JPH063310A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH063310A
JPH063310A JP18318092A JP18318092A JPH063310A JP H063310 A JPH063310 A JP H063310A JP 18318092 A JP18318092 A JP 18318092A JP 18318092 A JP18318092 A JP 18318092A JP H063310 A JPH063310 A JP H063310A
Authority
JP
Japan
Prior art keywords
sensitivity
sensor
thin film
sno2
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18318092A
Other languages
Japanese (ja)
Other versions
JP3185947B2 (en
Inventor
Takeshi Nakahara
毅 中原
Taro Amamoto
太郎 天本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP18318092A priority Critical patent/JP3185947B2/en
Publication of JPH063310A publication Critical patent/JPH063310A/en
Application granted granted Critical
Publication of JP3185947B2 publication Critical patent/JP3185947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a thin film sensor which is small in change with lapse of time by adding the oxide of one element selected from among the group of W, Mo, and V to an SnO2 thin film at a specific rate. CONSTITUTION:In the title gas sensor using the resistance of an SnO2 thin film, the oxide of one element selected from among the group of W, Mo, and V is added to the thin film at a rate of 0.1-40atm.% against Sn atoms. All of the W, Mo, and V stabilize the resistance of the SnO2 and, regarding the gas sensitivity of the sensor, the W improves the sensitivity of the sensor against HS and its derivatives and the Mo improves the sensitivity against oxygen- containing organic compounds, such as alcohol, etc., and ammonia and its derivatives. The V balances the sensitivity of the sensor against compounds, such as alcohol, etc., and ammonia-based compounds with the sensitivity of the sensor against H2S and its derivatives. Of the W, Mo, and V, the W and Mo highly improve the sensitivity, but the V reduces the sensitivity. When the adding amount of the element is controlled within the range of 0.1-40%, a thin gas sensor which is small in change with lapse of time and has high sensitivity against derivatives of hydrogen sulfide, oxygen-containing organic compounds, and derivatives of ammonia can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】この発明は薄膜ガスセンサに関し、
特にその経時特性の改良に関する。
This invention relates to thin film gas sensors,
In particular, it relates to improvement of its aging characteristics.

【0002】[0002]

【従来技術】発明者らは、SnO2薄膜の抵抗値を用い
たガスセンサを検討した。しかしながら得られたガスセ
ンサは経時安定性が低く、1カ月程度使用すると、抵抗
値が10倍程度変化してしまった(図5参照)。そこで
発明者は、SnO2薄膜への添加物により経時安定性を
改善することを試み、23種の添加元素についてスクリ
ーニングを行った。その結果、W,Mo,VがSnO2薄
膜の経時安定性の改善に有効であることを見い出し、こ
の発明に到った。
2. Description of the Related Art The inventors examined a gas sensor using the resistance value of a SnO2 thin film. However, the obtained gas sensor has low stability over time, and the resistance value changes about 10 times when used for about one month (see FIG. 5). Therefore, the inventor tried to improve the temporal stability by using an additive to the SnO2 thin film, and screened 23 kinds of additive elements. As a result, they have found that W, Mo and V are effective for improving the stability of SnO2 thin films over time, and arrived at the present invention.

【0003】ここで関連する先行技術を示すと、特開昭
63−313,048号公報は、SnO2薄膜へのZnや
Pbの添加が、H2S感度の向上に有効であることを示
している。発明者の実験では、スクリーニングした23
種の元素の中で、ZnはW,Mo,Vに次いで、SnO2
薄膜の安定化に有効であった。SnO2/Zn系センサ
の経時特性を図4に示すと、SnO2単味の薄膜に比べ
経時変化は抑制されているが、なお大きな経時変化があ
る。
As a related prior art, Japanese Patent Application Laid-Open No. 63-313,048 shows that addition of Zn or Pb to a SnO2 thin film is effective for improving H2S sensitivity. In our experiment, we screened 23
Among the elements of the species, Zn is SnO2 after W, Mo, V
It was effective in stabilizing the thin film. FIG. 4 shows the time-dependent characteristics of the SnO2 / Zn-based sensor. Although the time-dependent change is suppressed as compared with the SnO2 simple thin film, there is still a large time-dependent change.

【0004】[0004]

【発明の課題】この発明の課題は、経時変化が小さな薄
膜ガスセンサを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a thin film gas sensor which has a small change over time.

