, the projection angle (θ1, φ1) of the laser beam 4 is detected by encoders 17a and 17b attached to the motor built in the first driving unit 17, and is input to the control unit 16. The encoders 17a and 17b are an example of the projection angle detection means. The second theodolite 15 is arranged at a predetermined distance (for example, L) from the first theodolite 8, and images the spot light 10 on the image receiving surface of the four-division optical sensor 14 via the lens 11 and the like. The second theodolite 15 is an example of the image pickup means.

【0007】上記4分割光学センサ14は,例えばシリ
コンフォトダイオード等からなり,図3(A)に示すよ
うにその光検出面がX軸方向およびY軸方向の両方向に
4分割され,4受像面14a,14b,14c,14d
が形成されている。従って,各々の受像面の受光強度が
独立に検出できる。上記4分割光学センサ14の受像面
上に撮像されたスポット像の位置は上記像位置検出部1
9によりX,Y軸方向(図3(A))の2値情報に変換
され,その2値信号に含まれる被測定物2の振動の影響
が上記直流分検出器20により信号処理された後に,上
記第2駆動部18を介して制御部16に入力される。上
記第2セオドライト15は,上記第2駆動部18により
図1に示すように回転駆動され,上記4分割光学センサ
14の受像面上に撮像されたスポット像の位置が移動さ
れる。上記第2セオドライト15を回転させて上記撮像
されたスポット像の位置を移動させる第2駆動部18が
像移動手段の一例である。上記第2セオドライト15の
回転量は上記第2駆動部18に内蔵されたモータに取り
付けられたエンコーダ18a,18bにより検出され上
記4分割光学センサ14の受像面上に撮像されたスポッ
ト像の撮像角度(θ2,φ2)が検出される。上記撮像角
度(θ2,φ2 )を検出するエンコーダ18a,18b
が撮像角検出手段の一例である。上記4分割光学センサ
14の各受像面14a〜14dの検出信号は,図2
(A)に示すように像位置検出部19の演算増幅器3
0,31で増幅され,両演算増幅器30,31の出力は
和信号生成用の演算増幅器32および差信号生成用の演
算増幅器33へ入力されている。上記和信号生成用の演
算増幅器32では全受像面14a〜14dからの出力を
加算した和信号を生成し,上記差信号生成用の演算増幅
器33では,各受像面14a,14bの出力和信号と各
受像面14c,14dの出力和信号との差信号を生成す
るようになっている。上記直流分検出器20は,図2
(B)に示すように,抵抗21a,21b,21c,コ
ンデンサ22a,22b,および演算比較器23を具備
するローパスフィルタとして構成されており,直流分検
出器20は上記像位置検出部19の出力信号,即ち差信
号から交流成分を除去し,差信号の直流成分のみを上記
第2駆動部18へ入力している。
The four-division optical sensor 14 is composed of, for example, a silicon photodiode or the like, and as shown in FIG. 3 (A), its light detection surface is divided into four in both the X-axis direction and the Y-axis direction, and four image-receiving surfaces are formed. 14a, 14b, 14c, 14d
Are formed. Therefore, the received light intensity of each image receiving surface can be detected independently. The position of the spot image picked up on the image receiving surface of the four-division optical sensor 14 is determined by the image position detection unit 1 described above.
9 is converted into binary information in the X and Y axis directions (FIG. 3A), and after the influence of the vibration of the DUT 2 included in the binary signal is processed by the DC component detector 20, , Is input to the control unit 16 via the second drive unit 18. The second theodolite 15 is rotationally driven by the second driving unit 18 as shown in FIG. 1, and the position of the spot image picked up on the image receiving surface of the four-division optical sensor 14 is moved. The second drive unit 18 that rotates the second theodolite 15 to move the position of the captured spot image is an example of an image moving unit. The rotation amount of the second theodolite 15 is detected by encoders 18a and 18b attached to a motor built in the second driving unit 18, and an imaging angle of a spot image captured on the image receiving surface of the four-division optical sensor 14. (Θ2, φ2) is detected. Encoders 18a and 18b for detecting the imaging angle (θ2, φ2)
Is an example of the imaging angle detection means. The detection signals of the image receiving surfaces 14a to 14d of the four-division optical sensor 14 are as shown in FIG.
As shown in (A), the operational amplifier 3 of the image position detector 19
Amplified by 0 and 31, the outputs of both operational amplifiers 30 and 31 are input to an operational amplifier 32 for generating a sum signal and an operational amplifier 33 for generating a difference signal. The operational amplifier 32 for generating the sum signal generates a sum signal by adding the outputs from all the image receiving surfaces 14a to 14d, and the operational amplifier 33 for generating the difference signal generates the sum signal output from the image receiving surfaces 14a and 14b. A difference signal from the output sum signals of the image receiving surfaces 14c and 14d is generated. The DC component detector 20 is shown in FIG.
As shown in (B), it is configured as a low-pass filter including resistors 21a, 21b and 21c, capacitors 22a and 22b, and an operational comparator 23, and the DC component detector 20 outputs the image position detector 19 The AC component is removed from the signal, that is, the difference signal, and only the DC component of the difference signal is input to the second drive unit 18.

