JPH06329313A - Self-excited vibration control method in fluid floatation - Google Patents

Self-excited vibration control method in fluid floatation

Info

Publication number
JPH06329313A
JPH06329313A JP11568693A JP11568693A JPH06329313A JP H06329313 A JPH06329313 A JP H06329313A JP 11568693 A JP11568693 A JP 11568693A JP 11568693 A JP11568693 A JP 11568693A JP H06329313 A JPH06329313 A JP H06329313A
Authority
JP
Japan
Prior art keywords
fluid
floating
vibration
slit
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11568693A
Other languages
Japanese (ja)
Inventor
Seiichi Marumoto
清一 丸元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11568693A priority Critical patent/JPH06329313A/en
Publication of JPH06329313A publication Critical patent/JPH06329313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Delivering By Means Of Belts And Rollers (AREA)
  • Advancing Webs (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To effectively conduct the vibration control without a special device for self-excited vibration due to compressive fluid in a static pressure generating type floating bearing using an air curtain. CONSTITUTION:In a fluid floating device including plural jet slits 1, 2 for generating static pressure in a floating clearance part, which can be selected according to the dimensions of a floating object 10 to increase the use efficiency of a fluid and attain high practicality, a bad influence on vibration stability by the internal header capacity which becomes a dummy in the case of a large floating object 10 can be prevented by forcing a small bias flow to flow out from the internal header B to largely reduce a coefficient of flow. Further, it is possible to effectively control the self-excited vibration of the floating object 10 without addition of an extra device and large energy margin of a compressive fluid supply source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧縮性流体の供給源に
通じる複数の噴出口(またはスリット)を有し、対象と
なる浮上物体の面積に応じて前記噴出口(またはスリッ
ト)を選択して空気や窒素など圧縮性流体を噴出させ、
その流体のカーテンシール効果により、浮上物体と浮上
装置の間に静圧を発生させて物体を浮上させる流体浮上
装置、例えば帯状の鋼板などを浮上させて搬送する流体
浮上装置に関するもので、このような流体浮上装置の自
励振動の安定性改善を図るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a plurality of ejection ports (or slits) communicating with a supply source of a compressive fluid, and selects the ejection ports (or slits) according to the area of a floating object as a target. And eject a compressible fluid such as air or nitrogen,
Due to the curtain sealing effect of the fluid, a fluid levitation device that generates static pressure between the levitation object and the levitation device to levitate the object, for example, a fluid levitation device that levitates and conveys a strip-shaped steel plate, etc. The present invention aims to improve the stability of self-excited vibration of a fluid levitation device.

【0002】[0002]

【従来の技術】帯状製品の表面品質の高品質要求および
高速処理化に伴って、非接触で帯状製品が搬送できる流
体浮上装置が注目され、近年盛んに用いられはじめてい
る。図5は、浮上物体の大きさが変わることに応じて、
複数の噴出スリットの中から、浮上物体の大きさに合っ
た噴出スリットを選択して流体を噴出させることによ
り、流体の利用効率を高めた特公昭58−39005号
公報や実開昭61−86455号公報の公知のエアーカ
ーテンタイプの流体浮上装置を断面図示したもので、図
示しない圧縮性流体の供給源装置からヘッダーBに送り
込まれた圧縮性流体は、浮上物体10の幅から狭い時に
は図示左半分のようにノズルスリット1より流体を噴出
し、浮上物体10に衝突してその方向を変え、この運動
量変化によってノズルスリット1に挟まれた領域A部に
静圧が発生して浮上物体10を浮上させ、また、浮上物
体10が大きくて広い場合には、図右半分に示すように
ノズルスリット2より流体を噴出して狭幅時より広い面
積に静圧を発生させて大きな浮上力を得るようになって
いる。
2. Description of the Related Art With the demand for high surface quality of band-shaped products and high-speed processing, a fluid levitation device capable of carrying a band-shaped product in a non-contact manner has attracted attention and has been actively used in recent years. FIG. 5 shows that the size of the floating object changes.
From the plurality of jetting slits, the jetting slit that matches the size of the floating object is selected to jet the fluid, so that the utilization efficiency of the fluid is improved. JP-B-58-39005 and 61-86455. 1 is a cross-sectional view of a known air curtain type fluid levitation device of Japanese Patent Laid-Open Publication No. 1993-331, in which the compressible fluid sent to a header B from a compressible fluid supply source device (not shown) is shown on the left side when the width of the floating object 10 is narrow. The fluid is ejected from the nozzle slit 1 like half and collides with the levitating object 10 to change its direction. Due to this momentum change, static pressure is generated in the area A sandwiched by the nozzle slit 1 When the floating object 10 is large and wide, as shown in the right half of the figure, the fluid is jetted from the nozzle slit 2 to generate static pressure in a wider area than when it is narrow. It is adapted to obtain a large floating force.