【0005】[0005]

【発明の構成】この発明は、SnO2薄膜の抵抗値を用
いたガスセンサにおいて、SnO2薄膜にW,Mo,Vか
らなる群の少なくとも一員の元素の酸化物を、Sn原子
に対する原子比で0.1〜40%添加したことを特徴と
する。この明細書では、添加量は添加物中の金属元素と
SnO2のSn元素との原子比で現す。
According to the present invention, in a gas sensor using the resistance value of a SnO2 thin film, an oxide of at least one member of the group consisting of W, Mo and V is added to the SnO2 thin film in an atomic ratio of 0.1 to Sn atoms. ˜40% added. In this specification, the amount of addition is expressed by the atomic ratio between the metal element in the additive and the SnO2 Sn element.

【0006】W,Mo,VはいずれもSnO2薄膜の抵抗
値を安定化し、ガス感度については、WはH2Sやその
誘導体への感度を高め、Moはアルコール等の含酸素有
機化合物やアンモニアとその誘導体への感度を高める。
またVは、アルコール等の化合物やアンモニア系化合物
への感度と、H2Sやその誘導体への感度とをバランス
させる。W,Mo,Vを比較すると、WやMoでは大きな
ガス感度が得られるのに対して、Vではガス感度が減少
する。添加量については4%を中心に実験し、0.1〜
40%の範囲としたが、添加量を10%超に増すとガス
感度が減少し、かつ高抵抗化する。一方添加量を0.5
%未満とすると、経時変化の抑制が不十分となる。この
結果、最も好ましい添加元素はWとMoで、添加量は一
般的には0.1〜40%、好ましくは0.5〜10%とす
る。
All of W, Mo and V stabilize the resistance value of the SnO2 thin film. Regarding the gas sensitivity, W enhances the sensitivity to H2S and its derivatives, and Mo is an oxygen-containing organic compound such as alcohol and ammonia and its Increase sensitivity to derivatives.
Further, V balances the sensitivity to compounds such as alcohol and ammonia compounds and the sensitivity to H2S and its derivatives. Comparing W, Mo, and V, large gas sensitivity is obtained with W and Mo, whereas gas sensitivity is reduced with V. Regarding the amount of addition, we conducted experiments centering on 4%,
Although the range is 40%, if the amount added exceeds 10%, the gas sensitivity decreases and the resistance increases. On the other hand, add 0.5
If it is less than%, the change over time will be insufficiently suppressed. As a result, the most preferable additive elements are W and Mo, and the added amount is generally 0.1 to 40%, preferably 0.5 to 10%.

【0007】[0007]

【実施例】【Example】

【0008】[0008]

【ガスセンサの構造と調製】図7に、薄膜ガスセンサの
構造を示す。図において、2はアルミナ基板、4はSn
O2系の薄膜で、6,8は薄膜電極、10はヒータであ
る。ガスセンサの構造自体は、任意である。
[Structure and Preparation of Gas Sensor] FIG. 7 shows the structure of a thin film gas sensor. In the figure, 2 is an alumina substrate, 4 is Sn
O2 type thin films 6 and 8 are thin film electrodes, and 10 is a heater. The structure of the gas sensor itself is arbitrary.

【0009】実施例のガスセンサは、次のようにして製
造した。2室の反応性スパッタリング装置を用い、基板
2を逆スパッタリングして清浄化した後に、第1のスパ
ッタリング室でSnO2ターゲットを用い、反応性スパ
ッタリングにより、SnO2膜を約600nm厚に成膜
した。第2のスパッタリング室では、W,Mo,V等の金
属ターゲットを用い、反応性スパッタリングにより、W
O3,MoO3,V2O5等の薄膜をSnO2膜上に積層し
た。スパッタリング過程で基板は水冷し、スパッタリン
グガスはO230%−Ar70%の混合ガスを用いた。
スパッタリングはRFスパッタリングで行い、投入電力
は400Wとした。成膜後のガスセンサを、空気中で5
00℃に1時間加熱し、成膜時の歪を除くと共に、結晶
成長を行わせた。
The gas sensor of the example was manufactured as follows. After the substrate 2 was reverse-sputtered and cleaned using a reactive sputtering apparatus with two chambers, a SnO2 film was formed in a thickness of about 600 nm by reactive sputtering using a SnO2 target in the first sputtering chamber. In the second sputtering chamber, a metal target of W, Mo, V, etc. is used, and W is formed by reactive sputtering.
A thin film of O3, MoO3, V2O5, etc. was laminated on the SnO2 film. In the sputtering process, the substrate was water-cooled and the sputtering gas used was a mixed gas of O2 30% -Ar 70%.
The sputtering was performed by RF sputtering, and the input power was 400W. After film formation, use a gas sensor in air
It was heated to 00 ° C. for 1 hour to remove strain during film formation and to grow crystals.