【0008】この3次元形状計測装置1では,第1セオ
ドライト8により被測定物2にレーザ光4が投光される
と,被測定物2上に投射されたスポット光10が第2セ
オドライト15のレンズ11等を介して4分割光学セン
サ14の受像面上に撮像される。そして,被測定物2の
振動に伴って4分割光学センサ14の受像面上の像が移
動している状態でも,上記4分割光学センサ14の各受
像面14a,14b,14c,14dからの出力信号が
所定のバランス状態,例えば全て均等となって,上記直
流分検出器20から出力される差信号の直流成分が零と
なるように第2駆動部18が駆動制御されて,第2セオ
ドライト15の向きが制御される。被測定物2が振動し
ている状態において,図3(A)に示すように第2セオ
ドライト15のレンズ11等により上記4分割光学セン
サ14上に受像するスポット光10のスポット像35
は,被測定物2の振動により位置36から位置37へ移
動することになる。このとき,上記像位置検出部19か
ら出力される差信号は,図3(B)に示すように,被測
定物2の振動に同期して時間T1 間の正電圧または時間
T2 間の負電圧に波動する。このような像位置検出部1
9の差信号が上記直流分検出器20へ入力されると,直
流分検出器20は上記像位置検出部19の差信号から交
流成分を除去し,直流成分のみを第2駆動部18へ入力
する。直流分検出器20からの直流成分が第2駆動部1
8へ入力されると,第2駆動部18のエンコーダ18
a,18bが第2セオドライト15の光軸角度(θ2 ,
φ2)を,上記直流分検出器20の出力,即ち差信号の
直流成分が零となるように光軸角度(θ2 ,φ2 )を調
整する。このように第2セオドライト15の光軸角度
(θ2 ,φ2 )が調整されることにより,被測定物2が
振動して像位置検出部19の差信号が被測定物2の振動
に同期して変動する場合でも,被測定物2上で振動する
スポット光10の振動中心と,4分割センサ14の中心
が一致するように第2セオドライト15の光軸角度(θ
2 ,φ2 )が調整され,被測定物2が振動している状態
でも第2セオドライト15の光軸角度(θ2,φ2)が正
常に制御される。上述したようにこの3次元形状計測装
置1では,被測定物2が振動している状態でも,上記4
分割光学センサ14の各受像面14a〜14d上でスポ
ット像35が移動して,スポット像35の位置が変化し
てしまい,第2セオドライト15の光軸角度(θ2 ,φ
2 )が制御不能になるおそれがなく,第2セオドライト
15の光軸をスポット光10に一致させるように第2セ
オドライト15の光軸角度(θ2 ,φ2 )を制御するこ
とができ,振動している被測定物2の3次元形状計測が
可能になる。
In this three-dimensional shape measuring apparatus 1, when the laser beam 4 is projected onto the object to be measured 2 by the first theodolite 8, the spot light 10 projected onto the object to be measured 2 is converted into the second theodolite 15. An image is picked up on the image receiving surface of the four-division optical sensor 14 via the lens 11 and the like. Outputs from the image receiving surfaces 14a, 14b, 14c, 14d of the four-division optical sensor 14 even when the image on the image-receiving surface of the four-division optical sensor 14 moves with the vibration of the DUT 2. The second drive unit 18 is drive-controlled so that the signals are in a predetermined balanced state, for example, all become uniform, and the DC component of the difference signal output from the DC component detector 20 becomes zero, and the second theodolite 15 is The orientation of is controlled. While the DUT 2 is vibrating, as shown in FIG. 3A, the spot image 35 of the spot light 10 received on the four-division optical sensor 14 by the lens 11 of the second theodolite 15 or the like.
Moves from the position 36 to the position 37 due to the vibration of the DUT 2. At this time, as shown in FIG. 3B, the difference signal output from the image position detector 19 is synchronized with the vibration of the DUT 2 and is a positive voltage during the time T1 or a negative voltage during the time T2. Wave to. Such an image position detector 1
When the difference signal 9 is input to the DC component detector 20, the DC component detector 20 removes the AC component from the difference signal of the image position detector 19 and inputs only the DC component to the second driver 18. To do. The DC component from the DC component detector 20 is the second drive unit 1.
8 is input to the encoder 18 of the second drive unit 18.
a and 18b are optical axis angles of the second theodolite 15 (θ2,
φ2), the optical axis angle (θ2, φ2) is adjusted so that the output of the DC component detector 20, that is, the DC component of the difference signal becomes zero. By adjusting the optical axis angles (θ2, φ2) of the second theodolite 15 in this way, the DUT 2 vibrates and the difference signal of the image position detection unit 19 synchronizes with the vibration of the DUT 2. Even if it fluctuates, the optical axis angle of the second theodolite 15 (θ
2, φ2) is adjusted and the optical axis angle (θ2, φ2) of the second theodolite 15 is normally controlled even when the DUT 2 is vibrating. As described above, in the three-dimensional shape measuring apparatus 1, even when the DUT 2 is vibrating,
The spot image 35 moves on each of the image receiving surfaces 14a to 14d of the split optical sensor 14 and the position of the spot image 35 changes, so that the optical axis angle (θ2, φ) of the second theodolite 15 changes.
2) There is no risk of becoming uncontrollable, and the optical axis angle (θ2, φ2) of the second theodolite 15 can be controlled so that the optical axis of the second theodolite 15 coincides with the spotlight 10, and the vibration will occur. It becomes possible to measure the three-dimensional shape of the DUT 2 under measurement.

