JP3287263B2 - Height measuring device - Google Patents

Height measuring device

Info

Publication number
JP3287263B2
JP3287263B2 JP10936497A JP10936497A JP3287263B2 JP 3287263 B2 JP3287263 B2 JP 3287263B2 JP 10936497 A JP10936497 A JP 10936497A JP 10936497 A JP10936497 A JP 10936497A JP 3287263 B2 JP3287263 B2 JP 3287263B2
Authority
JP
Japan
Prior art keywords
lens
height
measurement
measuring device
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10936497A
Other languages
Japanese (ja)
Other versions
JPH10300430A (en
Inventor
雅彦 阪本
田中  均
辰則 火原
将光 岡村
和幸 山本
正治 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10936497A priority Critical patent/JP3287263B2/en
Publication of JPH10300430A publication Critical patent/JPH10300430A/en
Application granted granted Critical
Publication of JP3287263B2 publication Critical patent/JP3287263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、半導体チップの
組立て工程におけるボンディングワイヤのループ形状や
モールドのパッケージ外観、リード形状など、電子デバ
イス等の対象物の高さを計測する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the height of an object such as an electronic device, such as a loop shape of a bonding wire, a package appearance of a mold, and a lead shape in a process of assembling a semiconductor chip.

【0002】[0002]

【従来の技術】従来、半導体チップのボンディングワイ
ヤのループ形状などの検査は、作業者の目視により行わ
れていた。
2. Description of the Related Art Conventionally, inspection of a loop shape of a bonding wire of a semiconductor chip or the like has been performed by a worker's eye.

【0003】これに対して、例えば特開平5−1753
12号公報に開示されているように、対象物を複数の高
さ位置から撮像し焦点の一致度から対象物高さの計測を
行う、という装置があった。図11はその装置の構成を
示すブロック図である。図において、1は光学レンズ等
の結像素子(1a)とCCDカメラなどの光学的感応手
段等の撮像素子(1b)から構成される撮像装置、2は
半導体チップなどの対象物、3は撮像装置1の高さを制
御するフォーカス制御装置、4は水平方向に可動な試料
ステージ、5は撮像装置1で撮像した信号を処理する画
像処理ユニット、6は全体の制御を行う制御ユニット、
9は対象物2に照明光を照射する照明手段である。
On the other hand, for example, Japanese Patent Application Laid-Open
As disclosed in Japanese Unexamined Patent Publication No. 12, there has been an apparatus that captures an image of an object from a plurality of height positions and measures the height of the object from the degree of coincidence of focal points. FIG. 11 is a block diagram showing the configuration of the device. In the figure, reference numeral 1 denotes an imaging device including an imaging element (1a) such as an optical lens and an imaging element (1b) such as an optical sensing means such as a CCD camera; 2 an object such as a semiconductor chip; A focus control device that controls the height of the device 1, a sample stage 4 that is movable in the horizontal direction, 5 an image processing unit that processes signals captured by the imaging device 1, 6 a control unit that performs overall control,
Reference numeral 9 denotes illumination means for irradiating the object 2 with illumination light.

【0004】次に、動作について説明する。対象物2を
一様に照明し散乱光を撮像装置1で撮像する。得られた
画像信号は画像処理ユニット5でフォーカス合致度算出
に用いられる。一方、撮像装置1は高さを制御するフォ
ーカス制御装置3に取付けられており、高さを変えなが
ら撮像し、前記フォーカス合致度を算出していく。制御
ユニット6は、画像処理装置5で算出されたフォーカス
合致度と、フォーカス制御装置3の位置情報から対象物
の三次元形状を計算する。この三次元形状は、試料ステ
ージ4の移動により計測される。
Next, the operation will be described. The object 2 is uniformly illuminated, and the scattered light is imaged by the imaging device 1. The obtained image signal is used by the image processing unit 5 to calculate the focus matching degree. On the other hand, the imaging device 1 is attached to a focus control device 3 that controls the height, performs imaging while changing the height, and calculates the degree of focus matching. The control unit 6 calculates the three-dimensional shape of the object from the focus matching degree calculated by the image processing device 5 and the position information of the focus control device 3. The three-dimensional shape is measured by moving the sample stage 4.

【0005】[0005]

【発明が解決しようとする課題】従来の作業者の目視検
査では、検査員の体調や疲労度等によって、検査結果や
検査時間が変わったり、検査基準の定量化が行えないと
いった欠点があった。また、特開平5ー175312号
公報に開示されているような可動ステージを用いる方法
では、ステージ移動に時間を要し検査時間が長くなると
いった問題点があった。
The conventional visual inspection of the operator has the disadvantage that the inspection result and the inspection time vary depending on the physical condition and the degree of fatigue of the inspector, and the inspection standard cannot be quantified. . In addition, the method using a movable stage as disclosed in Japanese Patent Application Laid-Open No. 5-175312 has a problem that it takes time to move the stage and the inspection time becomes longer.