【0010】スパッタリングガスの組成は、例えばO2
20%−Ar80%〜O280%−Ar20%程度の範
囲で変えても良い。スパッタリングに変えて、CVDや
真空蒸着等の他の成膜法を用いても良く、基板の冷却や
加熱の有無は任意である。2室のスパッタリングに変え
て、SnO2/W混合ターゲット等を用い、最初からほ
ぼ均一な組成の膜を成膜しても良く、また単味のSnO
2膜の成膜後に、WやMo,Vの塩の溶液やこれらの元素
の有機金属化合物溶液に、SnO2膜を浸し、熱分解し
てWやMo,Vの酸化物を担持させても良い。
The composition of the sputtering gas is, for example, O 2
You may change in the range of 20% -Ar80% -O2 80% -Ar20%. Instead of sputtering, another film forming method such as CVD or vacuum evaporation may be used, and cooling or heating of the substrate is optional. Instead of sputtering in two chambers, a SnO2 / W mixed target or the like may be used to form a film having a substantially uniform composition from the beginning.
After the two films have been formed, the SnO2 film may be immersed in a solution of a salt of W, Mo, V or an organic metal compound solution of these elements and thermally decomposed to carry an oxide of W, Mo, V. .

【0011】SnO2系薄膜4の膜厚は、WやMo,V酸
化物との合計膜厚で好ましくは100〜2000nmと
し、薄膜4にはこれ以外にPtやPd等の貴金属触媒等
を第3成分として添加しても良い。
The SnO 2 -based thin film 4 preferably has a total film thickness of W, Mo and V oxides of 100 to 2000 nm, and the thin film 4 is made of a noble metal catalyst such as Pt or Pd. You may add as a component.

【0012】[0012]

【測定条件】得られたガスセンサを340℃に加熱し、
2日間エージングした後に、測定を開始する。エージン
グ2日後のデータが初期特性で、経時特性の0日目に相
当する。特性は4〜5個のセンサの平均値で現し、測定
に用いたガス濃度は、原則としてH2SやCH3SHが各
3ppm、エタノールやアンモニア,H2等のH2S系以
外のガスが各300ppmである。センサは常時ヒータ
10で340℃に保った。
[Measurement conditions] The obtained gas sensor is heated to 340 ° C,
The measurement is started after aging for 2 days. The data after 2 days of aging are the initial characteristics and correspond to day 0 of the characteristics over time. The characteristics are expressed by an average value of 4 to 5 sensors, and the gas concentration used for the measurement is 3 ppm for H2S and CH3SH, and 300 ppm for gases other than H2S such as ethanol, ammonia, and H2. The sensor was constantly kept at 340 ° C. by the heater 10.

【0013】[0013]

【結果】図1〜図5に、経時特性に関するデータを示
す。抵抗値はH2S 3ppm中の抵抗値の初期値を基準
として示した。センサは、単味のSnO2膜以外に、添
加元素として実施例のW,Mo,V、比較例のZn,Cu,
Al,In,Sb,Bi,Pb,Ce,Nb,Ta,Mn,Re,
Ni,Y,S,Mg,Fe,Cr,Ru,Coの合計23種を
検討した。これらの添加元素は、添加量4%を中心に添
加量を変化させ、いずれも酸化物として担持されるよう
に添加した。
[Results] FIG. 1 to FIG. 5 show data on the characteristics over time. The resistance value is shown based on the initial resistance value in 3 ppm of H2S. In addition to the plain SnO2 film, the sensors include W, Mo, V in the examples, Zn, Cu, and
Al, In, Sb, Bi, Pb, Ce, Nb, Ta, Mn, Re,
A total of 23 kinds of Ni, Y, S, Mg, Fe, Cr, Ru and Co were examined. These addition elements were added so that the addition amount was changed centering on the addition amount of 4% and all of them were supported as oxides.