【0003】これらの浮上装置において、浮上静圧を発
生している部分の釣合は、例えば、浮上物体10が搬送
する帯状鋼板などでは張力の変動などの外乱を受け、ま
た、圧縮性流体の供給源装置も常に微小な圧力変動は避
けられないので、これらの外乱により、自励振動が生じ
ることがあり、浮上物体が重く、特に、複数の噴出スリ
ットの中から、浮上物体の大きさに合った噴出スリット
を選択して流体を噴出させる構造の浮上装置で外側の噴
出スリットを選択して浮上させる時にこれが顕著に生じ
ていた。これが生じると正常な搬送が行えず、現在はこ
れの対応策としては、浮上条件やラインの操業条件を経
験的に変更したり、帯状鋼板の搬送ラインの中に振動減
衰のための装置を付加して、帯状鋼板の搬送の障害にな
らない程度に振動発生を抑制しているのが実状である。
In these levitation devices, the balance of the part where the levitation static pressure is generated is subject to disturbances such as tension fluctuations in the strip-shaped steel sheet carried by the levitation object 10 and the compressible fluid. Even in the supply source device, minute pressure fluctuations are always unavoidable, so self-excited vibrations may occur due to these disturbances, and the levitating object is heavy. This occurred remarkably when the outer ejection slits were selected and levitated by the levitation device having a structure in which the matching ejection slits were selected to eject the fluid. If this happens, normal transportation cannot be performed.Currently, as a countermeasure for this, the levitation condition and the operating condition of the line are empirically changed, or a device for vibration damping is added to the strip steel plate transportation line. Then, the actual situation is to suppress the vibration generation to the extent that it does not hinder the transportation of the strip-shaped steel sheet.

【0004】また、特公平3−249423号公報、特
公平3−249424号公報などにみられるように、ポ
ケットタイプの静圧軸受けにおいて、その受圧部の面積
を確保したままポケット体積を小さくすることで、自励
振動の安定性向上ほかの特性改善を図っている発明も見
られ、さらに、日本機械学会論文集(第3部)32巻2
44号(昭41.12)P.1877〜1882の森ら
による振動安定要素の研究成果に示されているように、
軸受けポケットにつながる部分に、流体抵抗要素と安定
化室を設けることにより振動の安定化を図る工夫もある
が、エアーカーテンタイプの流体浮上装置では、構造的
にポケットタイプと異なり、これらの安定性改善法は適
用できない。
Further, as seen in Japanese Examined Patent Publication No. 3-249423 and Japanese Examined Patent Publication No. 3-249424, in a pocket type static pressure bearing, it is necessary to reduce the pocket volume while securing the area of the pressure receiving portion. In addition, there are some inventions that improve the stability of self-excited vibration and other characteristics. Furthermore, the Japan Society of Mechanical Engineers Proceedings (Part 3), Volume 32, 2
No. 44 (Sho 41.12) P. As shown in the research results of the vibration stabilizing element by Mori et al., 1877-1882,
There is a device to stabilize the vibration by providing a fluid resistance element and a stabilization chamber in the part connected to the bearing pocket, but the air curtain type fluid levitation device is structurally different from the pocket type because of its stability. The improvement method cannot be applied.

【0005】[0005]

【発明が解決しようとする課題】上述のように、圧縮性
流体の供給により、浮上物体と浮上装置の間に静圧を発
生させて物体を浮上させる装置においては、圧縮性流体
による自励振動の抑制が重要な課題であり、特に、複数
の噴出スリットを有し、これを選択できるようにして流
体の利用効率を上げた、実用性の高い流体浮上装置の広
幅浮上物体での自励振動の抑制が重要な課題となってい
る。
As described above, in a device that levitates an object by generating a static pressure between the levitating object and the levitating device by supplying the compressive fluid, self-excited vibration caused by the compressible fluid. It is an important issue to suppress self-excited vibration in a wide floating object of a fluid levitation device with high practicality, which has multiple ejection slits and makes it possible to select these slits to improve fluid utilization efficiency. The suppression of is an important issue.

【0006】エアーカーテンタイプの流体浮上装置にて
使用されていた従来の振動抑制策は、安定操業条件の探
索に多大な労力を要する上に操業制約も生じ、また、圧
縮性流体の供給装置の余裕を大きくとる必要があったた
め、エネルギーの無駄も多い、また、搬送ラインの中に
振動減衰のための装置を付加して振動発生を抑える方法
は、このための特別の装置を設ける必要があり、かつ、
余分な張力を付加して操業をすることになるので、幅が
広い帯状製品を搬送する浮上装置としては利用が困難と
いう問題がある。一方、ポケットタイプの浮上装置にお
ける振動抑制策は、エアーカーテンタイプの流体浮上装
置には利用できず、適用効果が不十分であった。
The conventional vibration suppression measures used in the air curtain type fluid levitation device require a great deal of labor to search for stable operating conditions and also cause operational restrictions. Since a large margin had to be taken, there was a lot of wasted energy, and the method of adding a device for damping vibration in the transport line to suppress the occurrence of vibration requires the provision of a special device for this purpose. ,And,
Since extra tension is applied to the operation, there is a problem that it is difficult to use it as a levitation device that conveys wide strip-shaped products. On the other hand, the vibration suppression measure in the pocket type levitation device cannot be applied to the air curtain type fluid levitation device, and its application effect is insufficient.

【0007】本発明は、以上のような流体浮上におい
て、浮上物体に自励振動が発生するのを効果的に抑制す
ることができる方法を提供することを目的とする。
It is an object of the present invention to provide a method capable of effectively suppressing the occurrence of self-excited vibration in a floating object during the above-described fluid levitation.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者は、流
体浮上装置の流体的なバランスと振動特性を解析すると
共に、実験的に振動特性を解明することにより以下の発
明を見いだした。すなわち、本発明は、圧縮性流体の供
給源に通じた外側の噴出口(またはスリット)あるいは
それよりも内側の噴出口(またはスリット)から対象と
する浮上物体の浮上部面積に応じて、前記噴出口(また
はスリット)のうちのいずれかの噴出口(またはスリッ
ト)を選択して流体を噴出させ、流体が噴出する一対の
噴出口(またはスリット)に挟まれた領域、または、閉
曲線をなす噴出口(またはスリット)に囲まれた領域
で、浮上物体との間に静圧を発生させて物体を浮上させ
る際に、噴出口(またはスリット)を選択して静圧を発
生させるに当たり、選択した噴出口(またはスリット)
よりも内側にある噴出口(またはスリット)にも圧縮性
流体を流して浮上物体の自励振動を抑制することを特徴
とする。
Therefore, the present inventor has found the following invention by analyzing the fluid balance and vibration characteristics of the fluid levitation device and experimentally clarifying the vibration characteristics. That is, the present invention relates to the floating surface area of the target floating object from the outer ejection port (or slit) or the inner ejection port (or slit) communicating with the supply source of the compressive fluid, A fluid is ejected by selecting one of the ejection ports (or slits) to form a region between a pair of ejection ports (or slits) from which the fluid is ejected, or a closed curve is formed. Select in order to generate static pressure by selecting a jet port (or slit) when a static pressure is generated between the floating object and a floating object in the area surrounded by the jet port (or slit). Spout (or slit)
It is characterized in that the compressive fluid is caused to flow also into the ejection port (or slit) located on the inner side to suppress self-excited vibration of the floating object.

【0009】ここで注意するのは、外側の噴出口(また
はスリット)を選択して静圧を発生させる時に、使用し
ていないそれよりも内側の噴出口(またはスリット)に
関わる容積が振動不安定に大きな影響を与えていること
である。本発明は、この容積の悪影響に対して、圧縮性
流体流量をバイアスすることで自励振動の発生を低減
し、振動の安定化を得て、振動抑制を行うものである。
なお、ここでいう圧縮性流体とは例えば空気などのガス
体が相当する。
[0009] It should be noted here that when the outer outlet (or slit) is selected to generate static pressure, the volume related to the inner outlet (or slit) that is not used is not vibrated. It has a great impact on stability. The present invention reduces the occurrence of self-excited vibration by biasing the flow rate of the compressive fluid against the adverse effect of this volume, stabilizes the vibration, and suppresses the vibration.
The compressible fluid here corresponds to a gas body such as air.

【0010】[0010]

【作用】流体浮上装置の流体的なバランスと振動特性を
マクロな伝達関数で検討すると、力F(外力または圧力
…固定面積とすれば扱いは同じにできる)の変動に対す
る、浮上高さHの安定性を議論しているので、ラプラス
伝達関数をΩとして(ラプラス演算子s)
When the fluid balance and vibration characteristics of the fluid levitation device are examined with a macro transfer function, the levitation height H against the fluctuation of the force F (external force or pressure ... If the area is fixed, the handling can be the same) Since we are discussing the stability, let the Laplace transfer function be Ω (Laplace operator s)

【数1】 の分母Ωh (s)の性質を調べれば系の安定性の解析が
可能である。
[Equation 1] The stability of the system can be analyzed by examining the property of the denominator Ω h (s) of.

【0011】(1)式よりΩf (s)×力=Ωh (s)
×浮上高さ が成り立っているので、左辺と右辺に共通
なバランス量として質量流量をとると、Ωf (s)は分
子が質量流量、分母が力の次元で構成されており、Ωh
(s)は分子が質量流量、分母が浮上高さの次元で構成
されているはずである。
From equation (1), Ω f (s) × force = Ω h (s)
× Since the flying height is established, if the mass flow rate is taken as the balance amount common to the left and right sides, Ω f (s) is composed of the mass flow rate of the numerator and the force dimension of the denominator, and Ω h (s)
In (s), the numerator should be composed of the mass flow rate, and the denominator should be composed of the flying height.

【0012】ここで、Ωh (s)×浮上高さ について
考える。振動問題なので浮上変動量hに関わる項として
慣性Mにより生じる力M(d2h/d2 t)がMs2
hとなるので、流量バランス点Qで線形化し、力の代表
量を圧力Pとして質量流量変動量qを表すと
Now, consider Ω h (s) × flying height. Since it is a vibration problem, the force M (d 2 h / d 2 t) generated by the inertia M is Ms 2 ·
Therefore, when the flow rate balance point Q is linearized and the representative amount of force is the pressure P, the mass flow rate fluctuation amount q is represented.

【数2】 [Equation 2]

【0013】また流量の積分要素が径の中に存在する
と、質量流量変動量qの一回積分が積分要素質量KI
なるので、圧力関数を含んだ流量係数をCq として、 KI =Cq q・dt (3) ゆえに積分要素KI と質量流量qの関係をラプラス表示
するとq=KI ・sとなり、これを考慮すると(2)式
の分子は流量定数項KQ に一次遅れ項KI ・sが付加さ
れて、
When the integral element of the flow rate exists in the diameter, the one-time integral of the mass flow rate fluctuation amount q becomes the integral element mass K I. Therefore, letting the flow coefficient including the pressure function be C q , K I = C q q dt (3) Therefore, when the relationship between the integral element K I and the mass flow rate q is displayed in Laplace, q = K I s. Considering this, the numerator of equation (2) has a first-order lag in the flow constant term K Q. By adding the term K I · s,

【数3】 (4)式は、よく見られる二次の粘性減衰振動応答の伝
達関数の力の項に一次遅れがついた形で、フルビッツ安
定条件は次の(5)式で示される。 2ζωn −τ1 ・ωn 2 ≧0 (5) つまり、力の一次遅れ、すなわち
[Equation 3] The equation (4) is a form in which the term of the force of the transfer function of the second-order viscous damping vibration response that is often seen has a first-order lag, and the Hurwitz stability condition is shown by the following equation (5). 2ζω n −τ 1 · ω n 2 ≧ 0 (5) That is, the first-order lag of the force, that is,

【外1】 が大きくなるとτ1 が大きくなり、これは(5)式の負
の項が大きくなることを意味するので、振動不安定にな
る。
[Outer 1] Becomes larger, τ 1 becomes larger, which means that the negative term in Eq. (5) becomes larger, resulting in unstable vibration.

【0014】ここで、KI1について考察すると、積分の
母体となる容積Vおよび流量係数Cq にKI1は比例する
ので、振動安定化のためにKI1を小さくする方法とし
て、内側噴出スリットに関わる容積Vを小さくする、お
よび流量係数Cq を小さくする二つの方法がとれる。内
側噴出スリットに関わる容積Vを十分小さくできれば理
想的であるが、流量の均一化や流路面積を確保するため
に限界があるので流量係数Cq を小さくすることも重要
である。すなわち、安定判別式(5)を導出した元式
(2)はバランス流量点で線形化しているのでこのバラ
ンス点での力の一次遅れを小さくすることを考える。
Here, considering K I1 , since K I1 is proportional to the volume V and the flow coefficient C q that are the base of integration, K I1 can be reduced by the inner ejection slit to stabilize the vibration. There are two ways to reduce the volume V involved and the flow coefficient C q . It is ideal if the volume V related to the inner ejection slit can be made sufficiently small, but it is also important to reduce the flow coefficient C q because there is a limit in order to make the flow uniform and secure the flow passage area. That is, since the original equation (2) that derives the stability determination equation (5) is linearized at the balance flow rate point, it is considered to reduce the first-order delay of the force at this balance point.

【0015】スリットからの圧縮性流体の噴出は等エン
トロピー噴流であり、その圧力変化に対する流量変化は
Q1={1−(Po /Pi (1-1/K)1/2 として
The jetting of the compressive fluid from the slit is an isentropic jet, and the flow rate change with respect to the pressure change is S Q1 = {1- (P o / P i ) (1-1 / K) } 1/2

【数4】 [Equation 4]

【0016】(6)式は図4に示す圧力差−流量曲線の
接線を意味しているが、非線形関数なので図から分かる
ように圧力差の殆どない釣合点aでは非常に大きな傾き
を示し(流量係数Cq が大)、圧力差が増え、これに見
合った流量が流れている釣合点bでは小さな傾き(流量
係数Cq が小)となる。つまり、図2の右半分におい
て、浮上物体10の面積に応じて外側噴出スリット2を
選択した時、内側噴出スリット1に関わる内部ヘッダー
B1の容積V1は、上記KI1の容積となるので振動不安
定の要因となるが、この時、流量制御弁31を完全に閉
じると内部ヘッダー容積V1内の圧力は浮上静圧PA
ほぼ同じ圧力となり、スリットを挟んだ圧力差が殆どな
い状態となっているので図4に示す釣合点aに近い状態
であり、非常に大きな力の一次遅れとなる。一方、流量
制御弁31を完全に閉じないである程度の流量を流す
と、これに見合った圧力差が生じているので図4に示す
釣合点bの状態となって流量係数Cq を小さくでき、結
果としてバランス点での力の一次遅れを小さくすること
になり、振動安定化が図れる。操作性を考慮して、バイ
アス流量は、浮上静圧との差圧が2mmAq相当以上の流量
となるようにするのが好ましい。
The expression (6) means the tangent line of the pressure difference-flow rate curve shown in FIG. 4, but since it is a non-linear function, as can be seen from the figure, it shows a very large slope at the balance point a where there is almost no pressure difference ( The flow rate coefficient Cq is large), the pressure difference increases, and the balance point b at which the flow rate corresponding to the pressure difference flows is small (the flow rate coefficient Cq is small). That is, in the right half of FIG. 2, when the outer jet slit 2 is selected according to the area of the floating object 10, the volume V1 of the inner header B1 related to the inner jet slit 1 becomes the volume of K I1 and therefore the vibration is not generated. This is a factor of stability, but at this time, when the flow control valve 31 is completely closed, the pressure in the internal header volume V1 becomes almost the same as the levitation static pressure P A, and there is almost no pressure difference across the slit. Therefore, the state is close to the balance point a shown in FIG. 4, and there is a very large primary delay. On the other hand, when a certain amount of flow rate is flown without completely closing the flow rate control valve 31, a pressure difference commensurate with the flow rate is generated, so that the balance point b shown in FIG. 4 is reached and the flow rate coefficient C q can be reduced. As a result, the primary delay of the force at the balance point is reduced, and vibration can be stabilized. In consideration of operability, the bias flow rate is preferably set so that the differential pressure from the floating static pressure is equal to or higher than 2 mmAq.

【0017】上述のように本発明の流体浮上装置の自励
振動抑制方法では複数の噴出スリットから、面積の大き
い浮上物体を浮上させるため外側の噴出スリットを選択
した時、バイアス流量を流すことで内側ヘッダー容積V
1の流量係数、すなわち力の一次遅れを小さくして、振
動不安定影響係数(式(5)のτ1 )を小さくできるの
で、流体の利用効率を上げるために複数の噴出スリット
を有した、実用性の高い流体浮上装置でその自励振動の
抑制に大きな効果があり、何らかの外乱で浮上物体の浮
上量が変動した場合でも、自励振動の抑制が容易で安定
した流体浮上装置操業を行うことができる。
As described above, in the self-excited vibration suppressing method for the fluid levitation device according to the present invention, the bias flow rate is made to flow when the outer ejection slit is selected from the plurality of ejection slits in order to levitate a floating object having a large area. Inner header volume V
Since the flow rate coefficient of 1, that is, the first-order lag of the force can be reduced to reduce the vibration instability influence coefficient (τ 1 in equation (5)), a plurality of ejection slits are provided in order to increase the fluid utilization efficiency. A highly practical fluid levitation device has a great effect on suppressing its self-excited vibration, and even if the levitation amount of a floating object fluctuates due to some disturbance, it is easy to suppress self-excited vibration and perform stable fluid levitation device operation. be able to.

【0018】[0018]

【実施例】以下図面を用いて詳細な説明を行う。図1は
本発明の流体浮上装置の振動抑制のための流量制御フロ
ーチャートであり、まず浮上物体のサイズに応じて狭幅
か広幅かの噴出スリットの選択を行う。狭幅の場合は浮
上条件に見合った流量制御を流量制御弁31で行い、外
側噴出スリット2の流量制御弁32は噴出させてもエネ
ルギーの無駄になるだけなので閉じ、この場合は従来行
われていた流体浮上装置の運転と全く同じ運転を行う。
もし、広幅が選択された場合には、浮上条件に見合った
流量制御を外側噴出スリット2の流量制御弁32で行う
他に、内側噴出スリット1の流量制御弁31は完全には
閉じずに、若干量流量がバイアスするように開けておき
浮上物体10の振動状況を確認して、この振動抑制がさ
らに必要であれば、流量制御弁31をさらにもう少し開
けて浮上物体10の振動が目標値内に抑制されるまでこ
れを調整する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A detailed description will be given below with reference to the drawings. FIG. 1 is a flow rate control flow chart for suppressing vibration of the fluid levitation apparatus of the present invention. First, a narrow or wide ejection slit is selected according to the size of the floating object. In the case of a narrow width, the flow rate control valve 31 controls the flow rate according to the floating condition, and the flow rate control valve 32 of the outer ejection slit 2 is closed because it wastes energy even if ejected, and in this case, it is conventionally performed. Perform exactly the same operation as the fluid levitation device.
If a wide width is selected, the flow rate control valve 32 of the outer ejection slit 2 controls the flow rate in accordance with the floating condition, and the flow control valve 31 of the inner ejection slit 1 is not completely closed. If the vibration of the levitating object 10 is confirmed by opening so that the flow rate is biased slightly, and if this vibration suppression is further required, the flow control valve 31 is opened a little further and the vibration of the levitating object 10 is within the target value. Adjust this until suppressed.

【0019】図2は本発明の流体浮上装置の一実施例断
面図であり、左半分に狭幅の浮上物体10を浮上させて
いる状態を示し、右半分に広幅の浮上物体10を浮上さ
せている状態に示す。まず、左半分の狭幅の浮上状態で
説明を行うと、この状態では狭幅対応の噴出スリット1
が選択されて、図示していない圧縮性流体供給源につな
がる弁31が浮上に必要な適当量開かれており、送られ
てきた流体は、ヘッダー室B1に入り噴出スリット1よ
り噴出し、A部に静圧を発生させて浮上隙間部から外に
流出するが、広幅対応の噴出スリット2に対応する弁3
2は閉じられており、広幅ヘッダー室B2内に浮上の制
御流はない。この状態では外側ヘッダー容積V2がダミ
ー容積として存在するが、浮上静圧はA部に生じている
ので圧力との関わりが殆どなく、力の一次遅れが零なの
で、この容積V2は振動不安定の要因とはならない。
FIG. 2 is a sectional view of an embodiment of the fluid levitation device of the present invention, showing a state in which a narrow floating object 10 is levitated in the left half and a wide floating object 10 is levitated in the right half. It shows in the state. First, the description will be given in the left half of the ascending state of the narrow width. In this state, the ejection slit 1 corresponding to the narrow width is
Is selected, the valve 31 connected to a compressible fluid supply source (not shown) is opened to an appropriate amount necessary for floating, and the sent fluid enters the header chamber B1 and is ejected from the ejection slit 1 to A static pressure is generated in the portion and flows out from the floating gap portion, but the valve 3 corresponding to the wide ejection slit 2
2 is closed and there is no levitation control flow in the wide header chamber B2. In this state, the outer header volume V2 exists as a dummy volume, but since the levitation static pressure is generated in the portion A, it has almost no relation to the pressure, and the first-order lag of the force is zero, so this volume V2 is unstable in vibration. Not a factor.

【0020】次に、浮上物体の寸法が変わり、広幅の浮
上物体10を浮上させている状態、つまり、図2の右半
分においては、広幅対応の噴出スリット2が選択され
て、図示していない圧縮性流体供給源につながる弁32
が浮上に必要な適当量開かれており、送られてきた流体
は、ヘッダー室B2に入り噴出スリット2より噴出し、
A部に静圧を発生させて浮上隙間部から外に流出する
が、狭幅対応の噴出スリット1に対応する内側ヘッダー
容積V1がダミー容積として存在し、この内側ヘッダー
容積V1がKI1の機能を持つので、この容積V1は振動
不安定の要因となり得るが、流量制御弁31は若干の流
量1′を流すように開けられているので、流量係数が流
量制御弁31を完全に閉じた時より大幅に小さくなって
おり、内側ヘッダー容積V1に関わる力の一次遅れが小
となって振動不安定化が防止される。
Next, in the state where the size of the floating object is changed and the wide floating object 10 is levitated, that is, in the right half of FIG. 2, the jet slit 2 corresponding to the wide width is selected and not shown. Valve 32 connected to a source of compressive fluid
Is opened by an appropriate amount necessary for floating, and the sent fluid enters the header chamber B2 and is ejected from the ejection slit 2,
Although a static pressure is generated in the portion A and flows out from the floating gap portion, an inner header volume V1 corresponding to the ejection slit 1 corresponding to the narrow width exists as a dummy volume, and this inner header volume V1 functions as K I1 . Therefore, the volume V1 may cause a vibration instability, but since the flow rate control valve 31 is opened so as to allow a slight flow rate 1 ', the flow rate coefficient when the flow rate control valve 31 is completely closed. It is much smaller, and the first-order lag of the force related to the inner header volume V1 is small, and vibration instability is prevented.

【0021】また、内側スリット1から流すバイアス流
量は、多い程振動安定化に効果があるが、流体を流す必
要エネルギーも多くなるので、流量係数を小さくする効
果が大きい範囲として図6に示す斜線の領域、つまり、
浮上静圧PA との圧力差が10mmAqに相当する流量以下
とすることが実用上有効である。なお、流量制御弁3
1,32の選択のアルゴリズムや浮上物体10の諸条件
を考慮した流量制御システムは本発明の骨子とは関係が
ないので説明は省く。
Further, the larger the bias flow rate flowing from the inner slit 1, the more effective is vibration stabilization. However, since the energy required to flow the fluid also increases, the oblique line shown in FIG. Area of
It is practically effective that the pressure difference from the levitation static pressure P A is not more than the flow rate corresponding to 10 mmAq. The flow control valve 3
The flow rate control system considering the selection algorithms of 1, 32 and the various conditions of the floating object 10 is not related to the essence of the present invention, and therefore the description thereof is omitted.

【0022】本発明の効果を実験調査した結果を図3に
示す。板幅1mの帯状鋼板で、負荷60kgを1.2m半
径で図7の鳥瞰図に示す180度ターンする浮上装置に
載荷して調べた実験結果であるが、本発明の方法をとら
ず0.3m3 の内部ヘッダー容積が流量制御弁31を閉
じた状態で浮上静圧発生部とつながった図3(a)に較
べ、本発明で内部ヘッダーに5mmAq相当のバイアス流量
を流した図3(b)では、気流に伴う若干の圧力変動以
外には、振動が殆ど生じておらず、また、少し生じても
すぐ減衰していることが分かる。なお、噴出スリット数
を4本以上の多条とし、同時に2本以上のスリットを選
択して幅対応する流体浮上装置においても、本発明の方
法が静圧発生部とつながった内側ヘッダー部容積の振動
悪影響の緩和効果を発揮することはいうまでもない。
The results of an experimental investigation on the effects of the present invention are shown in FIG. This is an experimental result of a strip steel sheet having a strip width of 1 m and a load of 60 kg loaded in a 1.2 m radius on a levitation device that turns 180 degrees shown in the bird's-eye view, but 0.3 m without the method of the present invention. compared to FIG inside header volume of 3 led the floating static pressure generator with closed flow control valve 31 3 (a), was flushed with bias flow corresponds 5mmAq the inner header in the present invention FIG. 3 (b) It can be seen that, except for a slight pressure fluctuation caused by the air flow, almost no vibration is generated, and even if a small amount of vibration is generated, it is immediately attenuated. Even in a fluid levitation device in which the number of jetting slits is set to four or more, and two or more slits are simultaneously selected to accommodate the width, the method of the present invention can reduce the volume of the inner header portion connected to the static pressure generating portion. It goes without saying that it exerts the effect of alleviating the adverse effects of vibration.

【0023】[0023]

【発明の効果】以上述べたように本発明を用いれば、複
数の噴出スリットを有し、これを選択できるようにして
流体の利用効率を上げた、実用性の高いエアーカーテン
タイプの流体浮上装置において、余分な装置の付加や、
大きな圧縮性流体供給源のエネルギー余裕を持たずに、
圧縮性流体による自励振動を容易に抑制できその適用効
果は非常に大である。
As described above, according to the present invention, a highly practical air curtain type fluid levitation device having a plurality of ejection slits, which can be selected to improve the fluid utilization efficiency. In addition, the addition of extra equipment,
Without the energy margin of a large compressible fluid source,
Self-excited vibration due to compressible fluid can be easily suppressed, and its application effect is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の運転選択フローチャートである。FIG. 1 is an operation selection flowchart of the present invention.

【図2】本発明の適用説明のための浮上ヘッダー断面図
である。
FIG. 2 is a sectional view of a floating header for explaining the application of the present invention.

【図3】本発明の有無による振動波形の実測結果比較図
である。
FIG. 3 is a comparison diagram of measurement results of vibration waveforms with and without the present invention.

【図4】圧力差と流量の関係図である。FIG. 4 is a relationship diagram between a pressure difference and a flow rate.

【図5】従来の流体浮上装置の断面図である。FIG. 5 is a cross-sectional view of a conventional fluid levitation device.

【図6】圧力差と流量係数変化率の関係を示す図であ
る。
FIG. 6 is a diagram showing a relationship between a pressure difference and a flow coefficient change rate.

【図7】180度ターンの場合の流体浮上状況を示す鳥
瞰図である。
FIG. 7 is a bird's-eye view showing a fluid floating state in the case of 180-degree turn.

【符号の説明】[Explanation of symbols]

A 静圧発生部 B1,B2 ヘッダー室 1 狭幅噴出スリット 2 広幅噴出スリット 10 浮上物体 11 180度ターン流体浮上装置ヘッダー 31,32 流量制御弁 A Static pressure generation part B1, B2 Header chamber 1 Narrow jet slit 2 Wide jet slit 10 Levitating object 11 180 degree turn Fluid levitation device header 31, 32 Flow control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮性流体の供給源に通じた外側の噴出
口(またはスリット)あるいはそれよりも内側の噴出口
(またはスリット)から対象とする浮上物体の浮上部面
積に応じて、前記噴出口(またはスリット)のうちのい
ずれかの噴出口(またはスリット)を選択して流体を噴
出させ、流体が噴出する一対の噴出口(またはスリッ
ト)に挟まれた領域、または、閉曲線をなす噴出口(ま
たはスリット)に囲まれた領域で、浮上物体との間に静
圧を発生させて物体を浮上させる際に、噴出口(または
スリット)を選択して静圧を発生させるに当たり、選択
した噴出口(またはスリット)よりも内側にある噴出口
(またはスリット)にも圧縮性流体を流して浮上物体の
自励振動を抑制することを特徴とする流体浮上における
自励振動抑制方法。
1. A jetting device according to a floating surface area of a target floating object from an outer jetting port (or slit) or an inner jetting port (or slit) communicating with a supply source of a compressive fluid. A region between a pair of jet ports (or slits) from which fluid is jetted, or a jet that forms a closed curve, by selecting one of the jet ports (or slits) to jet the fluid In the area surrounded by the outlet (or slit), when the static pressure is generated between the floating object and the object to levitate, the jet port (or slit) is selected to generate the static pressure. A method for suppressing self-excited vibration in fluid levitation, characterized in that a self-excited vibration of a levitating object is suppressed by causing a compressive fluid to flow also into the spout (or slit) inside the spout (or slit).
JP11568693A 1993-05-18 1993-05-18 Self-excited vibration control method in fluid floatation Pending JPH06329313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11568693A JPH06329313A (en) 1993-05-18 1993-05-18 Self-excited vibration control method in fluid floatation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11568693A JPH06329313A (en) 1993-05-18 1993-05-18 Self-excited vibration control method in fluid floatation

Publications (1)

Publication Number Publication Date
JPH06329313A true JPH06329313A (en) 1994-11-29

Family

ID=14668757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11568693A Pending JPH06329313A (en) 1993-05-18 1993-05-18 Self-excited vibration control method in fluid floatation

Country Status (1)

Country Link
JP (1) JPH06329313A (en)

Similar Documents

Publication Publication Date Title
JP4870799B2 (en) Flow control valve
JP2006283966A (en) Active vibration removing apparatus
JPH0344960B2 (en)
Mohanta et al. Stability of coaxial jets confined in a tube with heat and mass transfer
Surya et al. Comparative study of P, PI, PD and PID controllers for operation of a pressure regulating valve in a blow-down wind tunnel
Lin et al. Suppression of instability in a liquid film flow
JPH06329313A (en) Self-excited vibration control method in fluid floatation
Alvi et al. Vectoring thrust in multiaxes using confined shear layers
JP3339905B2 (en) Fluid levitation method and device
Kim et al. Meandering instability of a rivulet
Averkova et al. Cross-flow of air through sealed elevator enclosures
Sverbilov et al. Study on dynamic behavior of a gas pressure relief valve for a big flow rate
JP3339909B2 (en) Fluid flotation device
JPS56134623A (en) Orifice type gas static pressure bearing
JPH0826477A (en) Air conveyor for light article
JP2007298102A (en) Gas spring type vibration resistant device and control method for the device
US7524146B2 (en) Pneumatic uneven flow factoring for particulate matter distribution system
Mitarai et al. Linear stability analysis of rapid granular flow down a slope and density wave formation
JP3324274B2 (en) Flowmeter
Van Schalkwyk et al. Semi-active stabilization of axial compressors with circumferential inlet distortion using low bandwidth actuators
Takeda et al. Dynamic Stability of a Plate Supported by Air Pressure (Analysis of Two Degree-of-Freedom Coupled System of Translational and Rotational Motions)
JPH11270735A (en) Pressure regulating valve
JPH06324741A (en) Air flow controller
Beddini et al. Visco-Acoustic and Resonant Interactions in Solid and Hybrid Propulsion Chambers
Mitarai et al. Stability analysis of collisional granular flow on a slope

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010619