JPH06330300A - Formation of amino acid thin film and chemical sensor probe using thin film - Google Patents

Formation of amino acid thin film and chemical sensor probe using thin film

Info

Publication number
JPH06330300A
JPH06330300A JP14442593A JP14442593A JPH06330300A JP H06330300 A JPH06330300 A JP H06330300A JP 14442593 A JP14442593 A JP 14442593A JP 14442593 A JP14442593 A JP 14442593A JP H06330300 A JPH06330300 A JP H06330300A
Authority
JP
Japan
Prior art keywords
thin film
amino acid
forming
sensor probe
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14442593A
Other languages
Japanese (ja)
Other versions
JP3206688B2 (en
Inventor
Iwao Sugimoto
岩雄 杉本
Masayuki Nakamura
雅之 中村
Hiroki Kuwano
博喜 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14442593A priority Critical patent/JP3206688B2/en
Publication of JPH06330300A publication Critical patent/JPH06330300A/en
Application granted granted Critical
Publication of JP3206688B2 publication Critical patent/JP3206688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the high polymer thin film which has a hydrophilic surface characteristic and is high in adhesion and has the basic structure of amino acids by using the platelike substrate stuck with amino acids as a sputtering target in a high-frequency current sputtering method. CONSTITUTION:For example, in forming a thin film, the sputtering target which is made by dropping the satd. aq. soln. of glutamic acid and phenylalanine on a polyethylene disk and evaporating water and drying is used. The amino acid thin film which has the hydrophilic surface characteristic and is high in adhesion is obtained by sputtering this sputtering target in high-frequency current discharge. Because the amino acid thin film has excellent and reproducible desorption function to an org. gas, by forming the amino acid thin film on a rock crystal vibrator, the chemical sensor probe which is high in sensitivity and has a wide object range is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板への付着性や膜厚
の制御性等に優れたアミノ酸を基本構造とした薄膜、及
びその形成技術、更に、アミノ酸薄膜を用いた化学セン
サプローブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film having an amino acid as a basic structure which is excellent in adhesion to a substrate, controllability of film thickness, etc., and its forming technique, and further to a chemical sensor probe using the amino acid thin film. .

【0002】[0002]

【従来の技術】有機薄膜の形成技術において、真空や放
電技術を利用したものは純度、密着性、膜厚の制御性や
基板の選択性などに関して湿式法と比較して多くの優れ
た特性を有する。特にスパッタリング現象を利用して得
られたものはこれらの特色が大きい。しかし、イオン衝
撃や放電による結合の開裂を伴い、その分子構造が母材
と大きく異なったものになる可能性が高い。特に酸素は
欠損し易く、水酸基やカルボニル基を導入することは困
難であった。また、真空蒸着法は比較的母材の構造を壊
す危険性は少ないが、アミノ酸のように蒸気圧の小さな
ものに適応できる可能性は極めて小さい。湿度センサ用
の感応膜形成法としてプラズマ重合膜の化学的処理によ
りアミノ基を導入し、親水性を付与するものがある。し
かし、この方法では反応性に富んだ膜分子構造を大きく
乱す危険を伴う。特にラジカルを失活させる可能性が高
い。また酸素を含んだ官能基は導入できず、これらの関
与した効果は期待できない。
2. Description of the Related Art Among organic thin film forming technologies, those using vacuum or discharge technology have many excellent characteristics as compared with the wet method in terms of purity, adhesion, controllability of film thickness and substrate selectivity. Have. In particular, those obtained by utilizing the sputtering phenomenon have these characteristics. However, it is highly likely that the molecular structure of the base material will be significantly different from that of the base metal due to the cleavage of the bond due to ion bombardment or discharge. In particular, oxygen was easily lost, and it was difficult to introduce a hydroxyl group or a carbonyl group. Further, the vacuum vapor deposition method has a relatively low risk of breaking the structure of the base material, but has a very low possibility of being applicable to a substance having a small vapor pressure such as an amino acid. As a method of forming a sensitive film for a humidity sensor, there is a method of introducing hydrophilicity by introducing an amino group by chemically treating a plasma polymerized film. However, in this method, there is a risk of significantly disturbing the highly reactive membrane molecular structure. Especially, there is a high possibility of deactivating radicals. Further, a functional group containing oxygen cannot be introduced, and the effects involved in these cannot be expected.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、親水
性の表面物性を有する付着性の高い高分子薄膜の形成方
法を提供すること、及び薄膜で形成した高感度で幅広い
対象範囲を有する化学センサプローブを提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a polymer thin film having hydrophilic surface properties and high adhesiveness, and having a high sensitivity and a wide target range formed by the thin film. To provide a chemical sensor probe.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は、アミノ酸薄膜の形成方法に関する
発明であって、スパッタターゲットを高周波放電中でス
パッタリングすることにより薄膜形成を行う高周波スパ
ッタ法において、アミノ酸溶液を板状基板上に塗布し溶
媒を蒸発させたものをスパッタターゲットとすることを
特徴とする。また、本発明の第2の発明は化学センサプ
ローブに関する発明であって、水晶振動子上にアミノ酸
薄膜が形成されていることを特徴とする。
The present invention will be described in brief. The first invention of the present invention relates to a method for forming an amino acid thin film, which comprises forming a thin film by sputtering a sputtering target in a high frequency discharge. The high frequency sputtering method is characterized in that an amino acid solution is applied on a plate-shaped substrate and the solvent is evaporated to be used as a sputtering target. A second invention of the present invention relates to a chemical sensor probe, which is characterized in that an amino acid thin film is formed on a quartz oscillator.