【0014】これらの内、経時変化の抑制に有効なの
は、実質的にW,Mo,Vの3種のみであった。図1にS
nO2/W(W/Snの原子比が4%)系センサの、9
0日間の経時特性を示す。同様に図2に、SnO2/M
o(Mo/Snの原子比が4%)系センサの90日間の
経時特性を示す。また図3に、SnO2/V(V/Sn
の原子比が2%)系センサの、90日間の経時特性を示
す。
Of these, only W, Mo and V were substantially effective in suppressing the change with time. S in Figure 1
nO2 / W (W / Sn atomic ratio 4%) based sensor, 9
The characteristics over time of 0 days are shown. Similarly, in Fig. 2, SnO2 / M
9 shows the time-dependent characteristics of an o (Mo / Sn atomic ratio of 4%) based sensor for 90 days. Further, in FIG. 3, SnO2 / V (V / Sn
2 shows the characteristics over time of 90 days of a sensor having an atomic ratio of 2%).

【0015】W,Mo,V以外の添加元素で、最も有効で
あったのはZnである。図4に、SnO2/Zn(Zn
/Snの原子比が4%)系センサの経時特性を示す。比
較例の内でZn以外の添加物では、図4よりもさらに経
時変化が著しい結果が得られた。また図5に、SnO2
単味のセンサの経時特性を示す。
The most effective additive element other than W, Mo and V is Zn. In Fig. 4, SnO2 / Zn (Zn
/ Sn atomic ratio is 4%). Among the comparative examples, with the additives other than Zn, a result in which the change with time was more remarkable than that in FIG. 4 was obtained. Moreover, in FIG.
The time characteristic of a simple sensor is shown.

【0016】図5から明らかなように、単味のSnO2
センサの経時安定性は著しく低く、これにZnを加えて
も経時安定性はなお不十分である。例えば図4のSnO
2/Znセンサでは、エタノール感度とH2S感度とが逆
転しクロスする。また90日後のエタノール300pp
m中での抵抗値は、空気中での抵抗値の初期値に等し
い。
As is apparent from FIG. 5, plain SnO2
The stability of the sensor over time is extremely low, and even if Zn is added to this, the stability over time is still insufficient. For example, SnO in FIG.
In the 2 / Zn sensor, the ethanol sensitivity and the H2S sensitivity reverse and cross. 90 days later 300 pp ethanol
The resistance value in m is equal to the initial resistance value in air.

【0017】これに対して図1〜図3の、SnO2/W
やSnO2/Mo,SnO2/Vのセンサははるかに安定
であり、SnO2/WセンサではH2S感度やCH3SH
感度が高いとの、特色のある相対感度が得られた。また
図2のSnO2/Moセンサでは、エタノールやアンモ
ニア,メチルアミン,アニリン,アセトン,酢酸エチルへの
感度が高く、相対感度はアンモニアとその誘導体,アル
コール等の含酸素有機化合物に高かった。図3のSnO
2/Vセンサでは、H2S感度とエタノール感度がバラン
スし、ガス選択性の低い結果が得られた。
On the other hand, SnO2 / W shown in FIGS.
The SnO2 / Mo and SnO2 / V sensors are much more stable, and the SnO2 / W sensor has H2S sensitivity and CH3SH.
A characteristic relative sensitivity of high sensitivity was obtained. The SnO2 / Mo sensor shown in FIG. 2 has high sensitivity to ethanol, ammonia, methylamine, aniline, acetone, and ethyl acetate, and relative sensitivity to oxygen and its derivatives, and oxygen-containing organic compounds such as alcohol. SnO in Figure 3
With the 2 / V sensor, the H2S sensitivity and the ethanol sensitivity were balanced, and low gas selectivity was obtained.

【0018】WやMo添加量の影響を表1,表2に示
す。表から明らかなように、WやMo,V等の添加物は
0.2〜36%の添加量の範囲で実際に有効であるが、
0.6%以上の添加で経時特性が著しく改善され(表
2)、10%超の添加では感度が急激に低下する(表
1,2)。このため添加量は好ましくは0.5〜10%と
する。
The effects of the amounts of W and Mo added are shown in Tables 1 and 2. As is clear from the table, additives such as W, Mo and V are actually effective in the range of the added amount of 0.2 to 36%,
The characteristics over time are remarkably improved with the addition of 0.6% or more (Table 2), and the sensitivity is drastically lowered with the addition of more than 10% (Tables 1 and 2). Therefore, the addition amount is preferably 0.5 to 10%.