【0006】この発明は上記のような課題を解消するた
めになされたもので、対象物の三次元形状を高速で高精
度に計測することを目的としている。また、この計測を
製造工程において適用し、信頼性の高い半導体素子を得
ることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to measure a three-dimensional shape of an object at high speed and with high accuracy. It is another object of the present invention to apply this measurement in a manufacturing process to obtain a highly reliable semiconductor device.

【0007】[0007]

【課題を解決するための手段】この発明の第1の構成に
よる高さ計測装置は、対象物の近傍に配置され、前記
象物の光学的な像を得る第1のレンズ手段と、光軸を切
り換え、前記対象物上の計測視野位置を決める光軸偏向
切換え手段と、前記光軸偏向切換え手段を経た光学的な
像に感応し所定の信号を出力する光学的感応手段と、
記光軸偏向切換え手段と前記光学的感応手段との間に配
置される第2のレンズ手段と、前記第2のレンズ手段を
動かすレンズ位置移動手段と、第2のレンズ手段の位置
に同期して前記光学的感応手段から出力される信号を処
理し、前記計測視野位置における前記対象物の高さを計
測する信号処理手段とを備えたものである。
According to a first aspect of the present invention, there is provided a height measuring apparatus which is disposed near an object and obtains an optical image of the object. Cut off the optical axis
Rikae, an optical axis deflection switching means for determining a measurement field position on the object, and optical sensing means for outputting sensing predetermined signal to the optical image having passed through the optical axis deflection switching means, before
An arrangement is provided between the optical axis deflection switching means and the optical sensing means.
A second lens means being location, a lens position moving means for moving said second lens unit, the position of the second lens means
Process the signal output from the optical sensing means in synchronization with
Measuring the height of the object at the measurement visual field position.
And signal processing means for measuring .

【0008】また、この発明の第2の構成による高さ計
測装置は、前記光軸偏向切換え手段をガルバノミラーと
するものである。
In the height measuring apparatus according to a second configuration of the present invention, the optical axis deflection switching means is a galvanomirror.

【0009】また、この発明の第3の構成による高さ計
測装置は、前記レンズ位置移動手段により前記レンズ手
段を一定周期で往復運動させ、その周期と同期して光軸
偏向切換えと高さ計測を交互に行うものである。
In the height measuring apparatus according to a third configuration of the present invention, the lens means is reciprocated at a constant cycle by the lens position moving means, and the optical axis deflection is switched and the height is measured in synchronization with the cycle. Are performed alternately.

【0010】また、この発明の第4の構成による高さ計
測装置は、前記往復運動の速度パターンが正弦波である
ものである。
In the height measuring device according to a fourth configuration of the present invention, the speed pattern of the reciprocating motion is a sine wave.

【0011】また、この発明の第5の構成による高さ計
測装置は、前記光学的感応手段から出力される信号を微
分して高次の累乗和をとり合焦判定を行う信号処理ユニ
ットを備えたものである。
A height measuring apparatus according to a fifth aspect of the present invention includes a signal processing unit for differentiating a signal output from the optically responsive means to obtain a higher-order power sum and to determine focus. It is a thing.

【0012】また、この発明の第6の構成による高さ計
測装置は、数式により決定される値と測定データより作
成される視野位置位置決め用補正テーブル値を備え、該
正テーブル値を用いて、前記光軸偏向切換え手段を制御
し、視野位置決めを行う制御ユニットを備えたものであ
る。
A height measuring device according to a sixth aspect of the present invention includes a field-of-view position positioning correction table value created from a value determined by a mathematical expression and measurement data, and using the positive table value, A control unit for controlling the optical axis deflection switching means and positioning the visual field is provided.

【0013】また、この発明の第7の構成による高さ計
測装置は、数式により決定される値と測定データより作
成される高さ計測用補正テーブル値を備え、該補正テー
ブル値を用いて、対象物高さ計測値を補正する演算ユニ
ットを備えたものである。
A height measuring apparatus according to a seventh aspect of the present invention includes a height measuring correction table value created from a value determined by a mathematical expression and measured data, and using the correction table value, An arithmetic unit for correcting the measured object height is provided.