【0005】本発明は化学センシング用の感応膜に関し
て、その感度及び対象範囲を向上させるため、アミノ酸
を基本構造とした有機薄膜を用いることを特徴とする。
以下、本発明について具体的に説明する。
The present invention relates to a sensitive film for chemical sensing, which is characterized by using an organic thin film having an amino acid as a basic structure in order to improve its sensitivity and target range.
Hereinafter, the present invention will be specifically described.

【0006】まず、本発明の第1の発明について説明す
る。第1の発明で使用するアミノ酸の種類としては、タ
ーゲットの作製のために溶媒に対する溶解性を考慮し、
かつ高周波スパッタ法に用いるために、融点又は昇華性
を考慮する必要があり、各種の中性、酸性及び塩基性ア
ミノ酸について検討した結果、グルタミン酸及びフェニ
ルアラニンが好適であることを見出した。
First, the first invention of the present invention will be described. As the type of amino acid used in the first invention, considering the solubility in a solvent for preparing a target,
In addition, it is necessary to consider the melting point or sublimability for use in the high frequency sputtering method, and as a result of examining various neutral, acidic and basic amino acids, it was found that glutamic acid and phenylalanine are suitable.

【0007】本発明で使用する薄膜装置である高周波ス
パッタリング装置としては従来公知のものでよく、その
1例を図1に示す。すなわち、図1は本発明のアミノ酸
薄膜を形成するための高周波スパッタ装置の1例の概略
図である。符号1は真空容器、2は基板ホルダー、3は
薄膜形成基板、4はスパッタターゲット、5はシャッタ
ー、6は高周波電極、7はマッチングボックス、8は高
周波電源、9は油拡散ポンプ、10は油回転ポンプ、1
1は排気系用メインバルブ、12は粗引きバルブ、13
は油拡散ポンプ用吸引バルブ、14はガス導入用可変バ
ルブ、15はストップバルブ、16はアルゴンガスボン
ベ、17はヒーターである。
The high-frequency sputtering device, which is a thin film device used in the present invention, may be a conventionally known one, one example of which is shown in FIG. That is, FIG. 1 is a schematic diagram of an example of a high frequency sputtering apparatus for forming the amino acid thin film of the present invention. Reference numeral 1 is a vacuum container, 2 is a substrate holder, 3 is a thin film forming substrate, 4 is a sputtering target, 5 is a shutter, 6 is a high frequency electrode, 7 is a matching box, 8 is a high frequency power supply, 9 is an oil diffusion pump, and 10 is oil. Rotary pump, 1
1 is an exhaust system main valve, 12 is a roughing valve, 13
Is a suction valve for an oil diffusion pump, 14 is a variable valve for introducing gas, 15 is a stop valve, 16 is an argon gas cylinder, and 17 is a heater.

【0008】薄膜の分子構造はフーリエ変換赤外分光光
度計及びX線光電子分光光度計を用いて分析した。ま
た、薄膜の最表面構造をX線光電子分光法(光電子脱出
深度:約8ナノメートル)により分析した。
The molecular structure of the thin film was analyzed using a Fourier transform infrared spectrophotometer and an X-ray photoelectron spectrophotometer. The outermost surface structure of the thin film was analyzed by X-ray photoelectron spectroscopy (photoelectron escape depth: about 8 nm).

【0009】本発明方法による薄膜は酸素や窒素を含ん
だその分子構造より親水性で生体適合性に優れた表面物
性を示し、これらの表面が必要なコーティング技術とし
て有望である。またプラズマ由来の有機薄膜に特徴的な
大きな原子数密度を有する分子骨格中にラジカルや不飽
和結合などの疎水性分子間相互作用に関しても活性なサ
イトを高濃度に含んでいる。これらの性質より本発明の
薄膜形成方法により高感度で広範囲な化学物質のセンシ
ングが可能となる。
The thin film produced by the method of the present invention exhibits surface properties which are hydrophilic and excellent in biocompatibility because of its molecular structure containing oxygen and nitrogen, and these surfaces are promising as a necessary coating technique. In addition, it also contains a high concentration of active sites for hydrophobic intermolecular interactions such as radicals and unsaturated bonds in the molecular skeleton having a large atomic number density characteristic of plasma-derived organic thin films. Due to these properties, the thin film forming method of the present invention enables highly sensitive sensing of a wide range of chemical substances.