【0019】[0019]

【表1】 表1 W添加量依存性 W添加量 初期感度 経時特性(70日間)初期抵抗(% atom/Sn atom)H2S(3ppm)(70日後/初期値) H2S(3ppm) … 40 135 7.5 0.2 30 25 8 0.8 12 3.5 10 2 11 2.6 8 4 9 1.7 10 8 8 1.5 50 35 5 1.3 800 * 感度は空気中とH2S3ppm中との抵抗値の比,測定
温度は340℃。 * 経時特性はH2S3ppm中での抵抗値の変化を示す。 * 抵抗値はKΩ単位。
[Table 1] Table 1 W additive amount dependency W additive amount Initial sensitivity Time characteristics (70 days) Initial resistance (% atom / Sn atom) H2S (3 ppm) (after 70 days / initial value) H2S (3 ppm) ... 40 135 7 0.5 0.2 30 25 8 0.8 12 3.5 10 2 11 2.6 8 4 9 9 1.7 10 10 8 8 1.5 50 35 35 5 1.3 800 * Sensitivity in air and in H2S3ppm. Resistance value ratio, measurement temperature is 340 ℃. * The aging characteristics show the change of resistance value in H2S3ppm. * Resistance value is in KΩ.

【0020】[0020]

【表2】 表2 Mo添加量依存性 Mo添加量 初期感度 経時特性(70日間)初期抵抗(% atom/Sn atom)エタノール300ppm(70日後/初期値)H2S3ppm中 … 8.5 145 75 0.3 10 18 10 0.6 16 2.6 30 4 9.5 1.7 25 8 8.5 1.4 40 15 6 1.5 120 36 4 1.3 1500 * 感度は空気中とエタノール300ppm中との抵抗値
の比,測定温度は340℃。 * 経時特性はエタノール300ppm中での抵抗値の変
化を示す。 * 抵抗値はKΩ単位。
[Table 2] Table 2 Mo Addition Dependency Mo Addition Initial Sensitivity Aging characteristics (70 days) Initial resistance (% atom / Sn atom) Ethanol 300ppm (70 days later / initial value) in H2S3ppm ... 8.5 145 75 0. 3 10 18 10 0.6 0.6 16 2.6 30 4 9.5 1.7 1.7 25 8 8.5 8.5 1.4 40 15 15 6 1.5 120 36 36 4 1.3 1500 * Sensitivity in air and 300 ppm ethanol The ratio of the resistance value of, the measurement temperature is 340 ℃. * Time-dependent characteristics show changes in resistance value in 300 ppm of ethanol. * Resistance value is in KΩ.

【0021】図6に、SnO2/Wセンサ(W/Sn=
4%)について、ガス濃度特性を示す。測定温度は34
0℃で、より温度を下げるとH2SやCH3SHへの相対
感度が増し、エタノールやアンモニアへの相対感度が低
下した。図1〜図6のいずれの結果でも、H2感度は低
く、これ以外にCO感度もH2感度と同様に低かった。
またiso−C4H10感度は極めて低く、現在までの結果で
は、H2Sとその誘導体、アルコール等の含酸素有機化
合物、アンモニアとその誘導体が主な検出対象となる。
FIG. 6 shows an SnO2 / W sensor (W / Sn =
4%) is shown. Measurement temperature is 34
At 0 ° C, when the temperature was lowered further, the relative sensitivity to H2S and CH3SH increased, and the relative sensitivity to ethanol and ammonia decreased. In all of the results shown in FIGS. 1 to 6, the H2 sensitivity was low, and in addition to this, the CO sensitivity was also low as was the H2 sensitivity.
Further, the sensitivity of iso-C4H10 is extremely low, and according to the results to date, H2S and its derivative, oxygen-containing organic compounds such as alcohol, ammonia and its derivative are the main detection targets.