【0009】そして,上記直流分検出器20から出力さ
れる差信号の直流成分が零となるバランス状態となった
とき,エンコーダ17a,17bにより検出されたレー
ザ光4の投光角度(θ1 ,φ1 ),スポット光10の撮
像角度(θ2 ,φ2 )および上記両セオドライト8,1
5と被測定物2との間の距離Lの値から被測定物2上の
スポット光10の位置座標(X,Y,Z)が前述した三
角測量の原理による式を用いて演算される。従って,被
測定物2が振動している状態でも,被測定物2の3次元
形状を計測することが可能になる。 次に図4を参照し
て本発明の第2実施例を説明する。この第2実施例で
は,上記像位置検出部19からの差信号出力を第2駆動
部18および時間比検出器40aへ入力して,この時間
比検出器40aにより振動している被測定物2の3次元
形状を計測可能に差信号を処理している。上記時間比検
出器40aは,図5に示すように,上記像位置検出部1
9からの差信号出力が入力されるコンパレータ41,コ
ンパレータ41に入力される差信号の正負に応じてカウ
ント動作するカウンタ42,43,カウンタ42,43
の動作基準周波数を発生するクロックジェネレータ44
および上記コンパレータ41,カウンタ42,43から
の出力信号に基づいて差信号の振動1周期内における正
電圧時間と負電圧時間との時間比を演算する演算部45
を具備している。上記像位置検出部19の差信号出力
は,図3(B)に示すように,上記被測定物2の振動に
同期して正/負電圧に波動し,コンパレータ41は,上
記差信号が正電圧の時にはカウンタ42を動作させ,差
信号が負電圧の時にはカウンタ43を動作させる。両カ
ウンタ42,43はクロックジェネレータ44で発生す
る動作基準周波数によりカウント動作し,その周波数
は,被測定物2の振動周波数よりも十分に高い周波数に
設定されている。そして,上記演算部45は,コンパレ
ータ41の出力信号に同期して,上記被測定物2の振動
1周期毎に両カウンタ42,43が計数するクロック数
の比を演算し,演算後に両カウンタ42,43のカウン
ト数をゼロに復帰させる。このような時間比検出器40
aでは,上記被測定物2の振動に同期して波動する上記
像位置検出部19の差信号が,振動の1周期内に正とな
る時間と,負となる時間との比に応じた電圧が上記演算
部45から上記第2セオドライト15の第2駆動部18
へ出力される。
Then, when the DC component of the difference signal output from the DC component detector 20 is in a balanced state in which the DC component is zero, the projection angles (θ1, φ1) of the laser beam 4 detected by the encoders 17a, 17b. ), The imaging angle (θ2, φ2) of the spot light 10 and the above theodolites 8 and 1
From the value of the distance L between the object 5 and the object to be measured 2, the position coordinates (X, Y, Z) of the spot light 10 on the object to be measured 2 are calculated using the above-described formula based on the principle of triangulation. Therefore, the three-dimensional shape of the DUT 2 can be measured even when the DUT 2 is vibrating. Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the difference signal output from the image position detector 19 is input to the second driver 18 and the time ratio detector 40a, and the object to be measured 2 vibrated by the time ratio detector 40a. The difference signal is processed so that the three-dimensional shape can be measured. The time ratio detector 40a, as shown in FIG.
The comparator 41 to which the difference signal output from 9 is input, and the counters 42 and 43 and the counters 42 and 43 which count according to the positive / negative of the difference signal input to the comparator 41.
Generator 44 for generating the operating reference frequency of
Also, a calculation unit 45 that calculates the time ratio between the positive voltage time and the negative voltage time within one cycle of the vibration of the difference signal based on the output signals from the comparator 41 and the counters 42 and 43.
It is equipped with. As shown in FIG. 3 (B), the difference signal output of the image position detector 19 oscillates into a positive / negative voltage in synchronization with the vibration of the DUT 2, and the comparator 41 indicates that the difference signal is positive. When the voltage is a voltage, the counter 42 is operated, and when the difference signal is a negative voltage, the counter 43 is operated. Both counters 42 and 43 perform counting operation based on the operation reference frequency generated by the clock generator 44, and the frequency is set to a frequency sufficiently higher than the vibration frequency of the DUT 2. Then, the arithmetic unit 45 calculates the ratio of the number of clocks counted by the counters 42 and 43 for each one cycle of the vibration of the DUT 2 in synchronization with the output signal of the comparator 41, and after the calculation, the counters 42. , 43 is returned to zero. Such a time ratio detector 40
In a, the voltage corresponding to the ratio of the time when the difference signal of the image position detection unit 19 which is oscillated in synchronization with the vibration of the DUT 2 is positive and the time when it is negative within one cycle of vibration. From the operation unit 45 to the second drive unit 18 of the second theodolite 15.
Is output to.