【0010】次に、本発明の第2の発明について具体的
に説明する。第2の発明にかかるアミノ酸薄膜は、有機
系ガスに対して再現性のある優れた吸脱着機能を有して
おり、これらの薄膜を用いて高感度なガス分子の検出が
可能であることを必要とするため、この観点から使用す
るアミノ酸が選定される。また、アミノ酸薄膜の形成方
法は常法でよく、例えば、水晶振動子上にアミノ酸溶液
を塗布し、溶媒を蒸発させる方法、真空蒸着法、スパッ
タリング法、あるいは上記本発明の第1の発明による薄
膜形成方法等が例示される。しかしながら、アミノ酸薄
膜と水晶振動子との密着性、耐久性、感度等の観点か
ら、薄膜形成方法としては第1の発明の方法、延いては
使用するアミノ酸としては、グルタミン酸及びフェニル
アラニンが好適であることを見出した。
Next, the second invention of the present invention will be specifically described. The amino acid thin film according to the second invention has an excellent adsorption / desorption function that is reproducible with respect to organic gases, and it is possible to detect gas molecules with high sensitivity using these thin films. The amino acid to be used is selected from this viewpoint because it is necessary. The method for forming the amino acid thin film may be a conventional method, for example, a method of coating an amino acid solution on a crystal oscillator and evaporating a solvent, a vacuum vapor deposition method, a sputtering method, or the thin film according to the first aspect of the present invention. A forming method and the like are exemplified. However, from the viewpoints of adhesion, durability, sensitivity, etc. between the amino acid thin film and the crystal oscillator, the thin film forming method is preferably the method of the first invention, and the amino acid used is preferably glutamic acid and phenylalanine. I found that.

【0011】前記のように、本発明の化学センサプロー
ブは、有機系ガスに対する吸着特性が良好であることを
必要とするが、その測定装置の概略を図4に示す。すな
わち、図4は本発明の化学センサプローブのガス吸着特
性を測定する装置の概略図である。符号21は感応膜被
覆水晶振動子、22は測定セル、23は3方コック、2
4はガス源セル、25は恒温槽、26はストップバル
ブ、27はマスフローコントローラー、28は純空気ボ
ンベ、29はストップバルブ、30はマスフローコント
ローラー、31は純空気ボンベ、32は発振器、33は
周波数カウンタ、34はコンピュータである。測定方法
を以下に述べる。まず、感応膜被覆水晶振動子21をセ
ットした測定セル22に純空気ボンベ28より純粋空気
を約0.2リットル/分の流量で送り、振動子の周波数
が安定するのを待つ。その後、3方コック23で測定対
象溶液を充てんしたガス源セル24からの流路に切り替
え、同様に31、29、30を通して純空気を導入し、
ガス源からガスを測定セル22に送って測定を行う。水
晶振動子の吸着による重量変化は周波数カウンタ33で
読み取られ、コンピューター34に表示される。
As described above, the chemical sensor probe of the present invention needs to have good adsorption characteristics for organic gases, and the measuring device is schematically shown in FIG. That is, FIG. 4 is a schematic view of an apparatus for measuring the gas adsorption characteristics of the chemical sensor probe of the present invention. Reference numeral 21 is a sensitive film-coated crystal oscillator, 22 is a measuring cell, 23 is a three-way cock, and 2
4 is a gas source cell, 25 is a constant temperature bath, 26 is a stop valve, 27 is a mass flow controller, 28 is a pure air cylinder, 29 is a stop valve, 30 is a mass flow controller, 31 is a pure air cylinder, 32 is an oscillator, 33 is a frequency The counter 34 is a computer. The measuring method is described below. First, pure air is sent from the pure air cylinder 28 to the measuring cell 22 in which the sensitive film-coated crystal oscillator 21 is set at a flow rate of about 0.2 liter / min, and the frequency of the oscillator is stabilized. Thereafter, the flow path from the gas source cell 24 filled with the solution to be measured is switched by the three-way cock 23, and pure air is similarly introduced through 31, 29 and 30,
The gas is sent from the gas source to the measuring cell 22 to perform the measurement. The weight change due to the adsorption of the crystal unit is read by the frequency counter 33 and displayed on the computer 34.