【0022】[0022]

【発明の効果】この発明では、経時変化が小さく、H2
SやCH3SH等の硫化水素の誘導体、エタノール等の
アルコールやアセトン、アセトアルデヒド等の含酸素有
機化合物、アンモニアやメチルアミン,アニリン等のア
ンモニア誘導体に高感度な薄膜ガスセンサが得られる。
According to the present invention, the change with time is small, and
It is possible to obtain a thin film gas sensor having high sensitivity to hydrogen sulfide derivatives such as S and CH3SH, alcohols such as ethanol, oxygen-containing organic compounds such as acetone and acetaldehyde, and ammonia derivatives such as ammonia, methylamine and aniline.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のSnO2/W系薄膜センサの、動
作温度340℃での90日間の経時特性を示す特性図
FIG. 1 is a characteristic diagram showing a 90-day aging characteristic of an SnO 2 / W-based thin film sensor of an example at an operating temperature of 340 ° C.

【図2】 実施例のSnO2/Mo系薄膜センサの、
動作温度340℃での90日間の経時特性を示す特性図
FIG. 2 shows a SnO 2 / Mo based thin film sensor of the embodiment,
Characteristic diagram showing aging characteristics for 90 days at operating temperature of 340 ° C

【図3】 実施例のSnO2/V系薄膜センサの、動
作温度340℃での90日間の経時特性を示す特性図
FIG. 3 is a characteristic diagram showing the aging characteristics of the SnO 2 / V type thin film sensor of the example for 90 days at an operating temperature of 340 ° C.

【図4】 従来例のSnO2/Zn系薄膜センサの、
動作温度340℃での90日間の経時特性を示す特性図
FIG. 4 shows a conventional SnO 2 / Zn-based thin film sensor,
Characteristic diagram showing aging characteristics for 90 days at operating temperature of 340 ° C

【図5】 従来例のSnO2単味の薄膜センサの、動
作温度340℃での90日間の経時特性を示す特性図
FIG. 5 is a characteristic diagram showing a time-dependent characteristic of a SnO 2 pure thin film sensor of a conventional example for 90 days at an operating temperature of 340 ° C.

【図6】 実施例のSnO2/W系薄膜センサの、動
作温度340℃でのガス濃度特性を示す特性図
FIG. 6 is a characteristic diagram showing gas concentration characteristics of an SnO 2 / W thin film sensor of an example at an operating temperature of 340 ° C.

【図7】 実施例の薄膜ガスセンサの断面図FIG. 7 is a cross-sectional view of a thin film gas sensor of an example.

【符号の説明】[Explanation of symbols]

2 基板 4 金属酸化物半導体薄膜 6,8 薄膜電極 10 ヒータ 2 substrate 4 metal oxide semiconductor thin film 6,8 thin film electrode 10 heater

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 SnO2薄膜の抵抗値を用いたガスセン
サにおいて、 前記のSnO2薄膜には、W,Mo,Vからなる群の少な
くとも一員の元素の酸化物を、Sn原子に対する原子比
で0.1〜40%添加したことを特徴とするガスセン
サ。
1. A gas sensor using the resistance value of a SnO2 thin film, wherein the SnO2 thin film contains an oxide of at least one element of the group consisting of W, Mo and V in an atomic ratio of 0.1 to Sn atom. A gas sensor characterized by being added up to 40%.
【請求項2】 前記の添加元素をWとしたことを特徴と
する、請求項1のガスセンサ。
2. The gas sensor according to claim 1, wherein the additive element is W.
【請求項3】 前記の添加元素をMoとしたことを特徴
とする、請求項1のガスセンサ。
3. The gas sensor according to claim 1, wherein the additive element is Mo.
JP18318092A 1992-06-16 1992-06-16 Gas sensor Expired - Fee Related JP3185947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18318092A JP3185947B2 (en) 1992-06-16 1992-06-16 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18318092A JP3185947B2 (en) 1992-06-16 1992-06-16 Gas sensor

Publications (2)

Publication Number Publication Date
JPH063310A true JPH063310A (en) 1994-01-11
JP3185947B2 JP3185947B2 (en) 2001-07-11

Family

ID=16131175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18318092A Expired - Fee Related JP3185947B2 (en) 1992-06-16 1992-06-16 Gas sensor

Country Status (1)