【0010】このような3次元形状計測装置1では,被
測定物2が静止している場合には,第2セオドライト1
5の第2駆動部18は,上記像位置検出器19の差信号
を零とすべく,上記スポット光10の像が4分割光学セ
ンサ14の中心と一致するように第2セオドライト15
の光軸角度(θ2 ,φ2 )が制御される。一方,上記被
測定物2が振動している場合には,時間比検出器19の
出力が所定のバランス状態,即ち1となるように第2セ
オドライト15の光軸角度が調整され,スポット光10
の振動中心が4分割光学センサ14の受像面中心と一致
するように第2セオドライト15の光軸角度(θ2 ,φ
2 )が制御される。従って,被測定物2が振動している
状態でも,上記第1実施例と同様に,振動に影響される
ことなく被測定物2の3次元形状を計測することが可能
になる。この第2実施例では,像位置検出部19の差信
号の大きさによらず,差信号の電圧の正/負時間比を検
出していることにより,一定の感度で計測を行うことが
できる。 次に,上記第2実施例と同じ図4を参照して
本発明の第3実施例を説明する。この第3実施例では,
上記像位置検出部19からの差信号出力を第2駆動部1
8および振幅比検出器40bへ入力して,この振幅比検
出器40bにより振動している被測定物2の3次元形状
を計測可能に差信号を処理している。上記振幅比検出器
40bは,図6に示すように,上記像位置検出部19か
らの差信号が正電圧検波回路46,負電圧検波回路47
および演算部48を具備している。上記正電圧検波回路
46は,正電圧用のダイオード24,コンデンサ25お
よび抵抗26により構成されている。同様に負電圧検波
回路47は,負電圧用のダイオード27,コンデンサ2
8および抵抗29により構成されている。上記第2実施
例と同様の像位置検出部19の差信号出力は,図3
(B)に示すように,上記被測定物2の振動に同期して
正/負電圧に波動し,このとき上記正負両検波回路4
6,47は,上記差信号を正負電圧別に検波し,演算部
48が両検波回路46,47の出力比を演算する。従っ
て,この振幅比検出器40bでは,被測定物2の振動に
同期して変動する像位置検出部14の差信号の正電圧と
負電圧の振幅の比に応じた電圧が演算部48から上記第
2セオドライト15の第2駆動部18へ出力される。
In such a three-dimensional shape measuring apparatus 1, when the DUT 2 is stationary, the second theodolite 1 is used.
The second driving unit 18 of No. 5 sets the second theodolite 15 so that the image of the spot light 10 coincides with the center of the four-division optical sensor 14 so that the difference signal of the image position detector 19 becomes zero.
The optical axis angle (θ2, φ2) of is controlled. On the other hand, when the DUT 2 is vibrating, the optical axis angle of the second theodolite 15 is adjusted so that the output of the time ratio detector 19 becomes a predetermined balance state, that is, 1, and the spot light 10
So that the center of vibration of the second theodolite 15 coincides with the center of the image receiving surface of the four-division optical sensor 14 (θ2, φ
2) is controlled. Therefore, even when the DUT 2 is vibrating, it is possible to measure the three-dimensional shape of the DUT 2 without being affected by the vibration, as in the first embodiment. In the second embodiment, the positive / negative time ratio of the voltage of the difference signal is detected irrespective of the magnitude of the difference signal of the image position detector 19, so that the measurement can be performed with a constant sensitivity. . Next, a third embodiment of the present invention will be described with reference to FIG. 4 which is the same as the second embodiment. In this third embodiment,
The difference signal output from the image position detection unit 19 is used as the second drive unit 1.
8 and the amplitude ratio detector 40b, and the difference signal is processed so that the three-dimensional shape of the DUT 2 vibrating by the amplitude ratio detector 40b can be measured. In the amplitude ratio detector 40b, as shown in FIG. 6, the difference signal from the image position detector 19 is a positive voltage detection circuit 46 and a negative voltage detection circuit 47.
And a calculation unit 48. The positive voltage detection circuit 46 is composed of a diode 24 for positive voltage, a capacitor 25 and a resistor 26. Similarly, the negative voltage detection circuit 47 includes a diode 27 for negative voltage and a capacitor 2
8 and a resistor 29. The difference signal output of the image position detector 19 similar to that of the second embodiment is as shown in FIG.
As shown in (B), it oscillates into a positive / negative voltage in synchronism with the vibration of the DUT 2. At this time, the positive / negative detection circuit 4
Reference numerals 6 and 47 detect the difference signal for each of positive and negative voltages, and the calculation unit 48 calculates the output ratio of both detection circuits 46 and 47. Therefore, in the amplitude ratio detector 40b, a voltage corresponding to the amplitude ratio of the positive voltage and the negative voltage of the difference signal of the image position detecting section 14 which changes in synchronization with the vibration of the DUT 2 is output from the calculating section 48. It is output to the second driving unit 18 of the second theodolite 15.

【0011】このような3次元形状計測装置1では,上
記第2実施例と同様に被測定物2が静止している場合に
は,第2セオドライト15の第2駆動部18は,上記像
位置検出器19の差信号を零とすべく,上記スポット光
10の像が4分割光学センサ14の中心と一致するよう
に第2セオドライト15の光軸角度(θ2 ,φ2 )が制
御される。一方,上記被測定物2が振動している場合に
は,時間比検出器19の出力が所定のバランス状態,即
ち1となるように第2セオドライト15の光軸角度が調
整され,スポット光10の振動中心が4分割光学センサ
14の受像面中心と一致するように第2セオドライト1
5の光軸角度(θ2 ,φ2 )が制御される。従って,被
測定物2が振動している状態でも,上記第1実施例と同
様に,振動に影響されず被測定物2の3次元形状を計測
することが可能になる。この第3実施例では,被測定物
2の振動の大きさに比例して変化する像位置検出部14
の差信号の振幅を検知しているので,被測定物2が間欠
的に振動する等の振動の仕方によらず,スポット光10
の振動中心位置を正確に計測することができる。なお本
発明は,以上のような3実施例に限定されず種々変形可
能であり,例えば上記4分割光学センサ14の各受像面
14a〜14dはX軸,Y軸両方向に4分割される場合
に限らず,X軸方向またはY軸方向の一方向に2分割し
て,上記被測定物2上のスポット光10の振動を4分割
光学センサ14上での1次元方向への移動に置き換え
て,スポット光10の振動中心位置を計測し得るように
してもよい。
In the three-dimensional shape measuring apparatus 1 as described above, when the object 2 to be measured is stationary as in the second embodiment, the second driving unit 18 of the second theodolite 15 causes the image position to be changed. In order to make the difference signal of the detector 19 zero, the optical axis angle (θ2, φ2) of the second theodolite 15 is controlled so that the image of the spot light 10 coincides with the center of the four-division optical sensor 14. On the other hand, when the DUT 2 is vibrating, the optical axis angle of the second theodolite 15 is adjusted so that the output of the time ratio detector 19 becomes a predetermined balance state, that is, 1, and the spot light 10 Of the second theodolite 1 so that the center of vibration of the same coincides with the center of the image receiving surface of the four-division optical sensor 14.
The optical axis angles (θ2, φ2) of 5 are controlled. Therefore, even when the object to be measured 2 is vibrating, it is possible to measure the three-dimensional shape of the object to be measured 2 without being affected by the vibration, as in the first embodiment. In the third embodiment, the image position detector 14 that changes in proportion to the magnitude of vibration of the DUT 2
Since the amplitude of the difference signal is detected, the spot light 10 does not depend on the way the DUT 2 vibrates intermittently.
It is possible to accurately measure the vibration center position of. The present invention is not limited to the above-described three embodiments and can be variously modified. For example, when each of the image receiving surfaces 14a to 14d of the four-division optical sensor 14 is divided into four in the X-axis and Y-axis directions. Without being limited to this, by dividing into two in one direction of the X-axis direction or the Y-axis direction, the vibration of the spot light 10 on the DUT 2 is replaced by the movement in the one-dimensional direction on the four-division optical sensor 14, The vibration center position of the spot light 10 may be measured.

【0012】[0012]

【発明の効果】本発明に係る3次元形状計測装置は,上
記したように,撮像手段を各撮像面に捉えられたスポッ
ト像の受像面積に応じた複数の撮像面を具備する多面分
割型光学センサにより構成し,像移動手段により受像面
上での上記スポット像を移動させると共に,振動してい
る上記被測定物上のスポット光を上記多面分割型光学セ
ンサで撮像して上記各撮像面からの出力信号の差信号を
検出し,この差信号が所定のバランス状態となる撮像手
段の撮像角度に基づいてスポット光の位置座標を演算す
るようにしているので,振動している上記被測定物上の
スポット光の位置座標を上記差信号が所定のバランス状
態となる前記撮像角度に基づいてスポット光の位置座標
を演算することができる。その結果,被測定物が振動し
ている状態でも,その振動に影響されることなくスポッ
ト光の位置座標が演算され,振動している被測定物の3
次元形状計測が静止物体の場合と同様に行われる。従っ
て,ビル構造物等の大型の被測定物が振動している状態
でも,その3次元形状を計測することができる。
As described above, the three-dimensional shape measuring apparatus according to the present invention is a multifaceted optical system having a plurality of image pickup surfaces corresponding to the image receiving area of the spot image captured by the image pickup means on each image pickup surface. The spot image on the object to be measured is imaged by the multifaceted optical sensor while moving the spot image on the image receiving surface by the image moving means, and is imaged from each of the image pickup surfaces. Is detected, and the position coordinate of the spot light is calculated on the basis of the image pickup angle of the image pickup means that brings the difference signal into a predetermined balanced state. With respect to the position coordinates of the upper spot light, the position coordinates of the spot light can be calculated based on the imaging angle at which the difference signal is in a predetermined balanced state. As a result, even when the DUT is vibrating, the position coordinates of the spot light are calculated without being affected by the vibration, and the vibrating DUT 3
The dimensional shape measurement is performed as in the case of a stationary object. Therefore, even when a large object to be measured such as a building structure is vibrating, its three-dimensional shape can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例にかかる3次元形状計測
装置の概略構成を示すブロック図。
FIG. 1 is a block diagram showing a schematic configuration of a three-dimensional shape measuring apparatus according to a first embodiment of the present invention.

【図2】 図2(A)は像位置検出部の概略構成を示す
ブロック図,図2(B)は直流分検出器の概略構成を示
すブロック図。
FIG. 2A is a block diagram showing a schematic configuration of an image position detection unit, and FIG. 2B is a block diagram showing a schematic configuration of a DC component detector.

【図3】 図3(A)は4分割光学センサの4分割受像
面上での像の移動を示す構成図,図3(B)は時間に対
する差信号出力の変動を示すグラフ。
FIG. 3 (A) is a configuration diagram showing movement of an image on a 4-division image receiving surface of a 4-division optical sensor, and FIG. 3 (B) is a graph showing a change in difference signal output with respect to time.

【図4】 本発明の第2,第3実施例にかかる3次元形
状計測装置の概略構成を示すブロック図。
FIG. 4 is a block diagram showing a schematic configuration of a three-dimensional shape measuring apparatus according to second and third embodiments of the present invention.

【図5】 本発明の第2実施例における時間比検出器の
概略構成を示すブロック図。
FIG. 5 is a block diagram showing a schematic configuration of a time ratio detector according to a second embodiment of the present invention.

【図6】 本発明の第3実施例における振幅比検出器の
概略構成を示すブロック図。
FIG. 6 is a block diagram showing a schematic configuration of an amplitude ratio detector according to a third embodiment of the present invention.

【図7】 スポット光投影法を用いた従来の3次元形状
計測装置の一例を示すブロック図。
FIG. 7 is a block diagram showing an example of a conventional three-dimensional shape measuring apparatus using a spot light projection method.

【図8】 同3次元形状計測装置のセオドライトとTV
カメラ等の位置関係を示す説明模式図。
FIG. 8: Theodolite and TV of the same three-dimensional shape measuring device
Explanatory schematic diagram which shows the positional relationship of a camera etc.

【図9】 3次元形状計測を高精度化,高速度化した従
来の3次元形状計測装置の概略構成を示すブロック図。
FIG. 9 is a block diagram showing a schematic configuration of a conventional three-dimensional shape measuring apparatus that improves accuracy and speed of three-dimensional shape measurement.

【図10】 同3次元形状計測装置における像位置検出
部の概略構成を示すブロック図。
FIG. 10 is a block diagram showing a schematic configuration of an image position detection unit in the same three-dimensional shape measuring apparatus.

【図11】 図11(A)は4分割光学センサの4分割
受像面上での像の移動を示す構成図,図11(B)は受
像用セオドライトの回転角に対する4分割光学センサの
出力信号の変動を示すグラフ。
11A is a configuration diagram showing movement of an image on a 4-division image receiving surface of a 4-division optical sensor, and FIG. 11B is an output signal of the 4-division optical sensor with respect to a rotation angle of an image receiving theodolite. The graph which shows the fluctuation of.

【符号の説明】[Explanation of symbols]

1…3次元形状計測装置 2…被測定物 4…レーザ光 8…第1セオドライト(投光手段の一部) 10…スポット光 14…4分割光学センサ 15…第2セオドライト(撮像手段) 16…制御部 17a,17b…エンコーダ(投光角検出手段) 18…第2駆動部(像移動手段) 18a,18b…エンコーダ(撮像角検出手段) 19…像位置検出部 35…スポット像 20…直流分検出器 40a…時間比検出器 40b…振幅比検出器 DESCRIPTION OF SYMBOLS 1 ... Three-dimensional shape measuring device 2 ... Object to be measured 4 ... Laser light 8 ... 1st theodolite (a part of light projecting means) 10 ... Spot light 14 ... 4 division | segmentation optical sensor 15 ... 2nd theodolite (imaging means) 16 ... Control unit 17a, 17b ... Encoder (projection angle detection unit) 18 ... Second drive unit (image moving unit) 18a, 18b ... Encoder (imaging angle detection unit) 19 ... Image position detection unit 35 ... Spot image 20 ... DC component Detector 40a ... Time ratio detector 40b ... Amplitude ratio detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 証 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 吉田 泰三 兵庫県神戸市灘区岩屋北町4丁目5番22号 神鋼プラント建設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sato Yamaguchi 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel Co., Ltd., Kobe Research Institute (72) Inventor Taizo Yoshida, Nada-ku, Kobe City, Hyogo Prefecture Iwayakitamachi 4-5-22 Shinko Plant Construction Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定物にスポット光を投光角度可変に
投光する投光手段と,上記スポット光の投光角度を検出
する投光角検出手段と,上記投光手段に対して所定距離
隔てて配置され,上記被測定物上に投射されたスポット
像を撮像する撮像手段と,上記撮像手段を回転させて該
撮像手段により撮像されたスポット像を移動させる像移
動手段と,上記撮像手段の回転量を検出し上記スポット
像の撮像角度を検出する撮像角検出手段とを具備し,上
記像移動手段により撮像手段に撮像されたスポット像を
該撮像手段の所定位置に移動させ,その時投光角検出手
段により検出されたスポット光の投光角度,撮像角検出
手段により検出されたスポット像の撮像角度および上記
投光手段と上記撮像手段との間の距離の値から被測定物
上のスポット光の位置座標を演算する3次元形状計測装
置において,上記撮像手段を各撮像面に捉えられた上記
スポット像の強度に応じた電気信号を出力する複数の撮
像面を具備する多面分割型光学センサにより構成し,前
記像移動手段によりスポット像を移動させると共に,振
動している上記被測定物上のスポット光を上記多面分割
型光学センサで撮像して上記各撮像面からの出力信号の
差信号を検出し,上記差信号が所定のバランス状態とな
る前記撮像角度に基づいてスポット光の位置座標を演算
してなることを特徴とする3次元形状計測装置。
1. A light projecting means for projecting a spot light onto an object to be measured with a variable light projecting angle, a light projecting angle detecting means for detecting a projecting angle of the spot light, and a predetermined device for the light projecting means. Image pickup means arranged to be spaced apart from each other, for picking up a spot image projected on the object to be measured, image moving means for rotating the image pickup means to move the spot image picked up by the image pickup means, and the image pickup Image pickup angle detecting means for detecting the rotation amount of the means and detecting the image pickup angle of the spot image, and moving the spot image picked up by the image pickup means by the image moving means to a predetermined position of the image pickup means, On the object to be measured from the projection angle of the spot light detected by the projection angle detection means, the imaging angle of the spot image detected by the imaging angle detection means, and the value of the distance between the projection means and the imaging means. The spot of light In a three-dimensional shape measuring device for calculating a positional coordinate, the image pickup means is composed of a multi-faceted optical sensor having a plurality of image pickup surfaces for outputting an electric signal according to the intensity of the spot image captured on each image pickup surface. Then, the spot image is moved by the image moving means, and the vibrating spot light on the object to be measured is imaged by the multi-faceted split type optical sensor to detect the difference signal of the output signals from the respective image pickup surfaces. Then, the three-dimensional shape measuring apparatus is characterized in that the position coordinates of the spot light are calculated based on the imaging angle at which the difference signal is in a predetermined balanced state.
【請求項2】 上記所定のバランス状態が,上記スポッ
ト像検出信号の差信号の直流成分が零となる状態である
請求項1に記載の3次元形状計測装置。
2. The three-dimensional shape measuring apparatus according to claim 1, wherein the predetermined balance state is a state in which the DC component of the difference signal of the spot image detection signals is zero.
【請求項3】 上記所定のバランス状態が,被測定物の
振動の1周期における上記差信号の電圧が正電圧となる
時間と負電圧となる時間との比が,一定となる状態であ
る請求項1に記載の3次元形状計測装置。
3. The predetermined balance state is a state in which a ratio of a time when the voltage of the difference signal is a positive voltage and a time when the voltage of the difference signal is a negative voltage in one cycle of vibration of the DUT is constant. Item 3. The three-dimensional shape measuring apparatus according to item 1.
【請求項4】 上記所定のバランス状態が,被測定物の
振動により上記差信号の電圧が正負両方向へ波動する時
に,その振幅の比が一定となる状態である請求項1に記
載の3次元形状計測装置。
4. The three-dimensional structure according to claim 1, wherein the predetermined balance state is a state in which the amplitude ratio is constant when the voltage of the difference signal oscillates in both positive and negative directions due to the vibration of the object to be measured. Shape measuring device.
JP11946693A 1993-05-21 1993-05-21 Three-dimensional shape measuring apparatus Pending JPH06331326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11946693A JPH06331326A (en) 1993-05-21 1993-05-21 Three-dimensional shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11946693A JPH06331326A (en) 1993-05-21 1993-05-21 Three-dimensional shape measuring apparatus

Publications (1)

Publication Number Publication Date
JPH06331326A true JPH06331326A (en) 1994-12-02

Family

ID=14762039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11946693A Pending JPH06331326A (en) 1993-05-21 1993-05-21 Three-dimensional shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPH06331326A (en)

Similar Documents

Publication Publication Date Title
JP3511450B2 (en) Position calibration method for optical measuring device
CN100464159C (en) Position detecting device
US5319442A (en) Optical inspection probe
US20060044570A1 (en) Laser-based position measuring device
JP2956657B2 (en) Distance measuring device
JPH06331326A (en) Three-dimensional shape measuring apparatus
CN110440898A (en) A kind of mechanical vibration measurement method of rotation
JPH06100467B2 (en) Proximity sensor
US5600123A (en) High-resolution extended field-of-view tracking apparatus and method
JPH06258042A (en) Method and equipment for measuring distance
JPH0449048B2 (en)
JPS6390706A (en) Shape measuring instrument for body
JP3638639B2 (en) Position detection device
JPS61191908A (en) Measurement of shape
JPS62168007A (en) Shape recognizing device
JP2591804B2 (en) Distance measuring method and device
JP2001317922A (en) Optical shape measuring device
JPH0224446B2 (en)
JP3287263B2 (en) Height measuring device
SU534646A1 (en) The method of contactless control profile curvilinear surfaces of objects
JPH03226616A (en) Measuring apparatus of three dimensional form
JP2000029524A (en) Position detector for stop controller for moving object
JPS6036922A (en) Remote measuring device of oscillation
JPH0238806A (en) Constitution of optical distance sensor for detecting surface state
JP2008256463A (en) Measurement apparatus and miller attitude rotation and monitoring apparatus