【0012】[0012]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれら実施例に限定されない。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0013】実施例1 本発明にかかるアミノ酸薄膜の形成方法の例としてグル
タミン酸及びフェニルアラニンの薄膜形成について述べ
る。まず、ポリエチレン円板(直径:135mm、厚
さ:10mm)上にグルタミン酸及びフェニルアラニン
の飽和水溶液を滴下し、室温下で一昼夜水分を蒸発さ
せ、更に70℃で1時間乾燥させたものをスパッタター
ゲットとして薄膜形成に先立ち予め用意する。次に、図
1に示す装置を用いたアミノ酸薄膜を水晶振動子上に形
成し、化学センサプローブを得る具体的手順を述べる。
基板ホルダー2に基板3として水晶円板(ATカット、
基本振動数:9MHz)及び分析用のシリコンウェハを
取付ける。この水晶円板は厚さ0.1mm、直径10m
mで、両面に厚さ数ミクロン、直径5mmの金電極を形
成したものである。スパッタターゲット4としてグルタ
ミン酸又はフェニルアラニンを被覆したポリエチレン円
板を高周波電極6に固定する。油回転ポンプ10を作動
させ、油拡散ポンプ用吸引バルブ13を開いた後、油拡
散ポンプ9のヒーターを作動させポンプを立ち上げる。
バルブ13を閉じた後、粗引きバルブ12を開いて真空
排気を開始する。10-2Torr程度まで真空度が上昇する
とバルブ12を閉じて、バルブ13を開き、更にメイン
バルブ11を開き油拡散ポンプによる高真空排気を行い
10-6Torr程度にまで真空度が上昇するのを待つ。所定
の真空度にまで排気が行えたらガス導入用可変バルブ1
4を徐々に開けて、アルゴンガスボンベ16よりアルゴ
ンを導入し真空度が10-2Torr台になるように調整す
る。ここで高周波電源8により高周波電極6に1.2k
V程度の高周波電圧を印加し放電を起こす。安定な放電
状態にするためマッチングボックス7内にコンデンサー
を調整する。放電が一旦起こるとアルゴンガスの供給を
停止し、メインバルブ11を調節して真空容器1内の圧
力を5×10-2Torr以上になるように保つ。スパッタタ
ーゲット表面の汚染層を除去するため放電を数分間行っ
た後、シャッター5を開き、アミノ酸薄膜を水晶振動子
上に堆積させる。堆積する膜厚はシャッターの開放時間
でもって調節する。シリコンウェハ上に形成したグルタ
ミン酸及びフェニルアラニン薄膜の22℃、湿度54%
の大気下で測定した水の接触角はそれぞれ57.3度及
び66.9度であり、疎水性のフルオロポリマーのスパ
ッタ薄膜が約100度位を示すのに対して大幅に小さく
なっている。これよりこれらアミノ酸薄膜表面は親水性
であることが確認できる。
Example 1 As an example of a method for forming an amino acid thin film according to the present invention, a thin film formation of glutamic acid and phenylalanine will be described. First, a saturated aqueous solution of glutamic acid and phenylalanine was dropped on a polyethylene disc (diameter: 135 mm, thickness: 10 mm), water was evaporated overnight at room temperature, and the product was further dried at 70 ° C for 1 hour as a sputter target. Prepare in advance prior to thin film formation. Next, a specific procedure for forming a thin film of an amino acid using the device shown in FIG. 1 on a crystal oscillator to obtain a chemical sensor probe will be described.
A crystal disk (AT cut,
A fundamental frequency: 9 MHz) and a silicon wafer for analysis are attached. This crystal disk has a thickness of 0.1 mm and a diameter of 10 m.
m, a gold electrode having a thickness of several microns and a diameter of 5 mm is formed on both sides. A polyethylene disk coated with glutamic acid or phenylalanine as the sputter target 4 is fixed to the high frequency electrode 6. After operating the oil rotary pump 10 and opening the oil diffusion pump suction valve 13, the heater of the oil diffusion pump 9 is operated to start the pump.
After closing the valve 13, the roughing valve 12 is opened to start evacuation. When the degree of vacuum rises to about 10 -2 Torr, the valve 12 is closed, the valve 13 is opened, and the main valve 11 is opened to evacuate high vacuum by the oil diffusion pump to raise the degree of vacuum to about 10 -6 Torr. Wait for Variable valve 1 for gas introduction when exhausting to a specified vacuum level
4 is gradually opened, and argon is introduced from the argon gas cylinder 16 so that the degree of vacuum is adjusted to the level of 10 -2 Torr. Here, 1.2 k is applied to the high frequency electrode 6 by the high frequency power source
A high frequency voltage of about V is applied to cause discharge. A capacitor is adjusted in the matching box 7 to make a stable discharge state. Once the discharge is generated, the supply of argon gas is stopped and the main valve 11 is adjusted to keep the pressure inside the vacuum container 1 at 5 × 10 −2 Torr or more. After discharging for several minutes to remove the contaminated layer on the surface of the sputter target, the shutter 5 is opened and the amino acid thin film is deposited on the crystal oscillator. The film thickness to be deposited is adjusted by the opening time of the shutter. Glutamic acid and phenylalanine thin films formed on silicon wafers at 22 ° C and 54% humidity
The contact angles of water measured under the atmosphere are 57.3 degrees and 66.9 degrees, respectively, which is much smaller than the sputtered thin film of the hydrophobic fluoropolymer showing about 100 degrees. From this, it can be confirmed that the surface of these amino acid thin films is hydrophilic.