Country Link
JP (1) JP3185947B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710747A1 (en) * 1994-10-31 1996-05-08 Kossbiel, Ernst High water protecting element of steel
JP2013164349A (en) * 2012-02-10 2013-08-22 New Cosmos Electric Corp Semiconductor gas detection element
CN103995026A (en) * 2014-05-29 2014-08-20 华中师范大学 High-performance alcohol gas sensor designed based on alcohol molecular imprinting mechanism and preparation method thereof
JP2015034796A (en) * 2013-08-09 2015-02-19 新コスモス電機株式会社 Semiconductor gas sensor
CN105116024A (en) * 2015-08-31 2015-12-02 中国电子科技集团公司第四十八研究所 Online monitoring system for hydrogen in power transformer oil based on thin film technology
CN109613100A (en) * 2018-12-07 2019-04-12 吉林大学 Based on three-dimensional opal structural SnO2The acetone gas sensor and preparation method thereof of-ZnO compound nano sensitive material
KR20200139903A (en) * 2019-06-05 2020-12-15 경북대학교 산학협력단 Hydrogen sulfide sensor and preparation method of the same
CN114577860A (en) * 2022-01-14 2022-06-03 浙江大学 Metal oxide low-temperature hydrogen sensitive material and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710747A1 (en) * 1994-10-31 1996-05-08 Kossbiel, Ernst High water protecting element of steel
JP2013164349A (en) * 2012-02-10 2013-08-22 New Cosmos Electric Corp Semiconductor gas detection element
JP2015034796A (en) * 2013-08-09 2015-02-19 新コスモス電機株式会社 Semiconductor gas sensor
CN103995026A (en) * 2014-05-29 2014-08-20 华中师范大学 High-performance alcohol gas sensor designed based on alcohol molecular imprinting mechanism and preparation method thereof
CN103995026B (en) * 2014-05-29 2016-03-30 华中师范大学 Based on alcohol molecule imprinting mechanism design high-performance alcohol gas sensor and preparation method thereof
CN105116024A (en) * 2015-08-31 2015-12-02 中国电子科技集团公司第四十八研究所 Online monitoring system for hydrogen in power transformer oil based on thin film technology
CN109613100A (en) * 2018-12-07 2019-04-12 吉林大学 Based on three-dimensional opal structural SnO2The acetone gas sensor and preparation method thereof of-ZnO compound nano sensitive material
KR20200139903A (en) * 2019-06-05 2020-12-15 경북대학교 산학협력단 Hydrogen sulfide sensor and preparation method of the same
CN114577860A (en) * 2022-01-14 2022-06-03 浙江大学 Metal oxide low-temperature hydrogen sensitive material and preparation method thereof
CN114577860B (en) * 2022-01-14 2024-01-30 浙江大学 Metal oxide low-temperature hydrogen sensitive material and preparation method thereof

Also Published As

Publication number Publication date
JP3185947B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
Hanlon et al. Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol–gel method
JPH06300649A (en) Thin film strain resistance material, fabrication thereof and thin film strain sensor
US4298505A (en) Resistor composition and method of manufacture thereof
JP3185947B2 (en) Gas sensor
JPH0359450A (en) Gas sensitive element
JPH0821482B2 (en) High stability laminated film resistor and manufacturing method thereof
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
KR20210001685A (en) Gas sensor operatable at room temperature, method of manufacturing the same and gas sensor array
AU2002216358B2 (en) Thin film ethanol sensor and a process for the preparation
AU2002216358A1 (en) Thin film ethanol sensor and a process for the preparation
US8328418B2 (en) Process for manufacturing platinum resistance thermometer
EP1690958A1 (en) Sputtering target material
JPS6152420B2 (en)
Sevast’yanov et al. Effect of Additives of Pt, Pd, Ag, and Y in Thin Nanocrystalline SnO 2 Films on the Characteristics of Resistive Hydrogen Sensors
JPH06213613A (en) Distortion resistance material and manufacture thereof and thin film distortion sensor
JP5526072B2 (en) Sputtering target and Ti-Al-N film and electronic component manufacturing method using the same
JP4742758B2 (en) Thin film resistor and manufacturing method thereof
JPH07122724A (en) Ohmic electrode of n-type cubic boron nitride semiconductor and its formation
JPH04370901A (en) Electric resistance material
JPH071722B2 (en) Thin film resistor
JP2562610B2 (en) Thin film resistor for strain gauge
JPS6024562B2 (en) resistive thin film
Belu-Marian et al. Ni silicides formation and properties in RF sputtered Ni100− x Six thin films
JPS6024561B2 (en) resistive film thin
JPH0620803A (en) Thin film resistor and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees