JPH06330226A - Multiple-layered steel excellent in high temperature corrosion resistance and its production - Google Patents

Multiple-layered steel excellent in high temperature corrosion resistance and its production

Info

Publication number
JPH06330226A
JPH06330226A JP11747293A JP11747293A JPH06330226A JP H06330226 A JPH06330226 A JP H06330226A JP 11747293 A JP11747293 A JP 11747293A JP 11747293 A JP11747293 A JP 11747293A JP H06330226 A JPH06330226 A JP H06330226A
Authority
JP
Japan
Prior art keywords
layer
corrosion resistance
temperature corrosion
hip
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11747293A
Other languages
Japanese (ja)
Inventor
Satoshi Araki
敏 荒木
Tsunetoshi Takahashi
常利 高橋
Mizuo Sakakibara
瑞夫 榊原
Shinji Niinuma
慎二 新沼
Hiroyuki Ogawa
洋之 小川
Tetsuo Ishizuka
哲夫 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11747293A priority Critical patent/JPH06330226A/en
Publication of JPH06330226A publication Critical patent/JPH06330226A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a multiple-layered steel tube excellent in high temp. corrosion resistance by forming a coating layer of austenitic stainless steel having a specified compsn. contg., high Ni on the internal tube of a steel tube for a boiler through a metal diffusing layer having a specified thickness. CONSTITUTION:On a steel tube for a boiler as an internal layer, a coating layer of austenitic stainless steel is formed as an external layer to obtain the multiple-layered steel tube. At this time, the coating layer is obtd. by subjecting the powder of steel contg., by weight, <=0.08% C, 0.3 to 2.0% Mn, 18 to 27% Cr, 17 to 50% Ni, 0.5 to 3.0% Mo, 0.03 to 0.3% Ti, 0.05 to 0.6% Nb, 0.001 to 0.01% B, <=0.04% P <=0.005% S and 0.02 to 0.3% N and furthermore contg. one or more kinds of 0.5 to 9.0% Al and 0.7 to 7.0% Si and one or more kinds among 0.0005 to 0.05% Ca, 0.001 to 0.1% Y, 0.001 to 0.2% La and 0.001 to 0.2% Ce to HIP treatment and hot working, and the space of the external layer and internal layer is provided with an intermediate layer constituted of a metal diffusing layer of >=5mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は廃棄物燃焼環境等の塩化
物および塩化水素(HCl)ガス等に対して優れた耐高
温腐食特性を有し、かつ製造時の熱間加工性の良好な複
層鋼管およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention has excellent high temperature corrosion resistance to chlorides and hydrogen chloride (HCl) gas in waste combustion environment, etc. and has good hot workability during manufacturing. The present invention relates to a multi-layer steel pipe and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般廃棄物および産業廃棄物の中で、廃
棄プラスチック類および自動車シュレッダーダスト等の
燃焼により発生する高濃度の塩化物およびHClガス等
に対し、優れた高温腐食特性を有する焼却炉および燃焼
ボイラ用既存鉄鋼材料はなかった。そのために、上記廃
棄物は高い発熱量を持ちながら、不燃・燃焼不適物とし
て分別・収集され主に埋め立てられている。また、分別
・収集されずに一般廃棄物に混入してボイラで燃焼され
る場合には、腐食性環境条件が厳しいためボイラの蒸気
条件は圧力294.2N/cm2 、温度350℃程度以
下に抑えられ、効率の良い低公害の燃料源としては活用
されていない。
2. Description of the Related Art Among general wastes and industrial wastes, an incinerator having excellent high temperature corrosion characteristics against high concentration chloride and HCl gas generated by combustion of waste plastics and automobile shredder dust. And there was no existing steel material for combustion boiler. Therefore, the wastes have a high calorific value, but they are sorted and collected as non-combustible / non-combustible substances and are mainly landfilled. In addition, when it is mixed with general waste and burned in the boiler without being separated and collected, the steam conditions of the boiler are pressure 294.2 N / cm 2 and temperature 350 ° C or less due to severe corrosive environmental conditions. It is not used as a low-pollution, efficient and low-pollution fuel source.

【0003】これに対して本出願人は、特願平3−16
5946号および特願平5−39040号において、A
l;0.5〜6.0%、Si;0.7〜3.0%のうち
の1種以上を含み、Ni;17〜50%を含有する耐高
温腐食特性に優れたオーステナイト系ステンレス鋼を提
案している。しかし、Al量およびSi量をそれぞれ
6.0%、3.0%を超えて含有させてさらなる耐高温
腐食特性の向上を目指すと、製造時に熱間加工割れが発
生するという問題点が生じた。さらに、溶解法でAl量
およびSi量をそれぞれ6.0%、3.0%を超えて含
有させると、凝固時に成分偏析を生じ、熱間加工後に割
れの軽微な部分から試験片採取して耐高温腐食特性を評
価すると、Alが6.0%以下、Siが3.0%以下の
材料に比較して耐高温腐食特性が低下するという問題点
を有していた。以上の点からAl量およびSi量の上限
をそれぞれ6.0%、3.0%に制限せざるを得なかっ
た。
On the other hand, the present applicant has filed Japanese Patent Application No. 3-16
No. 5946 and Japanese Patent Application No. 5-39040, A
1; 0.5 to 6.0%, Si; 0.7 to 3.0%, and Ni; 17 to 50%, and austenitic stainless steel excellent in high temperature corrosion resistance. Is proposed. However, if the contents of Al and Si exceed 6.0% and 3.0%, respectively, with the aim of further improving the high-temperature corrosion resistance, there arises a problem that hot work cracking occurs during manufacturing. . Furthermore, when the Al content and the Si content in the melting method exceed 6.0% and 3.0%, respectively, component segregation occurs during solidification, and a specimen is taken from a minor crack after hot working. When the high-temperature corrosion resistance was evaluated, there was a problem that the high-temperature corrosion resistance deteriorated as compared with a material having Al of 6.0% or less and Si of 3.0% or less. From the above points, the upper limits of the Al amount and the Si amount have to be limited to 6.0% and 3.0%, respectively.

【0004】一方、HIP法で複層材料あるいはその熱
間加工用素材を製造する方法について、本出願人は、特
開平64−202号公報および特願平3−95136号
において、熱間加工用複層素材の少なくとも一方を粉末
−HIP法で製造し、その後、熱間加工を施して延伸す
る方法、あるいは必要に応じてその後、熱処理、冷間加
工+熱処理を施す方法を提案している。しかし、前記の
ような高Al、高Si含有Fe基合金については熱間加
工時の加工性確保が極めて重要になり、特に、外層と内
層の中間層としての金属拡散層の存在が不可欠となる。
On the other hand, regarding the method for producing a multi-layer material or its hot working material by the HIP method, the applicant of the present invention has disclosed in Japanese Unexamined Patent Publication No. 64-202 and Japanese Patent Application No. 3-95136 for hot working. It is proposed that at least one of the multilayer materials is manufactured by the powder-HIP method and then hot-worked and stretched, or if necessary, subsequently heat-treated, cold-worked + heat-treated. However, with respect to the Fe-based alloy containing high Al and Si as described above, it is extremely important to secure workability during hot working, and in particular, the presence of a metal diffusion layer as an intermediate layer between the outer layer and the inner layer is essential. .

【0005】[0005]

【発明が解決しようとする課題】本発明は前記問題点を
解決するという観点に立って、廃棄物燃焼環境等におけ
る塩化物およびHClガス等に対して優れた耐高温腐食
特性を有し、かつ、製造時の熱間加工性の良好な複層鋼
管、複層鋼材およびその製造方法を提供することを目的
とする。
From the viewpoint of solving the above-mentioned problems, the present invention has excellent high-temperature corrosion resistance to chloride and HCl gas in a waste combustion environment and the like, and An object of the present invention is to provide a multi-layer steel pipe having good hot workability during production, a multi-layer steel material, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1)外層が、重量%にて、C ; 0.08%以下、
Mn; 0.3〜2.0%、Cr; 18〜27%、N
i; 17〜50%、Mo; 0.5〜3.0%、T
i; 0.03〜0.3%、Nb; 0.05〜0.6
%、B ; 0.001〜0.01%、P ; 0.0
4%以下、S ; 0.005%以下、N ; 0.0
2〜0.3%を含有し、さらにAl; 0.5〜9.0
%、Si; 0.7〜7.0%のうち1種以上、かつ、
Ca; 0.0005〜0.05%、Y ; 0.00
1〜0.2%、La; 0.001〜0.2%、Ce;
0.001〜0.2%のうち1種以上を含み、残部が
Feおよび不可避的不純物からなるオーステナイト系ス
テンレス鋼の粉末を熱間静水圧プレス(HIP)処理お
よび熱間加工して形成した被覆層で、内層がボイラ用鋼
管で、外層と内層の間にHIP−熱間加工によって形成
した5μm以上の金属拡散層からなる中間層を有するこ
とを特徴とする耐高温腐食特性に優れた複層鋼管。
The subject matter of the present invention is as follows. (1) The outer layer, in% by weight, is C: 0.08% or less,
Mn; 0.3-2.0%, Cr; 18-27%, N
i; 17 to 50%, Mo; 0.5 to 3.0%, T
i; 0.03 to 0.3%, Nb; 0.05 to 0.6
%, B; 0.001-0.01%, P; 0.0
4% or less, S; 0.005% or less, N; 0.0
2 to 0.3% and further Al; 0.5 to 9.0
%, Si; 0.7 to 7.0%, one or more kinds, and
Ca; 0.0005 to 0.05%, Y; 0.00
1-0.2%, La; 0.001-0.2%, Ce;
Coating formed by hot isostatic pressing (HIP) treatment and hot working of an austenitic stainless steel powder containing at least one of 0.001 to 0.2% and the balance being Fe and unavoidable impurities. Layer, an inner layer is a steel pipe for a boiler, and an intermediate layer consisting of a metal diffusion layer of 5 μm or more formed by HIP-hot working is provided between the outer layer and the inner layer, which is excellent in high temperature corrosion resistance Steel pipe.

【0007】(2)外層が前項1記載のオーステナイト
系ステンレス鋼の粉末をHIP処理して形成した被覆層
で、内層がボイラ用鋼で、外層と内層の間にHIP処理
によって形成した10μm以上の金属拡散層からなる中
間層を有することを特徴とする耐高温腐食特性に優れた
複層鋼材用素材。 (3)HIP処理条件を温度1050〜1240℃、圧
力29MPa以上、保持時間0.5時間以上とすること
を特徴とする前項1または2記載の耐高温腐食特性に優
れた複層鋼管または複層鋼材用素材の製造方法。
(2) The outer layer is a coating layer formed by HIP-treating the powder of austenitic stainless steel according to the preceding paragraph 1, the inner layer is boiler steel, and the space between the outer layer and the inner layer is 10 μm or more formed by HIP treatment. A material for multi-layer steel material having excellent high-temperature corrosion resistance characterized by having an intermediate layer composed of a metal diffusion layer. (3) The multi-layer steel pipe or multi-layer having excellent high-temperature corrosion resistance according to the above 1 or 2, wherein the HIP treatment conditions are a temperature of 1050 to 1240 ° C., a pressure of 29 MPa or more, and a holding time of 0.5 hour or more. Manufacturing method for steel materials.

【0008】(4)前項3記載の条件でHIP処理して
製造した前項2記載の複層鋼材用素材を、熱間加工で延
伸することによって製造することを特徴とする前項1記
載の耐高温腐食特性に優れた複層鋼管の製造方法。 (5)前項3記載の条件でHIP処理して製造した前項
2記載の複層鋼材用素材を、熱間加工で延伸し、その後
さらに熱処理を施すことを特徴とする前項1記載の耐高
温腐食特性に優れた複層鋼管の製造方法。
(4) The high temperature resistance according to item 1 above, which is characterized in that the raw material for a multi-layer steel product according to item 2 above produced by HIP treatment under the conditions described in item 3 above is produced by drawing by hot working. A method for producing a multi-layer steel pipe having excellent corrosion characteristics. (5) The high-temperature corrosion resistance according to the preceding clause 1, characterized in that the raw material for a multi-layer steel material according to the preceding clause 2 produced by HIP treatment under the conditions of the preceding clause 3 is drawn by hot working and then further heat-treated. A method for producing a multi-layer steel pipe with excellent characteristics.

【0009】(6)前項3記載の条件でHIP処理して
製造した前項2記載の複層鋼材用素材を、熱間加工で延
伸し、その後さらに冷間加工と熱処理を1回以上施すこ
とを特徴とする前項1記載の耐高温腐食特性に優れた複
層鋼管の製造方法。 (7)前項3記載の条件でHIP処理して製造した前項
2記載の複層鋼材用素材を、熱間加工で延伸し、その後
さらに熱処理を施し、さらに冷間加工と熱処理を1回以
上施すことを特徴とする前項1記載の耐高温腐食特性に
優れた複層鋼管の製造方法。
(6) The raw material for a multi-layer steel product according to item 2 produced by HIP treatment under the conditions described in item 3 above is drawn by hot working, and then subjected to cold working and heat treatment at least once. A method for producing a multi-layer steel pipe excellent in high-temperature corrosion resistance as set forth in the preceding paragraph 1, which is characterized. (7) The multi-layer steel material according to item 2 produced by HIP treatment under the conditions described in item 3 above is drawn by hot working, and then further heat treated, and then cold worked and heat treated once or more. The method for producing a multi-layer steel pipe excellent in high-temperature corrosion resistance according to the above item 1, characterized in that.

【0010】[0010]

【作用】以下に、先ず、外層用オーステナイト系ステン
レス鋼の成分の限定理由について説明する。先ず、塩化
物およびHClガスに対して高温腐食特性を向上させる
合金元素として、Ni、AlおよびSiとCa、Y、L
aおよびCeを複合添加することが有効である。
In the following, the reasons for limiting the components of the austenitic stainless steel for the outer layer will be described first. First, Ni, Al, and Si, and Ca, Y, and L are alloying elements that improve high-temperature corrosion characteristics with respect to chloride and HCl gas.
It is effective to add a and Ce in combination.

【0011】Ni含有量増大により高温腐食深さが減少
する(図1)。これはスケール中に生成するNi富化層
が塩化物およびHClガスに対する保護性を有するため
と考えられる。その効果は17%未満では十分ではない
ため下限を17%とした。なお、Ni量が多くなると熱
間加工性が劣化すること、またコストの面でもNi量が
多くなると高価になるのでNiの上限を50%とした。
したがってNiの量を17〜50%と限定した。
The hot corrosion depth decreases with increasing Ni content (FIG. 1). It is considered that this is because the Ni-rich layer formed in the scale has protection against chloride and HCl gas. The effect is not sufficient if less than 17%, so the lower limit was made 17%. The upper limit of Ni was set to 50% because the hot workability deteriorates as the Ni content increases and the cost increases as the Ni content increases.
Therefore, the amount of Ni is limited to 17 to 50%.

【0012】AlおよびSiはその添加により高温腐食
深さが減少する(図2)。これはスケール中にそれぞれ
Al2 3 およびSiO2 系の保護性スケールが生成す
るためと考えられる。その効果はAl;0.5%未満、
Si;0.7%未満では十分ではないため、Alの下限
を0.5%、Siの下限を0.7%とした。なお、Al
およびSi量が増加すると熱間加工性が低下するので、
両特性を確保するために一般の溶解、鋳造材ではAl量
を6.0%以下、Si量を3.0%以下にすることが必
要であるが、請求項1に示す外層用粉末を用いて、請求
項2に示す複層鋼材用素材を、請求項3に示す条件のH
IP処理によって製造する場合は、熱間加工性向上によ
りその上限をAl量で9.0%、Si量で7.0%にま
でそれぞれ拡張することが可能となる。さらに、前記外
層用粉末の熱間静水圧プレスによる熱間加工用素材を用
いた場合の熱間加工後以降の複層鋼管の外層は、溶解、
鋳造材を用いた場合よりも成分分布が均質化し、溶解、
鋳造材を用いた場合のAl量が6.0%、Si量が3.
0%をそれぞれ超えた材料でみられる成分偏析に起因す
る耐高温腐食特性の低下がみられない。これらの理由に
よってAlの量を0.5〜9.0%、Siの量を0.7
〜7.0%とした。
The addition of Al and Si reduces the hot corrosion depth (FIG. 2). It is considered that this is because protective scales of Al 2 O 3 and SiO 2 series are formed in the scale. The effect is Al; less than 0.5%,
Since Si is less than 0.7%, the lower limit of Al is 0.5% and the lower limit of Si is 0.7%. In addition, Al
Since the hot workability decreases as the amount of Si and Si increases,
In order to secure both properties, it is necessary to set the Al content to 6.0% or less and the Si content to 3.0% or less in a general melting or casting material, but use the outer layer powder according to claim 1. The multi-layer steel material according to claim 2 under the H condition of claim 3.
In the case of manufacturing by the IP treatment, it becomes possible to extend the upper limits to 9.0% in the amount of Al and 7.0% in the amount of Si by improving the hot workability. Furthermore, the outer layer of the multi-layer steel pipe after hot working when the material for hot working by hot isostatic pressing of the powder for the outer layer is melted,
Compared to the case of using a cast material, the composition distribution is more homogenized and melts,
When a cast material is used, the amount of Al is 6.0% and the amount of Si is 3.
No deterioration of the high-temperature corrosion resistance due to the segregation of the constituents observed in the materials exceeding 0% is observed. For these reasons, the amount of Al is 0.5 to 9.0% and the amount of Si is 0.7.
It was set to 7.0%.

【0013】Al、Siは単独添加または複合添加して
も同様の効果が得られるが、熱間加工性確保の観点か
ら、複合添加の場合の上限はAl、Siの合計9.0%
が望ましい。Ca、Y、LaおよびCeはその1種以上
をAl、Siの単独添加または複合添加と組み合わせて
添加することにより、高温腐食深さが減少する。Alお
よびSiはその添加により、前述のとおりスケール中に
それぞれAl2 3 およびSiO2 系の保護性スケール
を形成し、塩化物およびHClガスに対する保護性を向
上させるが、さらにCa、Y、LaおよびCeの1種以
上を添加すると、スケールが緻密になり、耐高温腐食特
性が向上する。また、これらの元素は脱酸・脱硫作用を
有し、OおよびSの粒界偏析を減少させることによって
熱間加工性を向上させる。これらの効果はCa;0.0
005未満、Y;0.001%未満、La;0.001
%未満、Ce;0.001%未満では十分でないため、
Caの下限を0.0005%、Yの下限を0.001
%、Laの下限を0.001%、Ceの下限を0.00
1%とした。なお、Ca量が0.05%、Y、Laおよ
びCe量がそれぞれ0.2%を超えると鋼の清浄度が低
下し、熱間加工性およびクリープ破断強度が低下するの
で、両特性を確保するためにCa量を0.05%以下、
Y量を0.2%以下、La量を0.2%以下、Ce量を
0.2%以下にすることが必要である。これらの理由に
よってCaの量を0.0005〜0.05%、Yの量を
0.001〜0.2%、Laの量を0.001〜0.2
%、Ceの量を0.001〜0.2%とした。Ca、
Y、LaおよびCeはその1種以上を添加することによ
り上記の効果が得られるが、熱間加工性およびクリープ
破断強度確保の観点から、複合添加の場合の上限はC
a、Y、La、Ceの合計0.2%が望ましい。
Similar effects can be obtained by adding Al or Si alone or in combination. However, from the viewpoint of ensuring hot workability, the upper limit in the case of composite addition is 9.0% in total of Al and Si.
Is desirable. When one or more of Ca, Y, La and Ce are added alone or in combination with Al and Si, the high temperature corrosion depth is reduced. By adding Al and Si, as described above, Al 2 O 3 and SiO 2 -based protective scales are formed in the scale, respectively, to improve the protection against chloride and HCl gas. If at least one of Ce and Ce is added, the scale becomes dense and the high temperature corrosion resistance is improved. Further, these elements have a deoxidizing / desulfurizing action and improve the hot workability by reducing the grain boundary segregation of O and S. These effects are Ca; 0.0
Less than 005, Y; less than 0.001%, La; 0.001
%, Ce: Since less than 0.001% is not sufficient,
Lower limit of Ca is 0.0005%, lower limit of Y is 0.001
%, The lower limit of La is 0.001%, the lower limit of Ce is 0.00
It was set to 1%. If the Ca content exceeds 0.05% and the Y, La, and Ce contents exceed 0.2%, respectively, the cleanliness of the steel decreases, and the hot workability and creep rupture strength decrease, so both properties are secured. In order to do this, the amount of Ca should be 0.05% or less,
It is necessary to set the Y content to 0.2% or less, the La content to 0.2% or less, and the Ce content to 0.2% or less. For these reasons, the amount of Ca is 0.0005 to 0.05%, the amount of Y is 0.001 to 0.2%, and the amount of La is 0.001 to 0.2%.
%, And the amount of Ce was 0.001-0.2%. Ca,
The above effects can be obtained by adding one or more of Y, La and Ce, but from the viewpoint of ensuring hot workability and creep rupture strength, the upper limit in the case of compound addition is C
A total of 0.2% of a, Y, La and Ce is desirable.

【0014】次に、上記以外の成分について述べる。C
は、400℃以上の高温環境下の使用中にCrと結びつ
きCr236 等の炭化物を結晶粒界に生成する。このた
め、粒界近傍にCr欠乏部を生じ、Cr含有保護皮膜層
の形成を阻害し、高温酸化、高温腐食を促進する。ま
た、溶接時高温割れを防止するためにもC量を過度に高
めないことが必要である。以上の観点からCの上限を
0.08%と定めた。
Next, components other than the above will be described. C
Generates a carbide such as Cr 23 C 6 at a grain boundary by being combined with Cr during use in a high temperature environment of 400 ° C. or higher. Therefore, a Cr-deficient portion is generated in the vicinity of the grain boundary, which hinders the formation of the Cr-containing protective coating layer and promotes high temperature oxidation and high temperature corrosion. Further, in order to prevent hot cracking during welding, it is necessary not to excessively increase the C content. From the above viewpoints, the upper limit of C is set to 0.08%.

【0015】Mnは、脱酸を十分行い健全な鋳片を得る
ために必要であり、鋼中に不純物として含有されるS成
分を固定し、熱間脆性を防止し、溶接性、熱間加工性を
向上させるために0.3%以上は必要である。しかし添
加量が多過ぎると耐酸化性を損なうので上限を2.0%
とした。Crは硫酸塩等に対する耐高温腐食特性および
耐高温酸化特性等を向上させるので耐熱合金にとっては
必須の元素である。SUS347H(18Cr−12N
i−0.7Nb)と同等以上の耐高温酸化特性が必要な
ので、Cr量の下限をSUS347HのCr量と同量の
18%とした。しかしCr量が多いと長時間加熱により
σ脆化が起こりやすくなるのでCr量の上限を27%と
した。
Mn is necessary for sufficient deoxidation to obtain a sound cast piece. It fixes the S component contained as an impurity in steel, prevents hot brittleness, weldability and hot workability. In order to improve the property, 0.3% or more is necessary. However, if too much is added, the oxidation resistance will be impaired, so the upper limit is 2.0%.
And Cr is an essential element for heat-resistant alloys because it improves the high-temperature corrosion resistance and high-temperature oxidation resistance against sulfates and the like. SUS347H (18Cr-12N
Since i-0.7Nb) requires a high temperature oxidation resistance equal to or higher than that of i-0.7Nb), the lower limit of the Cr content is set to 18%, which is the same as the Cr content of SUS347H. However, if the Cr content is large, σ embrittlement easily occurs due to heating for a long time, so the upper limit of the Cr content was set to 27%.

【0016】Moは高温塩化物環境で耐高温腐食性を向
上させるので下限を0.5%とした。しかしMoはσ相
の形成を促進し、長時間使用脆化を起こしやすいので添
加量の上限を3.0%とした。Ti、Nbは炭、窒化物
形成元素で、Cr236 の粒界への多量析出を抑制し、
耐高温腐食性、耐酸化性を向上させる。また、クリープ
破断強度の向上にも効果があり、複合添加でその炭、窒
化物が微細分散化する場合に最もクリープ破断強度が高
くなる。これらの作用のためには、炭、窒化物の析出量
はTi量が0.03%未満、Nb量が0.05%未満で
は十分でなく、一方、Ti量が0.3%、Nb量が0.
6%を超えてのTi、Nb複合添加では炭、窒化物が凝
集粗大化し、耐高温腐食性、耐酸化性への効果が飽和す
るのみならず、クリープ破断強度が低下する。以上の点
を考慮してTiの量を0.03〜0.3%、Nbの量を
0.05〜0.6%とした。
Mo improves the high temperature corrosion resistance in a high temperature chloride environment, so the lower limit was made 0.5%. However, Mo promotes the formation of the σ phase and tends to cause embrittlement during long-term use, so the upper limit of the addition amount was made 3.0%. Ti and Nb are charcoal and nitride forming elements, and suppress the large amount of precipitation of Cr 23 C 6 at the grain boundaries.
Improves high temperature corrosion resistance and oxidation resistance. Further, it has an effect of improving the creep rupture strength, and the creep rupture strength becomes highest when the carbon and nitride are finely dispersed by the combined addition. For these effects, the precipitation amount of carbon and nitride is not sufficient if the Ti amount is less than 0.03% and the Nb amount is less than 0.05%, while the Ti amount is 0.3% and the Nb amount is Is 0.
When Ti and Nb are added in excess of 6%, carbon and nitride are aggregated and coarsened, and the effects on high temperature corrosion resistance and oxidation resistance are saturated, and also creep rupture strength is reduced. Considering the above points, the amount of Ti is 0.03 to 0.3% and the amount of Nb is 0.05 to 0.6%.

【0017】Bは熱間加工性をさらに良好とする元素で
あり、特に過酷な熱間加工を行う場合に有効である。熱
間加工性向上にB量0.001%以上は必要であるが、
添加量が多いと溶接性および延性が劣化するので添加量
の上限を0.010%とした。Pは添加量が多いと耐高
温腐食特性を劣化させるので低い程望ましく、上限を
0.04%とした。
B is an element that further improves the hot workability, and is particularly effective when performing severe hot work. A B content of 0.001% or more is necessary to improve hot workability,
If the addition amount is large, the weldability and ductility deteriorate, so the upper limit of the addition amount was made 0.010%. If P is added in a large amount, it deteriorates the high temperature corrosion resistance, so P is preferably as low as possible, and the upper limit was made 0.04%.

【0018】Sも粒界に偏析し耐高温腐食特性を劣化さ
せるので上限を0.005%とした。Nは耐高温粒界腐
食性に有効な元素であり、そのためには0.02%以上
にする必要がある。しかしNの過剰添加は熱間加工性を
低下させるので上限を0.3%とした。
Since S also segregates at the grain boundaries and deteriorates the high temperature corrosion resistance, the upper limit was made 0.005%. N is an element effective in high temperature intergranular corrosion resistance, and for this purpose, it is necessary to make it 0.02% or more. However, excessive addition of N deteriorates hot workability, so the upper limit was made 0.3%.

【0019】また、内層となるボイラ用鋼には、該複層
鋼管の使用環境(温度、蒸気圧力)に応じて、炭素鋼、
低合金鋼、ステンレス鋼および高Cr−高Ni鋼などを
選定することができ、具体的にはSTB410(0.5
Mn鋼)、STBA24(2.5Cr−1Mo鋼)、A
SME SA213 T91(9Cr−1Mo系鋼)、
SUS304HTB(19Cr−10Ni鋼)、SUS
347HTB(18Cr−12Ni−0.7Nb鋼)、
NCF800HTB(22Cr−33Ni系鋼)および
各種高強度高Cr−高Ni鋼などを挙げることができ
る。
The boiler steel for the inner layer is made of carbon steel, depending on the operating environment (temperature, steam pressure) of the multi-layer steel pipe.
Low alloy steel, stainless steel, high Cr-high Ni steel, etc. can be selected. Specifically, STB410 (0.5
Mn steel), STBA24 (2.5Cr-1Mo steel), A
SME SA213 T91 (9Cr-1Mo steel),
SUS304HTB (19Cr-10Ni steel), SUS
347HTB (18Cr-12Ni-0.7Nb steel),
NCF800HTB (22Cr-33Ni system steel) and various high strength high Cr-high Ni steels can be mentioned.

【0020】次に、本発明の複層鋼管の外層は、Al:
0.5〜9.0%、Si:0.7〜7.0%のうち1種
以上を含有するが、通常の溶解・鋳造材を複層鋼管の外
層用素材あるいは単層管用素材に用いると、Alが6.
0%、Siが3.0%を超える成分範囲では熱間加工に
よる製管、延伸時にヘゲ疵あるいは割れが生じる。この
問題点を解決したのが前記成分の外層を、粉末−HIP
法により内層用熱間加工素材の表面に金属層として形成
した熱間加工用複層素材を用いる製造方法であり、以下
にその方法について説明する。
Next, the outer layer of the multi-layer steel pipe of the present invention comprises Al:
0.5 to 9.0%, Si: 0.7 to 7.0%, at least one of which is contained, but a normal melting / casting material is used as the outer layer material of the multi-layer steel pipe or the material for the single layer pipe. And Al is 6.
If the composition range of 0% and Si exceeds 3.0%, bald defects or cracks occur during pipe forming and stretching by hot working. This problem was solved by using the powder-HIP as the outer layer of the above components.
This is a manufacturing method using a multi-layer material for hot working formed as a metal layer on the surface of the hot working material for inner layer by the method, and the method will be described below.

【0021】本発明においては、熱間加工用複層素材の
外層と内層の中間層として10μm以上の厚さの金属拡
散層を形成することが熱間加工性確保の点で必要であ
る。これは金属拡散層厚さが10μm未満では、熱間加
工性が不十分で、熱間加工時に外層と内層の剥離あるい
はそれを起点とする外層の割れあるいはヘゲ疵が生じる
からである。また、熱間加工後、あるいはその後さらに
熱処理あるいは冷間加工と熱処理の組合せを1回以上の
いずれかあるいは両方を施した後の製品管としての複層
鋼管の外層と内層の中間層として5μm以上の厚さの金
属拡散層を有することが必要である。このことにより、
ボイラ鋼管等の外内表面の熱伝達性を確保すると共に、
使用時の温度変化に対して外内層の熱膨張差に起因する
界面剥離等の発生を回避することができる。複層鋼管の
外層と内層の間の金属拡散層厚さが5μm未満では、こ
れらの特性が確保できないので、金属拡散層厚さを5μ
m以上とした。なお、金属拡散層厚さは熱間加工用複層
素材での厚さに対し、熱間加工および冷間加工での断面
減少率に応じて小さくなる方向に作用を受けるものの、
熱間加工および熱処理での加熱による外内層成分の拡散
で大きくなる方向にも作用を受ける。結果として、熱間
加工用複層素材の外層と内層の中間層として10μm以
上の厚さの金属拡散層を有する場合は、製品管の複層鋼
管の外層と内層の中間層としての金属拡散層を5μm以
上に確保することが可能となる。
In the present invention, it is necessary to form a metal diffusion layer having a thickness of 10 μm or more as an intermediate layer between the outer layer and the inner layer of the multilayer material for hot working in order to secure hot workability. This is because when the thickness of the metal diffusion layer is less than 10 μm, the hot workability is insufficient and the outer layer and the inner layer are separated from each other during the hot working, or the outer layer is cracked or has a bald defect caused by the peeling. In addition, after hot working, or after further heat treatment or a combination of cold working and heat treatment, one or more times, or both, as an intermediate layer between the outer layer and the inner layer of the multi-layer steel pipe as a product pipe, 5 μm or more It is necessary to have a thickness of the metal diffusion layer. By this,
While ensuring the heat transfer properties of the outer and inner surfaces of boiler steel pipes,
It is possible to avoid the occurrence of interfacial peeling or the like due to the difference in thermal expansion between the outer and inner layers with respect to the temperature change during use. If the thickness of the metal diffusion layer between the outer layer and the inner layer of the multi-layer steel pipe is less than 5 μm, these characteristics cannot be secured.
m or more. The thickness of the metal diffusion layer, in relation to the thickness of the multilayer material for hot working, acts in the direction of becoming smaller according to the cross-sectional reduction rate in hot working and cold working,
It is also affected by the diffusion of outer and inner layer components due to heating during hot working and heat treatment. As a result, when a metal diffusion layer having a thickness of 10 μm or more is provided as an intermediate layer between the outer layer and the inner layer of the multilayer material for hot working, the metal diffusion layer as the intermediate layer between the outer layer and the inner layer of the multi-layer steel pipe of the product pipe. Can be secured to 5 μm or more.

【0022】製造においては、先ず、請求項1の外層用
オーステナイト系ステンレス鋼の粉末を、内層となるボ
イラ用鋼素材の表面に、HIP用カプセル内で充填し、
その後、真空脱気した後、密閉する。次いで、HIP処
理して内層素材の外表面に前記外層用粉末を金属層とし
て形成する。粉末の充填、密閉時にHIP用カプセル内
を真空にすることおよびHIP処理を温度:1050〜
1240℃、圧力:29MPa以上、保持時間:0.5
時間以上の条件にすることにより、外層内に気孔を残存
させずに、かつ、外層と内層の中間層として10μm以
上の金属拡散層を形成することができ、接合界面には十
分な接合強度を持たせることができる。なお、HIP処
理温度を1050〜1240℃とした理由は、HIP処
理温度が1050℃未満では保持時間が数十時間と長く
なるために実用的ではなく、1240℃を超えると冷却
時に成分元素の偏析を生じ、次の工程における熱間加工
性が低下するためである。また圧力を29MPa以上と
したのは、29MPa未満の圧力ではHIP処理温度と
負荷保持時間をいかに選択しても外層と内層の中間層と
して10μm以上の金属拡散層を形成することができ
ず、かつ、外層用粉末層の焼結が不十分で熱間加工性を
確保できないためである。さらに、保持時間が0.5時
間未満では前記の温度範囲内でHIP処理温度をいかに
高くしても外層と内層の中間層として10μm以上の金
属拡散層を形成することができず、かつ、外層用粉末層
の焼結が不十分で熱間加工性を確保できないためであ
る。
In the production, first, the powder of the austenitic stainless steel for the outer layer of claim 1 is filled in the HIP capsule on the surface of the steel material for the boiler as the inner layer,
Then, after vacuum deaeration, it is sealed. Then, HIP treatment is performed to form the outer layer powder as a metal layer on the outer surface of the inner layer material. The powder is filled, the inside of the HIP capsule is evacuated when closed, and the HIP treatment is performed at a temperature of 1050 to
1240 ° C, pressure: 29 MPa or more, holding time: 0.5
By setting the condition to be longer than time, it is possible to form a metal diffusion layer of 10 μm or more as an intermediate layer between the outer layer and the inner layer without leaving pores in the outer layer, and to obtain sufficient bonding strength at the bonding interface. You can have it. The reason for setting the HIP treatment temperature to 1050 to 1240 ° C. is not practical because the holding time becomes several tens of hours when the HIP treatment temperature is less than 1050 ° C., and it is not practical when the HIP treatment temperature exceeds 1240 ° C. Is caused and the hot workability in the next step is deteriorated. The pressure is set to 29 MPa or more because a pressure of less than 29 MPa cannot form a metal diffusion layer of 10 μm or more as an intermediate layer between the outer layer and the inner layer, no matter how the HIP treatment temperature and the load holding time are selected, and This is because the outer powder layer is not sufficiently sintered and hot workability cannot be ensured. Furthermore, if the holding time is less than 0.5 hours, a metal diffusion layer of 10 μm or more cannot be formed as an intermediate layer between the outer layer and the inner layer, no matter how high the HIP treatment temperature is within the above temperature range, and the outer layer is not formed. This is because the sintering of the powder layer for use is insufficient and hot workability cannot be secured.

【0023】次に、前記熱間加工用複層素材を熱間押出
あるいは熱間圧延などの熱間加工により、製管、延伸す
る。前記HIP処理条件により、外層内に気孔を残存さ
せずに、かつ、外・内層の界面を金属結合させて、接合
界面に十分な接合強度を持たせた熱間加工用複層素材
は、外層にヘゲ疵や割れを生じることなく熱間加工をす
ることができる。本発明における熱間加工の目的は長尺
の複層鋼管を製造することにあり、加工温度の選定に際
しては外層および内層の両方に対して適切な温度を選定
する必要がある。
Next, the multi-layer material for hot working is pipe-formed and stretched by hot working such as hot extrusion or hot rolling. According to the above HIP treatment conditions, a multilayer material for hot working, which does not leave pores in the outer layer and has a metal bond at the interface between the outer and inner layers to give a sufficient bonding strength to the bonding interface, Hot working can be performed without causing bald marks and cracks. The purpose of hot working in the present invention is to produce a long multi-layer steel pipe, and it is necessary to select appropriate temperatures for both the outer layer and the inner layer when selecting the working temperature.

【0024】次に、本発明においては熱間加工で延伸し
た複層鋼管に、必要に応じて、請求項5では熱処理を施
し、請求項6では冷間加工と熱処理を1回以上施し、請
求項7では熱処理を施した後に、冷間加工と熱処理を1
回以上施す。ここで本発明における冷間加工の目的は、
主に複層鋼管を最終製品の寸法まで精度良く製造するこ
とにあり、製品の形状に応じて冷間引抜、冷間圧延など
の冷間加工法を適用することができる。
Next, in the present invention, the multi-layer steel pipe drawn by hot working is optionally heat treated in claim 5, and in claim 6 cold worked and heat treated at least once. In item 7, after the heat treatment, cold working and heat treatment 1
Apply more than once. Here, the purpose of cold working in the present invention is to
The main purpose is to accurately manufacture multi-layer steel pipes up to the size of the final product, and cold working methods such as cold drawing and cold rolling can be applied depending on the shape of the product.

【0025】また、熱間加工後の熱処理の目的は製品と
しての外・内層の材質を造り込むこと、あるいは、次の
工程である冷間加工における冷間加工性を一段と改善す
ることにある。内層が低合金鋼あるいは9Cr系鋼であ
れば熱間加工後の焼入組織の軟化が必要であり、また、
内層がオーステナイト系ステンレス鋼であれば、外層の
冷間加工性をより向上させるための固溶化熱処理を行う
こともできる。
The purpose of the heat treatment after hot working is to build up the material of the outer and inner layers as a product, or to further improve the cold workability in the cold working which is the next step. If the inner layer is a low alloy steel or 9Cr steel, it is necessary to soften the quenched structure after hot working.
If the inner layer is an austenitic stainless steel, it is possible to perform solution heat treatment for further improving the cold workability of the outer layer.

【0026】冷間加工後の熱処理は、さらに後工程に冷
間加工工程がある場合には軟化等を目的とし、最終冷間
加工後の場合には外・内層の製品造り込みを目的として
おり、固溶化熱処理あるいは焼準、焼戻し熱処理等を内
層の鋼種に応じて施すことができる。
The heat treatment after the cold working is intended for softening, etc. if there is a cold working step in the subsequent step, and for the purpose of assembling outer / inner layer products after the final cold working. It is possible to perform solution heat treatment, normalization, tempering heat treatment, etc. depending on the steel type of the inner layer.

【0027】[0027]

【実施例】次に本発明の実施例についてさらに具体的に
述べる。表1に本発明例の外層用素材である粉末の化学
組成を、表2に本発明例に用いた内層用素材であるボイ
ラ用鋼の化学組成を、また、表3には比較例の外層用素
材である粉末の化学組成をそれぞれ示す。なお、内層用
素材であるボイラ用鋼は溶解・鋳造法により製造したも
のである。
EXAMPLES Next, examples of the present invention will be described more specifically. Table 1 shows the chemical composition of the powder which is the material for the outer layer of the present invention example, Table 2 shows the chemical composition of the steel for boiler which is the material for the inner layer used in the present invention example, and Table 3 shows the outer layer of the comparative example. The chemical composition of the powder, which is the raw material, is shown below. The boiler steel, which is the material for the inner layer, is manufactured by the melting / casting method.

【0028】次に、表4に本発明例の複層鋼管の、外
層、内層用素材の組合せ、製造方法および複層鋼管の特
性である外層の熱間加工性および耐高温腐食特性を示
す。また、表5には比較例の複層鋼管の、外層、内層用
素材の組合せ、製造方法および複層鋼管の特性である外
層の熱間加工性および耐高温腐食特性を示す。高温腐食
試験は37%NaCl+63%FeCl2 の合成灰を複
層鋼管外層から切り出した試験片表面に塗布し、0.2
%HCl+0.5%SO2 +5%O2+15%CO2
bal.N2 ガス中で550℃×30h加熱し、試験片
縦断面の腐食深さを測定した。また、熱間加工性を熱間
押出あるいは熱間圧延時の外層割れ有無で評価した。
Next, Table 4 shows the combination of the materials for the outer layer and the inner layer, the manufacturing method, and the hot workability and high temperature corrosion resistance of the outer layer which are the characteristics of the multi-layer steel pipe of the multi-layer steel pipe of the present invention. Further, Table 5 shows the combination of the materials for the outer layer and the inner layer, the manufacturing method, and the hot workability and high temperature corrosion resistance of the outer layer which are the characteristics of the multi-layer steel pipe of the multi-layer steel pipe of the comparative example. In the high temperature corrosion test, synthetic ash of 37% NaCl + 63% FeCl 2 was applied to the surface of the test piece cut from the outer layer of the multi-layer steel pipe, and 0.2
% HCl + 0.5% SO 2 + 5% O 2 + 15% CO 2 +
bal. The specimen was heated in N 2 gas at 550 ° C. for 30 hours, and the corrosion depth of the vertical cross section of the test piece was measured. The hot workability was evaluated by the presence or absence of outer layer cracking during hot extrusion or hot rolling.

【0029】表1に示す本発明例A〜Uは請求項1〜請
求項7に用いた外層用素材粉末であり、表2に示す本発
明用内層素材例AA〜FFは請求項1〜請求項7に用い
た内層素材の規格鋼である。表1に示す本発明例A〜D
は20Cr−25〜29Niを基本成分として、Alを
1〜9%含有したものであり、E〜Hは20〜23Cr
−25〜29Niを基本成分として、Siを1〜7%含
有したものである。
Inventive Examples A to U shown in Table 1 are the outer layer material powders used in claims 1 to 7, and Inner layer material examples AA to FF in the invention shown in Table 2 are claims 1 to 7. It is a standard steel for the inner layer material used in Item 7. Inventive Examples A to D shown in Table 1
Contains 20Cr-25 to 29Ni as a basic component and contains 1 to 9% of Al, and E to H contain 20 to 23Cr.
-25 to 29Ni as a basic component and 1 to 7% of Si.

【0030】また、本発明例I〜Kは24Cr−35N
iを基本成分とし、Alを2〜7%含有したものであ
り、Lは同一基本成分にSiを3%含有したものであ
る。次に、M、Nは20Cr−25Niを基本成分とし
て、Al、SiをMはそれぞれ4%、3%、Nはそれぞ
れ5%、2%複合で含有したものであり、O、Pは24
Cr−35Niを基本成分とし、Al、SiをOはそれ
ぞれ3%、2%、Pはそれぞれ3%、3%複合で含有し
たものである。
Inventive Examples I to K are 24Cr-35N.
i is a basic component, Al is contained in 2 to 7%, and L is the same basic component and Si is contained in 3%. Next, M and N are 20Cr-25Ni as a basic component, Al and Si are 4% and 3%, respectively, and N is 5% and 2% respectively, and O and P are 24.
Cr-35Ni is used as a basic component, and Al and Si are contained in a composite of O of 3% and 2%, and P of 3% and 3%, respectively.

【0031】本発明例QはBの20Cr−25Ni−3
Alに比較して、本発明成分範囲内でNiが18%と低
く、RはJの24Cr−35Ni−3Alに比較して、
本発明成分範囲内でNiが48%と高い。S〜UはBあ
るいはCの20Cr−25Ni−3〜6Alに比較し
て、本発明成分範囲内でそれぞれMoが2.9%、Ti
が0.25%およびNbが0.57%と高い。
Inventive Example Q is B of 20Cr-25Ni-3.
Compared to Al, Ni is as low as 18% in the composition range of the present invention, and R is 24Cr-35Ni-3Al of J,
Within the composition range of the present invention, Ni is as high as 48%. S to U are 2.9% Mo and Ti within the range of the component of the present invention, respectively, as compared with B or C 20Cr-25Ni-3 to 6Al.
Is as high as 0.25% and Nb is 0.57%.

【0032】なお、本発明例A〜UはCa、Y、Laお
よびCeの1種以上を含有している。表2に示す本発明
用内層素材例AAはJIS G 3461のSTB41
0に相当する炭素鋼であり、BBはJIS G 346
2のSTBA24に相当する低合金鋼であり、CCはA
SME SA213のT91に相当する9Cr−1Mo
鋼であり、DD、EEはJIS G 3463のSUS
304HTB、SUS347HTBに相当するオーステ
ナイト系ステンレス鋼であり、FFはJISG 490
4のNCF800HTBに相当する高Cr−高Ni鋼で
ある。
The invention examples A to U contain at least one of Ca, Y, La and Ce. The inner layer material example AA for the present invention shown in Table 2 is STB41 of JIS G 3461.
Carbon steel equivalent to 0, BB is JIS G 346
2 is a low alloy steel equivalent to STBA24, CC is A
9Cr-1Mo corresponding to T91 of SME SA213
Steel, DD and EE are JIS G 3463 SUS
Austenitic stainless steel equivalent to 304HTB and SUS347HTB, FF is JIS G 490
4 is a high Cr-high Ni steel equivalent to NCF800HTB of No. 4.

【0033】次に、表3に示す比較例の外層用素材粉末
HA〜HGはNiをそれぞれ9.3%、13.1%、1
7.3%、25.3%、34.8%、47.1%および
54.5%含有するオーステナイト系ステンレス鋼であ
り、いずれの鋼もAlおよびSiが本発明の成分範囲下
限である0.5%および0.7%より低い。なお、HA
はSUS304相当材であり、Niが本発明の成分範囲
(17〜50%)より低く、HGはNiが本発明の成分
範囲より高い。
Next, in the outer layer material powders HA to HG of the comparative example shown in Table 3, Ni was 9.3%, 13.1% and 1%, respectively.
It is an austenitic stainless steel containing 7.3%, 25.3%, 34.8%, 47.1% and 54.5%, and Al and Si are the lower limits of the composition range of the present invention. Less than 0.5% and 0.7%. In addition, HA
Is a material equivalent to SUS304, Ni is lower than the component range of the present invention (17 to 50%), and HG has Ni higher than the component range of the present invention.

【0034】比較例HHはAlを3%含有するが、Ni
が14.2%で本発明の成分範囲より低い。HI、HJ
は24Cr−35Niを基本成分として、HIはAlが
9.8%、HJはSiが7.8%で、いずれも本発明の
成分範囲を超えて含有した鋼である。さらに、HKは2
4Cr−35Niを基本成分として、AlおよびSiを
それぞれ9.8%および7.3%含有し、両成分共に本
発明の成分範囲を超えた鋼である。
Comparative Example HH contains 3% Al, but Ni
Is 14.2%, which is lower than the component range of the present invention. HI, HJ
Is a steel containing 24Cr-35Ni as a basic component, HI having 9.8% Al and HJ having 7.8% Si, both of which exceed the composition range of the present invention. Furthermore, HK is 2
Steel containing 4Cr-35Ni as a basic component, Al and Si at 9.8% and 7.3%, respectively, and both components exceeding the component range of the present invention.

【0035】次に、表4、表5(表4のつづき−1)、
表6(表4のつづき−2)に示す本発明例の複層鋼管の
WA〜WUはいずれも表1に示す本発明例の外層用素材
粉末A〜Uを、表2に示す本発明用内層素材例と組み合
わせて請求項3に示す条件でHIP処理して被覆層とし
て形成せしめた後に請求項4に示す熱間加工を施し、そ
の後、必要に応じて、請求項5〜請求項7に示す熱処
理、冷間加工および熱処理を施したものである。熱間加
工後の工程で分類して、請求項4にはWJ、WKが相当
し、請求項5にはWB〜WD、WG、WH、WL〜W
S、WUが相当し、請求項6にはWA、WFが相当し、
請求項7にはWE、WI、WTが相当する。
Next, Tables 4 and 5 (continued from Table 4-1),
All of WA to WU of the multi-layer steel pipe of the present invention shown in Table 6 (Continued-2 of Table 4) are the outer layer raw material powders A to U of the present invention shown in Table 1 and those of the present invention shown in Table 2. In combination with the example of the inner layer material, HIP treatment is performed under the conditions shown in claim 3 to form a coating layer, and then the hot working shown in claim 4 is performed, and then, if necessary, in steps 5 to 7. It has been subjected to the heat treatment, cold working and heat treatment shown. Classified by the steps after hot working, claim 4 corresponds to WJ and WK, and claim 5 corresponds to WB to WD, WG, WH, and WL to W.
S and WU correspond, claim 6 corresponds to WA and WF,
Claim 7 corresponds to WE, WI, and WT.

【0036】本発明例の複層鋼管およびその熱間加工用
素材WA〜WUはいずれもHIP処理後に外層と内層の
中間層として10μm以上の金属拡散層を有し、熱間加
工時に割れのみられない良好な熱間加工性を有し、か
つ、製品管は中間層に5μm以上の金属拡散層を有し、
外層の高温腐食深さが20μm以下の良好な高温腐食特
性を有している。
The multi-layer steel pipe of the present invention and the hot working materials WA to WU thereof each have a metal diffusion layer of 10 μm or more as an intermediate layer between the outer layer and the inner layer after HIP treatment, and are cracked only during hot working. It has good hot workability and the product tube has a metal diffusion layer of 5 μm or more in the intermediate layer,
It has good high temperature corrosion characteristics with the high temperature corrosion depth of the outer layer being 20 μm or less.

【0037】一方、表7、表8(表7のつづき−1)、
表9(表7のつづき−2)に示す比較例の複層鋼管のH
WA〜HWKは、表3に示す比較例の外層用素材粉末H
A〜HKを表2に示す内層素材例と組み合わせてHIP
処理、熱間加工を施し、その後、必要に応じて、熱処
理、冷間加工および熱処理を施したものである。熱間加
工後の工程で分類して、請求項4との比較にはHWE、
HWG、HWI〜HWKが相当し、請求項5との比較に
はHWB〜HWD、HWFが相当し、請求項6との比較
にはHWAが相当し、請求項7との比較にはHWHが相
当する。
On the other hand, Tables 7 and 8 (continued from Table 7-1),
H of the multi-layer steel pipe of the comparative example shown in Table 9 (continued-2 in Table 7)
WA to HWK are the outer layer material powder H of the comparative example shown in Table 3.
HIP by combining A to HK with the inner layer material examples shown in Table 2
It is the one that has been subjected to treatment, hot working, and then heat treatment, cold working, and heat treatment, if necessary. Sorted by the process after hot working, and compared with claim 4, HWE,
HWG and HWI to HWWK correspond, HWB to HWD and HWF correspond to the comparison with claim 5, HWA corresponds to the comparison with claim 6, and HWH corresponds to the comparison with claim 7. To do.

【0038】また、表7、表8(表7のつづき−1)、
表9(表7のつづき−2)に示す比較例の複層鋼管のH
WL〜HWOは本発明例の外層用素材粉末Bを内層素材
例DD(SUS304HTB相当)と組み合わせてHI
P処理、熱間押出をしたものであるが、いずれもHIP
処理条件が本発明の条件範囲外のものである。すなわ
ち、HWLはHIP処理温度が1000℃と本発明の下
限温度1050℃より低く、HWMはHIP処理温度が
1270℃と本発明の上限温度1240℃より高い。ま
た、HWNはHIP処理圧力が25MPaと本発明の下
限圧力29MPaより低く、HWOは負荷保持時間が
0.3時間と本発明の下限時間より短時間である。
Tables 7 and 8 (continuation of Table 1-1),
H of the multi-layer steel pipe of the comparative example shown in Table 9 (continued-2 in Table 7)
WL to HWO are obtained by combining the outer layer material powder B of the present invention example with the inner layer material example DD (equivalent to SUS304HTB).
P processed and hot extruded, but both are HIP
The processing condition is out of the condition range of the present invention. That is, HWL has a HIP treatment temperature of 1000 ° C., which is lower than the lower limit temperature of 1050 ° C. of the present invention, and HWM has a HIP treatment temperature of 1270 ° C., which is higher than the upper limit temperature of 1240 ° C. of the present invention. HWN has a HIP treatment pressure of 25 MPa, which is lower than the lower limit pressure of 29 MPa of the present invention, and HWO has a load holding time of 0.3 hours, which is shorter than the lower limit time of the present invention.

【0039】これらの比較例は、本発明例と対比して、
製造時の熱間加工性あるいは製品管外層の耐高温腐食特
性の少なくともいずれか一特性に問題点を有している。
すなわち、AlおよびSiが共に本発明の成分範囲下限
より低い外層を用いたHWA〜HWF、Alを3%含有
するがNiが本発明の成分範囲下限より低いHWHは高
温腐食深さが20μmを超えて、高温腐食特性が本発明
鋼より劣る。
These comparative examples are compared with the examples of the present invention.
There is a problem in at least one of the hot workability during manufacturing and the high temperature corrosion resistance of the outer layer of the product tube.
That is, HWA using an outer layer in which both Al and Si are lower than the lower limit of the composition range of the present invention, HWH containing 3% of Al, but Ni lower than the lower limit of the composition range of the present invention has a high temperature corrosion depth of more than 20 μm. Therefore, the high temperature corrosion property is inferior to that of the steel of the present invention.

【0040】Alが9.8%のHIおよびSiが7.8
%のHJを外層に用いた複層鋼管HWI、HWJと、A
l、Siがそれぞれ本発明の成分範囲上限より高いHK
を外層に用いた複層鋼管HWKでは熱間押出時にヘゲ疵
あるいは割れが発生した。また、Niを本発明の成分範
囲を超えて54.5%含有するHGを外層に用いた複層
鋼管HWGでも熱間押出時にヘゲ疵が発生した。これら
の比較例は、HIP処理後に外層と内層の中間層として
10μm以上の金属拡散層を有しているものの、外層成
分が本発明の成分範囲を超えて熱間加工性が悪く、熱間
押出時にヘゲ疵あるいは割れが発生したものである。
HI with Al 9.8% and Si 7.8
% HJ for the outer layer of multi-layer steel pipes HWI, HWJ and A
HK in which l and Si are each higher than the upper limit of the component range of the present invention.
In the multi-layer steel pipe HWK using as the outer layer, bald defects or cracks occurred during hot extrusion. Further, even in a multi-layer steel pipe HWG using HG containing Ni in an amount of 54.5% exceeding the composition range of the present invention as an outer layer, a bald defect occurred during hot extrusion. Although these comparative examples have a metal diffusion layer of 10 μm or more as an intermediate layer between the outer layer and the inner layer after the HIP treatment, the outer layer component exceeds the component range of the present invention and the hot workability is poor, so that the hot extrusion is performed. Occasionally, bald spots or cracks occurred.

【0041】さらに、本発明例の外層用素材粉末Bを用
いながら、HIP処理条件が本発明の条件範囲外のもの
HWL〜HWOでは、いずれも熱間押出時に外層にヘゲ
疵あるいは割れを生じた。すなわち、HWLではHIP
処理温度が低く、HWNではHIP処理圧力が低く、H
WOでは負荷保持時間が短時間であったために、HIP
処理後に外層と内層の中間層である金属拡散層が10μ
m未満で、かつ、外層が十分に焼結しておらず、熱間押
出時にヘゲ疵あるいは割れが生じたものである。一方、
HWMはHIP処理温度が1270℃と高く、冷却時に
成分元素の偏析を生じ、熱間加工性が十分でなかったた
めに、熱間押出時にヘゲ疵が生じた。
Further, using the raw material powder B for the outer layer of the present invention, but the HIP treatment condition is outside the condition range of the present invention, in any of HWL to HWO, any of the blistering flaws or cracks occurs in the outer layer during hot extrusion. It was That is, in HWL, HIP
The processing temperature is low, and HIP processing pressure is low in HWN.
Since the load holding time was short in WO, HIP
After the treatment, the metal diffusion layer, which is an intermediate layer between the outer layer and the inner layer, is
It is less than m, the outer layer is not sufficiently sintered, and a bald defect or a crack is generated during hot extrusion. on the other hand,
HWM had a high HIP treatment temperature of 1270 ° C., segregation of constituent elements occurred during cooling, and hot workability was not sufficient, so that bald defects occurred during hot extrusion.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【表7】 [Table 7]

【0049】[0049]

【表8】 [Table 8]

【0050】[0050]

【表9】 [Table 9]

【0051】[0051]

【発明の効果】本発明によれば、廃棄プラスチック類お
よび自動車シュレッダーダスト等の廃棄物燃焼ボイラの
過熱器官等に適用することのできる、燃焼環境中の塩化
物および塩化水素(HCl)ガス等に対して極めて優れ
た耐高温腐食特性を有し、かつ、製造時の熱間加工性の
良好な複層鋼管を供給することが可能になり、エネルギ
ーおよび環境分野に極めて有用な効果がもたらされる。
Industrial Applicability According to the present invention, it is possible to apply chlorides and hydrogen chloride (HCl) gas in a combustion environment, which can be applied to waste plastics and superheated organs of waste combustion boilers such as automobile shredder dust. On the other hand, it becomes possible to supply a multi-layer steel pipe having extremely excellent high-temperature corrosion resistance and good hot workability at the time of production, which brings a very useful effect in the fields of energy and environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】高温腐食深さに及ぼす外層のNi含有量の影響
を示す図である。
FIG. 1 is a diagram showing the influence of the Ni content of the outer layer on the hot corrosion depth.

【図2】高温腐食深さに及ぼす外層のAlおよびSi含
有量の影響を示す図である。
FIG. 2 is a diagram showing the influence of the Al and Si contents of the outer layer on the hot corrosion depth.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新沼 慎二 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 (72)発明者 小川 洋之 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 石塚 哲夫 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shinji Niinuma 3434 Shimada, Hikaru City, Yamaguchi Prefecture, Nippon Steel Works, Ltd., Hikari Works, Ltd. (72) Inventor Tetsuo Ishizuka 20-1 Shintomi, Futtsu City, Chiba Nippon Steel Co., Ltd. Technology Development Headquarters

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 外層が、重量%にて、 C ; 0.08%以下、 Mn; 0.3〜2.0%、 Cr; 18〜27%、 Ni; 17〜50%、 Mo; 0.5〜3.0%、 Ti; 0.03〜0.3%、 Nb; 0.05〜0.6%、 B ; 0.001〜0.01%、 P ; 0.04%以下、 S ; 0.005%以下、 N ; 0.02〜0.3%を含有し、さらに Al; 0.5〜9.0%、 Si; 0.7〜7.0%のうち1種以上、かつ、 Ca; 0.0005〜0.05%、 Y ; 0.001〜0.2%、 La; 0.001〜0.2%、 Ce; 0.001〜0.2%のうち1種以上を含み、
残部がFeおよび不可避的不純物からなるオーステナイ
ト系ステンレス鋼の粉末を熱間静水圧プレス(HIP)
処理および熱間加工して形成した被覆層で、内層がボイ
ラ用鋼管で、外層と内層の間にHIP−熱間加工によっ
て形成した5μm以上の金属拡散層からなる中間層を有
することを特徴とする耐高温腐食特性に優れた複層鋼
管。
1. The outer layer, in wt%, is C; 0.08% or less, Mn; 0.3 to 2.0%, Cr; 18 to 27%, Ni; 17 to 50%, Mo; 5-3.0%, Ti; 0.03-0.3%, Nb; 0.05-0.6%, B; 0.001-0.01%, P; 0.04% or less, S; 0.005% or less, N; contains 0.02 to 0.3%, and further contains Al; 0.5 to 9.0%, Si; 0.7 to 7.0%, and one or more types thereof, and Ca; 0.0005 to 0.05%, Y; 0.001 to 0.2%, La; 0.001 to 0.2%, Ce; 0.001 to 0.2% ,
Hot isostatic pressing (HIP) of austenitic stainless steel powder with the balance Fe and unavoidable impurities
A coating layer formed by treatment and hot working, wherein the inner layer is a steel pipe for a boiler, and an intermediate layer composed of a metal diffusion layer of 5 μm or more formed by HIP-hot working is provided between the outer layer and the inner layer. A multi-layer steel pipe with excellent high temperature corrosion resistance.
【請求項2】 外層が請求項1記載のオーステナイト系
ステンレス鋼の粉末をHIP処理して形成した被覆層
で、内層がボイラ用鋼で、外層と内層の間にHIP処理
によって形成した10μm以上の金属拡散層からなる中
間層を有することを特徴とする耐高温腐食特性に優れた
複層鋼材用素材。
2. The outer layer is a coating layer formed by HIP-treating the powder of austenitic stainless steel according to claim 1, the inner layer is steel for boiler, and the inner layer is 10 μm or more formed by HIP treatment between the outer layer and the inner layer. A material for multi-layer steel material having excellent high-temperature corrosion resistance characterized by having an intermediate layer composed of a metal diffusion layer.
【請求項3】 HIP処理条件を温度1050〜124
0℃、圧力29MPa以上、保持時間0.5時間以上と
することを特徴とする請求項1または2記載の耐高温腐
食特性に優れた複層鋼管または複層鋼材用素材の製造方
法。
3. The HIP processing condition is set to a temperature of 1050 to 124.
The method for producing a multi-layer steel pipe or a raw material for a multi-layer steel material excellent in high-temperature corrosion resistance according to claim 1 or 2, wherein the temperature is 0 ° C, the pressure is 29 MPa or more, and the holding time is 0.5 hours or more.
【請求項4】 請求項3記載の条件でHIP処理して製
造した請求項2記載の複層鋼材用素材を、熱間加工で延
伸することによって製造することを特徴とする請求項1
記載の耐高温腐食特性に優れた複層鋼管の製造方法。
4. The multi-layer steel material according to claim 2, which is produced by HIP treatment under the conditions of claim 3, is produced by drawing by hot working.
A method for producing a multi-layer steel pipe having excellent high-temperature corrosion resistance as described above.
【請求項5】 請求項3記載の条件でHIP処理して製
造した請求項2記載の複層鋼材用素材を、熱間加工で延
伸し、その後さらに熱処理を施すことを特徴とする請求
項1記載の耐高温腐食特性に優れた複層鋼管の製造方
法。
5. The multi-layer steel material according to claim 2, which is produced by HIP treatment under the conditions of claim 3, is drawn by hot working, and then further heat-treated. A method for producing a multi-layer steel pipe having excellent high-temperature corrosion resistance as described above.
【請求項6】 請求項3記載の条件でHIP処理して製
造した請求項2記載の複層鋼材用素材を、熱間加工で延
伸し、その後さらに冷間加工と熱処理を1回以上施すこ
とを特徴とする請求項1記載の耐高温腐食特性に優れた
複層鋼管の製造方法。
6. The multi-layer steel material according to claim 2, produced by HIP treatment under the conditions of claim 3, is drawn by hot working, and then subjected to cold working and heat treatment once or more. The method for producing a multi-layer steel pipe excellent in high temperature corrosion resistance according to claim 1.
【請求項7】 請求項3記載の条件でHIP処理して製
造した請求項2記載の複層鋼材用素材を、熱間加工で延
伸し、その後さらに熱処理を施し、さらに冷間加工と熱
処理を1回以上施すことを特徴とする請求項1記載の耐
高温腐食特性に優れた複層鋼管の製造方法。
7. The multi-layer steel material according to claim 2 produced by HIP treatment under the conditions of claim 3, is drawn by hot working, and then further heat treated, and further cold worked and heat treated. The method for producing a multi-layer steel pipe excellent in high-temperature corrosion resistance according to claim 1, wherein the method is performed once or more.
JP11747293A 1993-05-19 1993-05-19 Multiple-layered steel excellent in high temperature corrosion resistance and its production Withdrawn JPH06330226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11747293A JPH06330226A (en) 1993-05-19 1993-05-19 Multiple-layered steel excellent in high temperature corrosion resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11747293A JPH06330226A (en) 1993-05-19 1993-05-19 Multiple-layered steel excellent in high temperature corrosion resistance and its production

Publications (1)

Publication Number Publication Date
JPH06330226A true JPH06330226A (en) 1994-11-29

Family

ID=14712539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11747293A Withdrawn JPH06330226A (en) 1993-05-19 1993-05-19 Multiple-layered steel excellent in high temperature corrosion resistance and its production

Country Status (1)

Country Link
JP (1) JPH06330226A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092419A2 (en) * 2007-01-31 2008-08-07 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium- silicon alloy
JP2008545889A (en) * 2005-06-03 2008-12-18 エイティーアイ・プロパティーズ・インコーポレーテッド Austenitic stainless steel
WO2009000230A1 (en) * 2007-06-26 2008-12-31 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium-silicon alloy
JP2009138259A (en) * 2007-11-13 2009-06-25 Seiko Epson Corp Metal powder for powder metallurgy, sintered compact, and method for manufacturing sintered compact
WO2012175271A3 (en) * 2011-06-21 2013-09-26 Robert Bosch Gmbh Use of a hot gas corrosion-resistant ductile alloy
US20160194740A1 (en) * 2015-01-06 2016-07-07 Seiko Epson Corporation Metal powder for powder metallurgy, compound, granulated powder, and sintered body
WO2020032235A1 (en) * 2018-08-09 2020-02-13 山陽特殊製鋼株式会社 NITRIDE-DISPERSED MOLDED BODY WHICH IS FORMED OF Ni-BASED ALLOY
WO2022138572A1 (en) 2020-12-23 2022-06-30 日本冶金工業株式会社 Fe-Ni-Cr ALLOY HAVING EXCELLENT CORROSION RESISTANCE, WELDABILITY AND OXIDATION RESISTANCE, AND METHOD FOR PRODUCING SAME

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545889A (en) * 2005-06-03 2008-12-18 エイティーアイ・プロパティーズ・インコーポレーテッド Austenitic stainless steel
WO2008092419A2 (en) * 2007-01-31 2008-08-07 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium- silicon alloy
WO2008092419A3 (en) * 2007-01-31 2008-10-16 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium- silicon alloy
WO2009000230A1 (en) * 2007-06-26 2008-12-31 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium-silicon alloy
JP2009138259A (en) * 2007-11-13 2009-06-25 Seiko Epson Corp Metal powder for powder metallurgy, sintered compact, and method for manufacturing sintered compact
WO2012175271A3 (en) * 2011-06-21 2013-09-26 Robert Bosch Gmbh Use of a hot gas corrosion-resistant ductile alloy
US20160194740A1 (en) * 2015-01-06 2016-07-07 Seiko Epson Corporation Metal powder for powder metallurgy, compound, granulated powder, and sintered body
WO2020032235A1 (en) * 2018-08-09 2020-02-13 山陽特殊製鋼株式会社 NITRIDE-DISPERSED MOLDED BODY WHICH IS FORMED OF Ni-BASED ALLOY
WO2022138572A1 (en) 2020-12-23 2022-06-30 日本冶金工業株式会社 Fe-Ni-Cr ALLOY HAVING EXCELLENT CORROSION RESISTANCE, WELDABILITY AND OXIDATION RESISTANCE, AND METHOD FOR PRODUCING SAME

Similar Documents

Publication Publication Date Title
US6060180A (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
EP2781612B1 (en) Seamless austenite heat-resistant alloy tube
JP6177317B2 (en) Nickel-chromium alloy with good workability, creep strength and corrosion resistance
JP4484093B2 (en) Ni-base heat-resistant alloy
KR102031776B1 (en) Manufacturing method of austenitic heat resistant alloy weld joint and welded joint obtained using the same
EP2418295A1 (en) Low thermal expansion Ni-base superalloy
KR20160118980A (en) METHOD FOR PRODUCING Ni-BASED HEAT-RESISTANT ALLOY WELDING JOINT AND WELDING JOINT OBTAINED BY USING THE SAME
JP6801712B2 (en) Ferritic heat-resistant steel and ferrite heat transfer members
EP3318651A1 (en) Austenitic heat-resistant alloy and welded structure
JP6805574B2 (en) Austenitic heat resistant steel and austenitic heat transfer member
JPH06330226A (en) Multiple-layered steel excellent in high temperature corrosion resistance and its production
JP2004276035A (en) Welded joint excellent in resistance to caulking of metallic composite pipe
JP3222307B2 (en) Alloy and multi-layer steel pipe having corrosion resistance in an environment in which a fuel containing V, Na, S, Cl is burned
JP3915717B2 (en) Thin stainless steel sheet
JPWO2018066573A1 (en) Austenitic heat-resistant alloy and welded joint using the same
JPH02203092A (en) Double layer steel pipe having corrosion resistance in environment burning fuel containing v, na, s, cl
JP6107170B2 (en) Welding material for austenitic heat-resistant steel, weld metal and welded joint produced using the same
JPH0711403A (en) Production of ni-base alloy having intergranular fracture resistance
JP2021011610A (en) Austenitic heat-resistant alloy weld joint
JP2021030231A (en) Weld material
JP2021021130A (en) Austenitic heat-resistant alloy weld joint
US3192073A (en) Method of making oxidation resistant and ductile iron base aluminum alloys
JPH06248393A (en) Alustenitic stainless steel excellent in high temperature corrosion resistance
JPH02213449A (en) Highly corrosion resistant steel for waste incineration waste heat boiler tube
JP2019173122A (en) Weld joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801