【0014】既述のように、薄膜の分子構造を、フーリ
エ変換赤外分光光度計及びX線光電子分光光度計を用い
て分析した。図2に水晶振動子上に形成されたフェニル
アラニン薄膜及びグルタミン酸薄膜の正反射赤外分光ス
ペクトルを示す。すなわち、図2は本発明のアミノ酸薄
膜の正反射法で測定したフーリエ変換赤外分光スペクト
ルを、波数(cm-1、横軸)と、透過度(任意単位、縦
軸)との関係で示す図である。両者共アミノ酸(N−
H)及び水酸基(O−H)の伸縮振動によるシグナルが
3400cm-1を中心として認められる。また、C−H
の伸縮振動が3000cm-1付近に観測される。更に、
カルボキシル基のC=Oの伸縮振動が1670cm-1
中心とした強い吸収バンドとして観測される。フェニル
アラニン薄膜の場合、ベンゼン環の骨格振動はこの強い
吸収バンドの中に含まれているものと推定される。
As described above, the molecular structure of the thin film was analyzed using a Fourier transform infrared spectrophotometer and an X-ray photoelectron spectrophotometer. FIG. 2 shows specular reflection infrared spectroscopy spectra of the phenylalanine thin film and the glutamic acid thin film formed on the crystal oscillator. That is, FIG. 2 shows a Fourier transform infrared spectroscopic spectrum of the amino acid thin film of the present invention measured by the specular reflection method, in terms of the relationship between wave number (cm −1 , horizontal axis) and transmittance (arbitrary unit, vertical axis). It is a figure. Both amino acids (N-
A signal due to stretching vibration of H) and hydroxyl group (OH) is recognized around 3400 cm -1 . Also, C-H
Stretching vibration is observed near 3000 cm -1 . Furthermore,
Stretching vibration of C = O of the carboxyl group is observed as a strong absorption band centered at 1670 cm -1 . In the case of phenylalanine thin film, the skeletal vibration of the benzene ring is presumed to be included in this strong absorption band.

【0015】また既述のように、薄膜の最表面構造をX
線光電子分光法(光電子脱出深度:約8ナノメートル)
により分析した。各元素のシグナル強度より算出した薄
膜の構成元素比はフェニルアラニン薄膜では炭素:7
7.6%、酸素:13.2%、窒素:9.2%、グルタ
ミン酸薄膜では炭素:64.0%、酸素:19.4%、
窒素:16.6%である。ただしこれらの値は検出不可
能な水素を除いて算出している。親水性に寄与する酸素
と窒素の最表面における濃度はグルタミン酸の方が大き
く、この結果は水の接触角がフェニルアラニン薄膜より
小さくなっていることに反映されている。Cls領域の
X線光電子分光(XPS)スペクトルを図3に示す。す
なわち、図3は本発明のアミノ酸薄膜のCls領域のX
線光電子分光スペクトルを、結合エネルギー(eV、横
軸)と、光電子強度(任意単位、縦軸)との関係で示す
図である。フェニルアラニン薄膜のCls−XPSスペ
クトルは285付近の炭化水素(CxHy)に起因する
主ピークとその高結合エネルギー側(286〜289e
V)に広がる酸素や窒素との結合様式を有するカルボキ
シル基やアミノ酸などの官能基に帰属される弱いシグナ
ルが観測される。一方、グルタミン酸薄膜のCls−X
PSスペクトルではこれら官能基のシグナル強度が大き
く増大しており、膜中の酸素や窒素の相対元素比がフェ
ニルアラニン薄膜より大きくなっていることと対応して
いる。この表面を0.5kVのアルゴンイオンで3分間
スパッタエッチングした後、フェニルアラニン薄膜では
炭素:89.1%、酸素:3.9%、窒素:7.0%、
グルタミン酸薄膜では炭素:73.8%、酸素:8.9
%、窒素:17.3%と変化する。両者共にイオンエッ
チングにより酸素濃度が減少しており、フェニルアラニ
ン薄膜では特に顕著である。これは膜を構成している官
能基に含まれる酸素以外に大気中での表面汚染層の酸素
が除去された結果をも反映していると推定される。
As described above, the outermost surface structure of the thin film is X
Line photoelectron spectroscopy (photoelectron escape depth: about 8 nm)
Was analyzed by. The constituent element ratio of the thin film calculated from the signal intensity of each element is carbon: 7 in the phenylalanine thin film.
7.6%, oxygen: 13.2%, nitrogen: 9.2%, glutamic acid thin film carbon: 64.0%, oxygen: 19.4%,
Nitrogen: 16.6%. However, these values are calculated excluding undetectable hydrogen. The concentrations of oxygen and nitrogen, which contribute to hydrophilicity, at the outermost surface were higher in glutamic acid, and this result is reflected in the contact angle of water being smaller than that of the phenylalanine thin film. An X-ray photoelectron spectroscopy (XPS) spectrum in the Cls region is shown in FIG. That is, FIG. 3 shows X of Cls region of the amino acid thin film of the present invention.
It is a figure which shows a line photoelectron spectroscopy spectrum by the relationship between the binding energy (eV, abscissa) and photoelectron intensity (arbitrary unit, ordinate). The Cls-XPS spectrum of the phenylalanine thin film shows a main peak due to a hydrocarbon (CxHy) around 285 and its high binding energy side (286 to 289e).
A weak signal attributed to a functional group such as a carboxyl group or an amino acid having a bonding mode with oxygen and nitrogen spreading in V) is observed. On the other hand, Cls-X of glutamic acid thin film
In the PS spectrum, the signal intensity of these functional groups is greatly increased, which corresponds to the fact that the relative element ratio of oxygen and nitrogen in the film is larger than that in the phenylalanine thin film. After sputter etching this surface with 0.5 kV argon ions for 3 minutes, the phenylalanine thin film had carbon: 89.1%, oxygen: 3.9%, nitrogen: 7.0%,
In the glutamic acid thin film, carbon: 73.8%, oxygen: 8.9
%, Nitrogen: 17.3%. In both cases, the oxygen concentration is reduced by ion etching, which is particularly remarkable in the phenylalanine thin film. It is presumed that this reflects the result that oxygen in the surface contaminated layer in the atmosphere was removed in addition to oxygen contained in the functional group constituting the film.

【0016】これらアミノ酸薄膜を直径1cm、厚さ
0.1mmのAT−カット水晶振動子円板(QCM)上
に形成し、ガスの吸着特性を調べた。このQCMは基本
振動数9MHzで、1Hzの振動数変化が1ngの重量
変化に対応する。測定装置の概略を、既述のように図4
に示す。約0.36μmのアミノ酸薄膜を被覆した水晶
振動子を20ppm濃度の1級アルコール蒸気に25℃
においてさらした時のガス吸着量をアルコール分子の体
積で表したものが図5である。すなわち、図5は本発明
のアミノ酸薄膜の20ppm濃度のアルコールガスに対
する吸着量を、分子体積(Å3 、横軸)と、吸着分子数
(nmol、縦軸)との関係で示す図である。この様な
低濃度のアルコール蒸気は含フッ素系プラズマポリマー
の様な疎水性薄膜では吸着量が極めて少なく、明確に検
出できない量である。しかし図5に示すようにアミノ酸
薄膜では明りょうに検出され、フェニルアラニン薄膜で
は特に大きな吸着量が確認された。これらは同一の薄膜
を用いて3回測定した平均であり、各々の膜は再現性の
よい吸脱着特性を示した。これらアルコール分子の吸着
には直鎖型炭素鎖の末端に位置する強力な分子間相互作
用の担い手である水酸基が大きな寄与をするものと推定
され、炭化水素部の寄与は少ないと推定される。この炭
化水素部は分子の体積や質量のみを主に支配し、メチル
アルコールからn−ペンチルアルコールにかけてこの分
子パラメータは増大する。両膜共にアルコール分子の体
積が増大するに従い吸着量は減少する。特にフェニルア
ラニン薄膜ではこの傾向が顕著である。体積が小さいメ
チルアルコールやエチルアルコールが大きな吸着量を示
すことよりこれらの小分子では薄膜中に浸透した吸着メ
カニズムが考えられる。特にフェニルアラニン薄膜で
は、n−プロピルアルコール以上の炭素数を有するアル
コール分子で吸着量の飽和現象を示唆している。n−ブ
チルアルコールよりn−ペンチルアルコールの方が若干
吸着量が増大していることは、これ位の大きさでは膜中
に浸透していくより膜表面付近においてアルコール分子
同士が集合して堆積していく過程が支配的になることを
反映している可能性が大きい。また、これらアルコール
類以外にアセトンに代表されるケトン類、ベンゼンに代
表される芳香族類、四塩化炭素に代表されるハロゲン化
炭素類、ヘキサンに代表される脂肪族炭化水素類などに
対してもガス吸着測定を行った結果、含フッ素系プラズ
マポリマーと同等以上の再現性のある吸脱着機能を有す
ることも明らかになった。
These amino acid thin films were formed on an AT-cut quartz crystal disk (QCM) having a diameter of 1 cm and a thickness of 0.1 mm, and the gas adsorption characteristics were examined. This QCM has a fundamental frequency of 9 MHz, and a frequency change of 1 Hz corresponds to a weight change of 1 ng. As described above, the outline of the measuring device is shown in FIG.
Shown in. A crystal unit coated with a thin film of about 0.36 μm amino acid was exposed to 20 ppm concentration of primary alcohol vapor at 25 ° C.
FIG. 5 shows the amount of gas adsorbed at the time of exposure in Table 1 as the volume of alcohol molecules. That is, FIG. 5 is a diagram showing the amount of adsorption of the amino acid thin film of the present invention with respect to alcohol gas having a concentration of 20 ppm, in terms of the relationship between the molecular volume (Å 3 , abscissa) and the number of adsorbed molecules (nmol, ordinate). Such a low-concentration alcohol vapor has an extremely small amount of adsorption in a hydrophobic thin film such as a fluorine-containing plasma polymer, and cannot be clearly detected. However, as shown in FIG. 5, it was clearly detected in the amino acid thin film, and a particularly large adsorption amount was confirmed in the phenylalanine thin film. These are the averages of three measurements using the same thin film, and each film showed reproducible adsorption / desorption characteristics. It is presumed that hydroxyl groups, which are responsible for the strong intermolecular interaction located at the ends of the linear carbon chains, make a large contribution to the adsorption of these alcohol molecules, and the contribution of the hydrocarbon part is small. This hydrocarbon part mainly controls only the volume and mass of the molecule, and this molecular parameter increases from methyl alcohol to n-pentyl alcohol. The adsorption amount of both membranes decreases as the volume of alcohol molecules increases. This tendency is remarkable especially in the phenylalanine thin film. Since small volumes of methyl alcohol and ethyl alcohol show a large adsorption amount, it is considered that these small molecules have an adsorption mechanism that permeates into the thin film. Particularly, in the phenylalanine thin film, it is suggested that the adsorption amount is saturated with alcohol molecules having a carbon number of n-propyl alcohol or more. The fact that the amount of adsorption of n-pentyl alcohol is slightly higher than that of n-butyl alcohol means that alcohol molecules aggregate and accumulate near the film surface rather than permeate into the film at this size. It is highly possible that this reflects the fact that the process of going about becomes dominant. In addition to these alcohols, ketones represented by acetone, aromatics represented by benzene, halogenated carbons represented by carbon tetrachloride, aliphatic hydrocarbons represented by hexane, etc. As a result of gas adsorption measurement, it was also revealed that it has a reproducible adsorption / desorption function equivalent to or better than that of the fluorine-containing plasma polymer.

【0017】最後にこのアミノ酸被覆水晶振動子を恒温
恒湿槽(温度:60℃,相対湿度:85%)に10日間
放置した後、1日大気中に放置して水分を蒸発させ同様
のアルコールガスの吸着測定を行っても特性の変化は数
%以内に納まり、親水性ではあるが湿度に対する優れた
耐久性をこれらの薄膜は有していることも明らかになっ
た。
Finally, this amino acid-coated crystal oscillator is left in a thermo-hygrostat (temperature: 60 ° C., relative humidity: 85%) for 10 days, and then left in the atmosphere for 1 day to evaporate water to evaporate the same alcohol. Even when the gas adsorption measurement was carried out, the change in the characteristics was within a few percent, and it was revealed that these thin films have hydrophilicity but excellent durability against humidity.

【0018】[0018]

【発明の効果】以上示したように、本発明にかかるアミ
ノ酸薄膜は有機系ガスに対して再現性のある優れた吸脱
着機能を有しており、これらの薄膜を用いて高感度なガ
ス分子の検出が可能である。また、これらの薄膜で構成
されたセンサプローブは耐久性にも優れ、大気中におい
て低雑音、高感度であることより、各種ガスや火災の検
知などの身近なものから地球汚染モニタまでを含めた環
境センシングが可能となる。更に、これらの薄膜はアミ
ノ酸に起因した親水性の表面を有しており、これらの表
面を必要とした、特に生体関連分野で有力なコーティン
グ技術として期待される。
Industrial Applicability As described above, the amino acid thin film according to the present invention has a reproducible and excellent adsorption / desorption function with respect to an organic gas. Can be detected. In addition, the sensor probe composed of these thin films has excellent durability, low noise and high sensitivity in the atmosphere, so it can be used for everything from familiar things such as detection of various gases and fires to global pollution monitors. Environmental sensing becomes possible. Furthermore, these thin films have a hydrophilic surface derived from amino acids, and are expected as a promising coating technology particularly in the biological field, which requires these surfaces.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアミノ酸薄膜を形成するための高周波
スパッタ装置の1例の概略図である。
FIG. 1 is a schematic view of an example of a high-frequency sputtering apparatus for forming an amino acid thin film of the present invention.

【図2】本発明のアミノ酸薄膜の正反射法で測定したフ
ーリエ変換赤外分光スペクトルを示す図である。
FIG. 2 is a diagram showing a Fourier transform infrared spectroscopy spectrum of the amino acid thin film of the present invention measured by a specular reflection method.

【図3】本発明のアミノ酸薄膜のCls領域のX線光電
子分光スペクトルを示す図である。
FIG. 3 is a diagram showing an X-ray photoelectron spectroscopy spectrum in the Cls region of the amino acid thin film of the present invention.

【図4】本発明の化学センサプローブのガス吸着特性を
測定する装置の概略図である。
FIG. 4 is a schematic view of an apparatus for measuring gas adsorption characteristics of the chemical sensor probe of the present invention.

【図5】本発明のアミノ酸薄膜の20ppm濃度のアル
コールガスに対する吸着量を示す図である。
FIG. 5 is a graph showing the amount of adsorption of the amino acid thin film of the present invention to alcohol gas having a concentration of 20 ppm.