【0014】[0014]

【発明の実施の形態】実施の形態1. 以下、この発明の実施の形態を図について説明する。図
1はこの発明の発明の実施の形態1による高さ計測装置
を示すブロック図である。図において、2は対象物、9
は対象物2に照明光を照射する照明手段、11、12は
それぞれ、ガルバノミラー1、ガルバノミラー2、13
はガルバノミラーにより切換えられる光軸、14は焦点
距離f1である第1のレンズ、15は焦点距離f2である
第2のレンズ、16はCCDなどの光学的感応手段、1
7は光学的感応手段16からの信号を処理する信号処理
ユニット、18は全体制御ユニット、19は光軸を切り
換えるガルバノミラー11、12を制御するガルバノ制
御ユニット、20は第2のレンズ15を移動させる距離
を計算したり位置を算出して高さ計測値を補正する演算
ユニット、21は第2レンズ15を移動させるレンズ位
置移動手段手段である。このレンズ位置移動手段21は
第2レンズ15の位置を検出する機能も有する。ガルバ
ノミラー11、12は、それぞれ対象物上で直交する向
きに光軸を偏向させるように配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a height measuring device according to Embodiment 1 of the present invention. In the figure, 2 is an object, 9
Is illumination means for irradiating the object 2 with illumination light, and 11 and 12 are galvanomirrors 1 and 2 and 13 respectively.
Is an optical axis switched by a galvanomirror, 14 is a first lens having a focal length f1, 15 is a second lens having a focal length f2, 16 is an optical sensing means such as a CCD, 1
7 is a signal processing unit for processing a signal from the optical sensing means 16, 18 is a general control unit, 19 is a galvano control unit for controlling the galvanometer mirrors 11 and 12 for switching the optical axis, and 20 is a second lens 15 for moving. An arithmetic unit for calculating the distance to be moved or calculating the position to correct the height measurement value, and 21 is a lens position moving means for moving the second lens 15. The lens position moving means 21 also has a function of detecting the position of the second lens 15. The galvanomirrors 11 and 12 are arranged so as to deflect the optical axis in directions orthogonal to each other on the object.

【0015】まず対象物2が設置され照明光が照射され
た後、図2に示すタイムチャートで計測が行われる。レ
ンズ位置移動手段21により第2レンズ15が正弦波パ
ターンで往復運動し、これと同期して、ガルバノミラー
11、12による光軸偏向切り換えと、光学的感応手段
16からの信号を処理することによる高さ計測が行われ
る。光軸偏向切り換えにより、対象物上の計測視野位置
決めが行われる。高さ計測タイミング時に第2レンズ1
5の往復運動に応じた焦点移動が行われ、第2レンズの
位置と同期して信号処理が行われる。
First, after the object 2 is set and irradiated with illumination light, measurement is performed according to a time chart shown in FIG. The second lens 15 reciprocates in a sine wave pattern by the lens position moving means 21, and in synchronization with this, the optical axis deflection is switched by the galvanometer mirrors 11 and 12, and the signal from the optical sensing means 16 is processed. Height measurement is performed. The measurement visual field positioning on the object is performed by switching the optical axis deflection. Second lens 1 at height measurement timing
The focal point is moved according to the reciprocating motion of No. 5, and the signal processing is performed in synchronization with the position of the second lens.

【0016】例えば、対象物2が半導体チップである場
合、図3に示すような構造となる。図中のボンディング
ワイヤの三次元ループ形状を計測するために、この発明
を適用して高さ計測を行う場合、ガルバノミラー11、
12による光軸偏向切り換えにより、光学的感応手段1
6のセンシング視野をワイヤの各点に持っていく。ワイ
ヤの各点においては、第2レンズ15の位置移動に伴っ
て光学的感応手段16からの信号が変化する。図4に信
号波形と、信号処理ユニット17により微分処理を行っ
た波形を示す。図中のEF(評価関数)は、微分値の高次の
累乗和である。累乗の次数を増やすほど、微小な信号変
化にも対応できるようになるので、少なくとも4乗以上
の累乗和を取ることが望ましい。例えば4乗和とする場
合、評価関数は、 EF=Σ(微分波形上各点)4 となる。図4(a)は焦点が合ってない場合で、信号波
形、微分波形共なめらかで、EFの値は小さい。図4
(b)は第2レンズ15が移動中に焦点が合った場合で
信号波形、微分波形共ピークが大きくなり、微分値の4
乗和であるEF値は顕著に大きくなる。図5に、具体的
にワイヤ上各点の高さ測定について示す。1(a〜e)
はガルバノミラー偏向によるワイヤ上の測定位置で、h
(1〜6)は第2レンズ15の移動による焦点高さであ
る。各測定点(a〜e)において、EFの値が極大にな
るのに対応する第2レンズ15の位置が求められる。こ
の第2レンズ15の位置を基に後述の関係式より計算す
ると、対象物であるボンディングワイヤの高さを算出す
ることができる。半導体チップのボンディングワイヤの
場合、測定点数が多いので、高速の検査を行うために、
ガルバノミラーにより光軸偏向切り換えをすることが有
効であるが、光学的感応手段16として、例えばランセ
ンサなど細長い計測視野を有するものを用いれば、光軸
偏向切り換えの回数を減らし、図6に示すように、各測
定視野(a〜e)において同時に複数のワイヤ高さを計
測することができる。
For example, when the object 2 is a semiconductor chip, the structure is as shown in FIG. In order to measure the three-dimensional loop shape of the bonding wire in the figure, when performing the height measurement by applying the present invention, the galvanomirror 11,
12, the optically responsive means 1 is switched by the optical axis deflection switching.
Bring 6 sensing fields to each point on the wire. At each point of the wire, the signal from the optical responsive means 16 changes as the position of the second lens 15 moves. FIG. 4 shows a signal waveform and a waveform obtained by performing a differentiation process by the signal processing unit 17. EF (Evaluation Function) in the figure is a higher-order power sum of the differential values. As the order of the power increases, it becomes possible to cope with even a small signal change. Therefore, it is desirable to take at least a power sum of at least four. For example, when the sum of fourth powers is used, the evaluation function is EF = Σ (each point on the differential waveform) 4 . FIG. 4A shows a case where the focus is out of focus, the signal waveform and the differential waveform are both smooth, and the value of EF is small. FIG.
(B) is a case where the second lens 15 is focused while moving, and the peak of the signal waveform and the differential waveform are both large, and the differential value of 4 is obtained.
The EF value, which is the sum of the squares, becomes significantly larger. FIG. 5 specifically shows the measurement of the height of each point on the wire. 1 (ae)
Is the measurement position on the wire due to galvanomirror deflection, h
(1-6) is the focal height due to the movement of the second lens 15. At each of the measurement points (a to e), the position of the second lens 15 corresponding to the maximum value of EF is obtained. The height of the bonding wire, which is the target object, can be calculated by using a relational expression described later based on the position of the second lens 15. In the case of semiconductor chip bonding wires, the number of measurement points is large, so to perform high-speed inspection,
It is effective to switch the optical axis deflection using a galvanomirror. However, if a device having an elongated measurement field of view such as a run sensor is used as the optical sensing means 16, the number of optical axis deflection switching operations can be reduced, as shown in FIG. In addition, a plurality of wire heights can be simultaneously measured in each measurement visual field (a to e).

【0017】以下、ガルバノミラーで光軸を偏向させた
時の光学的な関係を述べる。図7のように、ワーキング
ディスタンスWD、第1レンズ14の焦点距離f1、第
2レンズ15の焦点距離f2、ミラー回転中心と第1レ
ンズ14間の距離MD1、ミラー回転中心と第2レンズ
15間の距離MD2、偏向量DEFLとする。この時、
第2レンズ15とカメラ面の距離KD2を求める。第1
レンズ14の中心を通る光線と第1レンズ14の中心よ
り距離LOFF1離れた所を通る光線が結像する位置に
光学的感応手段面を置く。図8に示す拡大図より、以下
の関係が成り立つ。 α = tan-1( DEFL/WD ) αf = tan-1( LOFF1/f1 + (DEFL-LOFF1)/WD ) αm = (90°-α)/2 αk = 90°- αm - αf αm0 = tan-1( MD1/LOFF1 ) β = αm - αk MOFF = MD1・sin(α)/sin(αm) L1 = (MD12+LOFF12)1/2・sin(αm0-αm)/sin(180°-α
k) 点Oを原点、点B■のY座標を -LOFF2、点Fを点A■
からの光線と点B■からの光線が結像する点とし、角度
γを定義すると、以下の様になる。 A■ = ( MD2 , MOFF・sin(αm) ) B■ = ( MD2 , -LOFF2 ) F = ( MD2+KD2 , y ) LOFF2 = MD1-L1・cos(αf)-(MD2+LOFF1-L1・sin(αf))・t
an(β) γ = tan-1( LOFF2/f2 + tan(β) ) 従って、次の関係が成り立つ。 KD2 = ( MOFF・sin(αm) - y )・f2/( MOFF・sin(αm) ) = ( y + LOFF2 )/tan(γ) なお、点FのY座標は次のように表される。 y = ( f2 - LOFF2/tan(γ) )/( 1/tan(γ) + f2/(MOF
F・sin(αm)) )
The optical relationship when the optical axis is deflected by the galvanometer mirror will be described below. As shown in FIG. 7, the working distance WD, the focal length f1 of the first lens 14, the focal length f2 of the second lens 15, the distance MD1 between the mirror rotation center and the first lens 14, and the distance MD1 between the mirror rotation center and the second lens 15. And the deflection amount DEFL. At this time,
The distance KD2 between the second lens 15 and the camera surface is determined. First
The optical responsive means surface is located at a position where a light beam passing through the center of the lens 14 and a light beam passing a distance LOFF1 away from the center of the first lens 14 form an image. From the enlarged view shown in FIG. 8, the following relationship is established. α = tan -1 (DEFL / WD ) αf = tan -1 (LOFF1 / f1 + (DEFL-LOFF1) / WD) αm = (90 ° -α) / 2 αk = 90 ° - αm - αf αm0 = tan - 1 (MD1 / LOFF1) β = αm-αk MOFF = MD1 ・ sin (α) / sin (αm) L1 = (MD1 2 + LOFF1 2 ) 1/2・ sin (αm0-αm) / sin (180 ° -α
k) Point O is the origin, Y coordinate of point B ■ is -LOFF2, point F is point A ■
When an angle γ is defined as a point at which a light ray from the point and a light ray from the point B ■ form an image, the following is obtained. A ■ = (MD2, MOFF · sin (αm)) B = (MD2, -LOFF2) F = (MD2 + KD2, y) LOFF2 = MD1-L1 · cos (αf)-(MD2 + LOFF1-L1 · sin (αf)) ・ t
an (β) γ = tan -1 (LOFF2 / f2 + tan (β)) Therefore, the following relationship is established. KD2 = (MOFF · sin (αm) −y) · f2 / (MOFF · sin (αm)) = (y + LOFF2) / tan (γ) The Y coordinate of the point F is expressed as follows. y = (f2-LOFF2 / tan (γ)) / (1 / tan (γ) + f2 / (MOF
F ・ sin (αm)))

【0018】上記関係式より視野位置決めと第2レンズ
15を移動させるための計算ができるが、実際は軸ずれ
など装置固有の誤差を含んでおり、正確な視野位置決め
と高さ計測ができない。そこで、予め測定したデータを
基に、視野位置決め用と高さ計測用それぞれに補正テー
ブルを作成しておく。視野位置決め時にはガルバノミラ
ー制御ユニット19により、高さ計測時には演算ユニッ
ト20により、それぞれ補正を行う。
Although it is possible to calculate the visual field positioning and to move the second lens 15 from the above relational expressions, it actually includes errors inherent to the apparatus such as an axial deviation, and thus it is impossible to accurately perform the visual field positioning and the height measurement. Therefore, correction tables are created for field-of-view positioning and height measurement, respectively, based on data measured in advance. The correction is performed by the galvanomirror control unit 19 when positioning the visual field, and by the arithmetic unit 20 when measuring the height.

【0019】実施の形態2.次に、図9に示すような対
象物高さを計測する場合の実施例について説明する。装
置の全体構成は図1に、計測のタイムチャートは図2に
示されたものと同様である。ガルバノミラー11、12
による光軸偏向切り換えにより、光学的感応手段16の
センシング視野内に対象物の段差(測定高さ)が入るよ
うに位置決めする。センシング視野内においては、第2
レンズ15に位置移動に伴って光学的感応手段16から
の信号が変化する。図10に信号波形と信号処理ユニッ
ト17により微分処理を行った波形を示す。図中のEF
は、先の実施の形態と同様に微分値4乗以上の累乗和で
ある。図10(a)は焦点が合っていない場合で、信号
波形、微分波形共滑らかで、EFの値は小さい。図10
(b)は第2レンズ15が移動中に焦点が合った場合
で、信号波形、微分波形共ピークが大きくなり、EFの
値は顕著に大きくなる。したがって、EFの値が極大と
なった時の第2レンズ15の位置を基に前述の関係式よ
り計算すると、対象物の段差(測定高さ)を算出するこ
とができる。
Embodiment 2 Next, an embodiment in the case of measuring the height of an object as shown in FIG. 9 will be described. The overall configuration of the apparatus is the same as that shown in FIG. 1, and the measurement time chart is the same as that shown in FIG. Galvanometer mirrors 11 and 12
By switching the optical axis deflection according to the above, positioning is performed so that a step (measurement height) of the target object falls within the sensing field of view of the optical sensing means 16. In the sensing field of view, the second
The signal from the optical responsive means 16 changes as the position of the lens 15 moves. FIG. 10 shows a signal waveform and a waveform subjected to the differential processing by the signal processing unit 17. EF in the figure
Is the sum of powers of the fourth or higher differential value as in the previous embodiment. FIG. 10A shows a case where the focus is out of focus, the signal waveform and the differential waveform are both smooth, and the value of EF is small. FIG.
(B) shows a case where the second lens 15 is focused while moving, and the peak of both the signal waveform and the differential waveform increases, and the value of EF significantly increases. Therefore, by calculating from the above-described relational expression based on the position of the second lens 15 at the time when the value of EF becomes the maximum, the step (measured height) of the object can be calculated.

【0020】実施の形態3.以上の説明において、ガル
バノミラー2個により、対象物上で直交する2軸に光軸
が偏向される場合について説明したが、対象物によって
は、ガルバノミラー1個で、1軸のみに光軸が偏向され
るような装置構成にしてもよい。このような構成によっ
ても、高速で高さ計測を行うことができ、従来必要とし
ていた試料ステージは不要になり、装置全体も小型化で
きる。また、第2レンズ15を移動させるものとした
が、第1レンズ14を移動してもよい。また、第1、第
2レンズ14、15の一方を省略してもよい。
Embodiment 3 In the above description, the case where the optical axis is deflected to two orthogonal axes on the object by the two galvanometer mirrors has been described. However, depending on the object, one galvanometer mirror has the optical axis only on one axis. The device may be configured to be deflected. Even with such a configuration, height measurement can be performed at a high speed, the sample stage that has been required conventionally becomes unnecessary, and the entire apparatus can be downsized. Although the second lens 15 is moved, the first lens 14 may be moved. Further, one of the first and second lenses 14 and 15 may be omitted.

【0021】[0021]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0022】この発明の第1の構成である高さ計測装置
によれば、光軸偏向切換え手段とレンズ位置移動手段に
より、対象物を動かすことなく光学的な像を得ることが
でき、可動ステージが不要になり装置を小型にできる。
According to the height measuring apparatus of the first configuration of the present invention, an optical image can be obtained without moving an object by the optical axis deflection switching means and the lens position moving means, and the movable stage Is unnecessary, and the apparatus can be made compact.

【0023】また、この発明の第2の構成である高さ計
測装置によれば、ガルバノミラーにより光軸偏向切換え
を行うことから、高速の計測ができる。
According to the height measuring apparatus of the second configuration of the present invention, high-speed measurement can be performed because the optical axis deflection is switched by the galvanometer mirror.

【0024】また、この発明の第3の構成である高さ計
測装置によれば、レンズ手段を一定周期で往復運動さ
せ、その周期と同期して光軸偏向切換えと高さ計測を交
互に行うことにより、高速の計測ができる。
According to the height measuring apparatus of the third configuration of the present invention, the lens means is reciprocated at a constant cycle, and the optical axis deflection switching and the height measurement are alternately performed in synchronization with the cycle. Thus, high-speed measurement can be performed.

【0025】また、この発明の第4の構成である高さ計
測装置によれば、レンズ手段を正弦波の速度パターンで
往復運動させることにより、高速の計測ができる。
According to the height measuring device of the fourth configuration of the present invention, high-speed measurement can be performed by reciprocating the lens means in a sine wave speed pattern.

【0026】また、この発明の第5の構成である高さ計
測装置によれば、光学的感応手段から出力される信号を
微分して高次の累乗和をとることにより、精度良く高さ
計測ができる。
Further, according to the height measuring apparatus of the fifth configuration of the present invention, the signal output from the optically sensitive means is differentiated to obtain a higher-order power sum, thereby accurately measuring the height. Can be.

【0027】また、この発明の第6の構成である高さ計
測装置によれば、数式により決定される値と測定データ
より作成される補正テーブル値とを加算し視野位置決め
を行うようにしたので、精度良く視野位置決めがなされ
高精度に三次元計測ができる。
According to the height measuring device of the sixth configuration of the present invention, the visual field positioning is performed by adding the value determined by the mathematical expression and the correction table value created from the measurement data. The three-dimensional measurement can be performed with high accuracy by accurately positioning the visual field.

【0028】また、この発明の第7の構成である高さ計
測装置によれば、数式により決定される値と測定データ
より作成される補正テーブル値とを加算し、高さ計測値
を補正するようにしたので、精度良く高さ計測がなされ
高精度に三次元計測ができる。
Further, according to the height measuring device of the seventh configuration of the present invention, the value determined by the mathematical expression and the correction table value created from the measurement data are added to correct the height measured value. As a result, height measurement is performed with high accuracy, and three-dimensional measurement can be performed with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1である高さ計測装置
の構成を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a height measuring device according to a first embodiment of the present invention.

【図2】 この発明の実施の形態1である高さ計測方法
を示すタイムチャートである。
FIG. 2 is a time chart showing a height measuring method according to the first embodiment of the present invention.

【図3】 この発明に係る対象物である半導体チップを
示す図である。
FIG. 3 is a diagram showing a semiconductor chip as an object according to the present invention.

【図4】 この発明に係る計測波形を示す図である。FIG. 4 is a diagram showing a measurement waveform according to the present invention.

【図5】 この発明に係るボンディングワイヤ上各点の
高さ測定を示す図である。
FIG. 5 is a diagram showing a height measurement of each point on a bonding wire according to the present invention.

【図6】 この発明に係るボンディングワイヤ上の測定
視野を示す図である。
FIG. 6 is a view showing a measurement visual field on a bonding wire according to the present invention.

【図7】 この発明に係る光学系の図である。FIG. 7 is a diagram of an optical system according to the present invention.

【図8】 この発明に係る光学系の拡大図である。FIG. 8 is an enlarged view of an optical system according to the present invention.

【図9】 この発明に係る対象物を示す図である。FIG. 9 is a diagram showing an object according to the present invention.

【図10】 この発明に係る計測波形を示す図である。FIG. 10 is a diagram showing a measurement waveform according to the present invention.

【図11】 従来の装置の構成を示すブロック図であ
る。
FIG. 11 is a block diagram showing a configuration of a conventional device.

【符号の説明】[Explanation of symbols]

1 撮像装置、2 対象物、3 フォーカス制御装置、
4 試料ステージ、5画像処理ユニット、6 制御ユニ
ット、9 照明手段、11 ガルバノミラー1、12
ガルバノミラー2、13 光軸、14 第1レンズ、1
5 第2レンズ、16 光学的感応手段、17 信号処
理ユニット、18 全体制御ユニット、19 ガルバノ
制御ユニット、20 演算ユニット、21 レンズ位置
移動手段。
1 imaging device, 2 target object, 3 focus control device,
4 sample stage, 5 image processing unit, 6 control unit, 9 illumination means, 11 galvanometer mirrors 1, 12
Galvanometer mirrors 2, 13 Optical axis, 14 First lens, 1
5 second lens, 16 optical responsive means, 17 signal processing unit, 18 overall control unit, 19 galvano control unit, 20 arithmetic unit, 21 lens position moving means.

フロントページの続き (72)発明者 岡村 将光 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 山本 和幸 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 吉田 正治 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (56)参考文献 特開 平9−5046(JP,A) 特開 平8−233554(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/02 Continuation of the front page (72) Inventor Masamitsu Okamura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsubishi Electric Corporation (72) Inventor Kazuyuki 2-3-2 2-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Masaharu Yoshida 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsubishi Electric Corporation (56) References JP-A-9-5046 (JP, A) JP-A 8-233554 (JP, A (58) Fields surveyed (Int. Cl. 7 , DB name) G01B 11/02

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 対象物の近傍に配置され、前記対象物の
光学的な像を得る第1のレンズ手段と、光軸を切り換
え、前記対象物上の計測視野位置を決める光軸偏向切換
え手段と、前記光軸偏向切換え手段を経た光学的な像に
感応し所定の信号を出力する光学的感応手段と、前記光
軸偏向切換え手段と前記光学的感応手段との間に配置さ
れる第2のレンズ手段と、前記第2のレンズ手段を動か
すレンズ位置移動手段と、第2のレンズ手段の位置に同
期して前記光学的感応手段から出力される信号を処理
し、前記計測視野位置における前記対象物の高さを計測
する信号処理手段とを備えたことを特徴とする高さ計測
装置。
1. A disposed in the vicinity of the object, a first lens means for obtaining an optical image of the object, switch the optical axis
For example, an optical sensing means for outputting an optical axis deflection switching means for determining a measurement field position on the object, the sensitivity and predetermined signal to the optical image having passed through the optical axis deflection switching means, the light
Disposed between the axis deflection switching means and the optically responsive means.
A second lens unit that includes a lens position moving means for moving said second lens unit, the the position of the second lens means
Processing the signal output from the optically sensitive means
Measuring the height of the object at the measurement visual field position
A height measuring device comprising:
【請求項2】 前記光軸偏向切換え手段はガルバノミラ
ーであることを特徴とする請求項1記載の高さ計測装
置。
2. The height measuring device according to claim 1, wherein said optical axis deflection switching means is a galvanomirror.
【請求項3】 前記レンズ位置移動手段により前記レン
ズ手段を一定周期で往復運動させ、その周期と同期して
光軸偏向切換えと高さ計測を交互に行うことを特徴とす
る請求項1または請求項2記載の高さ計測装置。
3. The apparatus according to claim 1, wherein said lens means is reciprocated at a constant cycle by said lens position moving means, and optical axis deflection switching and height measurement are alternately performed in synchronization with said cycle. Item 3. The height measuring device according to Item 2.
【請求項4】 前記往復運動の速度パターンが正弦波で
あることを特徴とする請求項1〜請求項3のいずれかに
記載の高さ計測装置。
4. The height measuring device according to claim 1, wherein the speed pattern of the reciprocating motion is a sine wave.
【請求項5】 前記光学的感応手段から出力される信号
を微分して高次の累乗和をとり合焦判定を行う信号処理
ユニットを備えたことを特徴とする請求項1〜請求項4
のいずれかに記載の高さ計測装置。
5. A signal processing unit for differentiating a signal output from said optical responsive means to obtain a higher-order power sum and performing focus determination.
The height measuring device according to any one of the above.
【請求項6】 数式により決定される値と測定データよ
り作成される視野位置位置決め用補正テーブル値を備
え、該補正テーブル値を用いて、前記光軸偏向切換え手
段を制御し、視野位置決めを行う制御ユニットを備えた
ことを特徴とする請求項1〜請求項5のいずれかに記載
の高さ計測装置。
6. A field-of-view position positioning correction table value created from a value determined by a mathematical expression and measurement data, and the optical axis deflection switching means is controlled using the correction table value to perform field-of-view positioning. The height measuring device according to any one of claims 1 to 5, further comprising a control unit.
【請求項7】 数式により決定される値と測定データよ
り作成される高さ計測用補正テーブル値を備え、該補正
テーブル値を用いて、対象物高さ計測値を補正する演算
ユニットを備えたことを特徴とする請求項1〜請求項6
のいずれかに記載の高さ計測装置。
7. A height measurement correction table value created from a value determined by a mathematical expression and measurement data, and an arithmetic unit for correcting an object height measurement value using the correction table value is provided. Claims 1 to 6
The height measuring device according to any one of the above.
JP10936497A 1997-04-25 1997-04-25 Height measuring device Expired - Lifetime JP3287263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10936497A JP3287263B2 (en) 1997-04-25 1997-04-25 Height measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10936497A JP3287263B2 (en) 1997-04-25 1997-04-25 Height measuring device

Publications (2)

Publication Number Publication Date
JPH10300430A JPH10300430A (en) 1998-11-13
JP3287263B2 true JP3287263B2 (en) 2002-06-04

Family

ID=14508367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10936497A Expired - Lifetime JP3287263B2 (en) 1997-04-25 1997-04-25 Height measuring device

Country Status (1)

Country Link
JP (1) JP3287263B2 (en)

Also Published As

Publication number Publication date
JPH10300430A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
EP1062478B1 (en) Apparatus and method for optically measuring an object surface contour
US5987591A (en) Multiple-sensor robot system for obtaining two-dimensional image and three-dimensional position information
US6480287B2 (en) Three dimensional scanning system
US5319442A (en) Optical inspection probe
JP2004504586A (en) A method for contactless measurement of object geometry.
US6636310B1 (en) Wavelength-dependent surface contour measurement system and method
US6765606B1 (en) Three dimension imaging by dual wavelength triangulation
JP2771594B2 (en) Method and apparatus for measuring displacement of object
JPH10311779A (en) Equipment for measuring characteristics of lens
JP3287263B2 (en) Height measuring device
JPH08504505A (en) Method and apparatus for capturing distant images
JP2987540B2 (en) 3D scanner
JP2000046529A (en) Method and device for measuring shape of object with 3-dimensional curves
JP4158300B2 (en) 3D input method and 3D input device
JPH06109437A (en) Measuring apparatus of three-dimensional shape
JPH0444201B2 (en)
JPH05329793A (en) Visual sensor
JP2001317922A (en) Optical shape measuring device
CA2356618C (en) Sensing head and apparatus for determining the position and orientation of a target object
JPH01244305A (en) Confirming method of linear object
JP2002076050A (en) Wire splicing equipment
JPH1068608A (en) Height measuring apparatus
JPH07324913A (en) Measuring method of dimension
JP2021060214A (en) Measuring apparatus and measuring method
JP2023114760A (en) Surface shape measuring device and surface shape measuring method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11