【符号の説明】[Explanation of symbols]

1:真空容器、2:基板ホルダー、3:薄膜形成基板、
4:スパッタターゲット、5:シャッター、6:高周波
電極、7:マッチングボックス、8:高周波電源、9:
油拡散ポンプ、10:油回転ポンプ、11:排気系用メ
インバルブ、12:粗引きバルブ、13:油拡散ポンプ
用吸引バルブ、14:ガス導入用可変バルブ、15:ス
トップバルブ、16:アルゴンガスボンベ、17:ヒー
ター、21:感応膜被覆水晶振動子、22:測定セル、
23:3方コック、24:ガス源セル、25:恒温槽、
26:ストップバルブ、27:マスフローコントローラ
ー、28:純空気ボンベ、29:ストップバルブ、3
0:マスフローコントローラー、31:純空気ボンベ、
32:発振器、33:周波数カウンタ、34:コンピュ
ータ
1: vacuum container, 2: substrate holder, 3: thin film forming substrate,
4: sputter target, 5: shutter, 6: high frequency electrode, 7: matching box, 8: high frequency power supply, 9:
Oil diffusion pump, 10: Oil rotary pump, 11: Main valve for exhaust system, 12: Roughing valve, 13: Suction valve for oil diffusion pump, 14: Variable valve for gas introduction, 15: Stop valve, 16: Argon gas cylinder , 17: heater, 21: sensitive film-coated crystal unit, 22: measuring cell,
23: 3-way cock, 24: gas source cell, 25: constant temperature bath,
26: Stop valve, 27: Mass flow controller, 28: Pure air cylinder, 29: Stop valve, 3
0: Mass flow controller, 31: Pure air cylinder,
32: oscillator, 33: frequency counter, 34: computer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スパッタターゲットを高周波放電中でス
パッタリングすることにより薄膜形成を行う高周波スパ
ッタ法において、アミノ酸溶液を板状基板上に塗布し溶
媒を蒸発させたものをスパッタターゲットとすることを
特徴とする薄膜の形成方法。
1. A high-frequency sputtering method for forming a thin film by sputtering a sputter target in a high-frequency discharge, wherein the amino acid solution is applied onto a plate-shaped substrate and the solvent is evaporated to obtain a sputter target. Method for forming thin film.
【請求項2】 水晶振動子上にアミノ酸薄膜が形成され
ていることを特徴とする化学センサプローブ。
2. A chemical sensor probe having an amino acid thin film formed on a quartz oscillator.
JP14442593A 1993-05-25 1993-05-25 Chemical sensor probe using amino acid thin film Expired - Lifetime JP3206688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14442593A JP3206688B2 (en) 1993-05-25 1993-05-25 Chemical sensor probe using amino acid thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14442593A JP3206688B2 (en) 1993-05-25 1993-05-25 Chemical sensor probe using amino acid thin film

Publications (2)

Publication Number Publication Date
JPH06330300A true JPH06330300A (en) 1994-11-29
JP3206688B2 JP3206688B2 (en) 2001-09-10

Family

ID=15361893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14442593A Expired - Lifetime JP3206688B2 (en) 1993-05-25 1993-05-25 Chemical sensor probe using amino acid thin film

Country Status (1)

Country Link
JP (1) JP3206688B2 (en)

Also Published As

Publication number Publication date
JP3206688B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
US6025036A (en) Method of producing a film coating by matrix assisted pulsed laser deposition
Sumner et al. The nature of water on surfaces of laboratory systems and implications for heterogeneous chemistry in the troposphere
Parker et al. Plasma modification of mica: Forces between fluorocarbon surfaces in water and a nonpolar liquid
JP3274669B2 (en) Fluorine resin with excellent wettability surface
US5002794A (en) Method of controlling the chemical structure of polymeric films by plasma
JP2610394B2 (en) Barrier coating method for plastic products
US6320295B1 (en) Diamond or diamond like carbon coated chemical sensors and a method of making same
JP2010514937A (en) Plasma-deposited microporous carbon material
US4696796A (en) Moisture sensor
Kurth et al. Monomolecular layers and thin films of silane coupling agents by vapor-phase adsorption on oxidized aluminum
US20100221843A1 (en) Device for Investigating Chemical Interactions and Process Utilizing Such Device
US5002652A (en) Plasma polymerized polysiloxane membrane
JP3206688B2 (en) Chemical sensor probe using amino acid thin film
Roualdes et al. Organic/inorganic thin films deposited from diethoxydimethylsilane by plasma enhanced chemical vapor deposition
Le et al. When chemistry of the substrate drastically controls morphogenesis of plasma polymer thin films
Sugimoto et al. Chiral-discriminative amino acid films prepared by vacuum vaporization and/or plasma processing
JP3536970B2 (en) Method for producing amino acid thin film and chemical sensor probe
JP3692026B2 (en) Sputtering target and organic thin film manufacturing method
JP3518576B2 (en) Preparation method of polymer thin film and chemical sensor probe
CA2347829A1 (en) Substrate with an organic diffusion barrier layer
Sugimoto et al. Gas-sorption effects on plasma polymer films characterized by XPS and quartz crystal resonator
JPH04103636A (en) Molecular sensor thin film, method for forming the same and molecular sensor using the same
Grynko et al. Fullerene and fullerene-aluminum nanostructured films as sensitive layers for gas sensors
CA2183664A1 (en) Barrier films having carbon-coated high energy surfaces
JPH08209329A (en) Winding-up vapor-deposition device and cvd device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20070706

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080706

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110706

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 12

EXPY Cancellation because of completion of term