JPH06328349A - Inline measuring method for roughness of cut surface - Google Patents

Inline measuring method for roughness of cut surface

Info

Publication number
JPH06328349A
JPH06328349A JP12006793A JP12006793A JPH06328349A JP H06328349 A JPH06328349 A JP H06328349A JP 12006793 A JP12006793 A JP 12006793A JP 12006793 A JP12006793 A JP 12006793A JP H06328349 A JPH06328349 A JP H06328349A
Authority
JP
Japan
Prior art keywords
cutting
surface roughness
roughness
machined material
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12006793A
Other languages
Japanese (ja)
Inventor
Iwao Takahashi
橋 岩 男 高
Kenichi Kaneshige
重 健 一 兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP12006793A priority Critical patent/JPH06328349A/en
Publication of JPH06328349A publication Critical patent/JPH06328349A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the continuous noncontact in-line measurement of the cutting roughness of the surface of a machined material while the surface of the machined material is machined through a cutting tool. CONSTITUTION:In the case where the cutting roughness of the surface of a machined material 3 is measured while the surface of the machined material is machined by a cutting tool 2, a laser beam 32 having irradiation width wider than the diameter of a machined material 3 is radiated from one side of the machined material 3 being in the state of machining work to the machined material 3 by a laser generator 31, and the laser beam 32 is received on the side opposite to the above side of the machined material 3 by a laser beam receiver 33. Thus the cutting roughness of the surface of the machined material 3 can be in-linely measured on a difference between the maximum and minimum values of the value of received beam in a computing element 34.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、切削工具(研削工具等
の類似のものをも含む。)によって被加工材表面に対し
旋盤加工,ピーリング加工等の表面切削加工(表面研削
加工等の類似のものをも含む。)を行う間に被加工材の
表面切削(表面研削等の類似のものをも含む。)肌粗さ
をインラインで連続して測定するのに利用されるインラ
イン切削肌粗さ測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a cutting tool (including similar tools such as a grinding tool) to perform surface cutting such as lathing and peeling on the surface of a workpiece (similar to surface grinding). In-line cutting surface roughness that is used to continuously measure the surface roughness of the work material (including similar ones such as surface grinding) while performing It relates to the measuring method.

【0002】[0002]

【従来の技術】例えば、仕上げ表面が美しく、寸法精度
および品質の良い磨棒鋼を製造する場合には、ピーリン
グマシン(無心旋削機)やセンタレスグラインダ(心な
し研削盤)などが使用され、磨棒鋼素材の表面に対して
切削加工ないしは研削加工を行うようにしている。
2. Description of the Related Art For example, a peeling machine (centerless turning machine) or a centerless grinder (centerless grinder) is used to produce a polished steel bar with a beautiful finished surface and good dimensional accuracy and quality. The surface of the material is cut or ground.

【0003】このうち、ピーリングマシンは、バーター
ニングマシンとも称され、カッタヘッドを回転させて、
定尺丸棒等の磨棒鋼素材を無心で皮削りする機械であっ
て、加工精度が高く、さらに矯正機,研削盤を使用する
ことによって、磨棒鋼素材圧延時の硬化層や脱炭層,表
面の亀裂や疵などが除去されていると共に、表面のみの
削り取りによって引抜加工時に生じやすい内部張力およ
び組織の変化がなく、寸法精度の高い品質の優れた磨棒
鋼を得るのに好適な機械であり、引抜きでは一般的に困
難な比較的太いものや高い引張強さの材料にも適用され
うるものであって寸法および品質のすぐれた磨棒鋼を得
るのに適したものである。
Of these, the peeling machine is also called a bar-turning machine, which rotates a cutter head to
It is a machine for unsharply scraping a bar steel material such as a standard length round bar, which has high processing accuracy, and by using a straightening machine and a grinder, a hardened layer, a decarburized layer, and a surface at the time of rolling the bar steel material. It is a machine suitable for obtaining high-quality polished steel bar with high dimensional accuracy, without any cracks or scratches on the surface of the steel, and because there is no change in internal tension or structure that tends to occur during drawing due to scraping off only the surface. It is also applicable to relatively thick materials that are generally difficult to draw and materials with high tensile strength, and is suitable for obtaining a polished steel bar having excellent dimensions and quality.

【0004】このようなピーリングマシンでは、カッタ
ヘッドのロールで心を出し、ロール支持で切削する方式
のものや、素材支持を回転に関係なくコレットプッシャ
やロールで行い、バイトを3〜4本取り付けた1組のカ
ッタヘッドを高速で回転させて切削する方式のものなど
がある。
In such a peeling machine, a cutter head roll is used for centering and a roll support is used for cutting, and material support is performed by collet pushers and rolls regardless of rotation, and 3 to 4 bites are attached. There is also a method in which one set of cutter heads is rotated at high speed for cutting.

【0005】このようなピーリングマシンを用いたピー
リング加工においては、ピーリング加工後の磨棒鋼の表
面切削肌粗さを測定し、工具摩耗等によって表面切削肌
粗さが大きくなったときには、ピーリング加工を停止し
て工具を交換する必要があるため、表面肌粗さを随時な
いしは連続して測定するようにしている。
In the peeling process using such a peeling machine, the surface cutting surface roughness of the polished steel bar after the peeling process is measured, and the peeling process is performed when the surface cutting surface roughness becomes large due to tool wear or the like. Since it is necessary to stop and replace the tool, the surface roughness is measured at any time or continuously.

【0006】従来、このような被加工材の表面切削肌粗
さの測定に際しては、例えば、10μm以下の小さい先
端半径のダイヤモンド触針を用い、このダイヤモンド触
針が磨棒鋼の表面の凹凸を一定速度で移動するときに生
じる上下動の変位を測定するようにした触針式表面粗さ
計を用いることが多かった。また、その他、一般的な表
面粗さの測定方法には、粗面からの反射光の分布を利用
して測定する方法、例えば、光点の反射光の方向,位相
の変化を用いて粗さ曲線を求める方法や、反射光分布の
性質を利用して表面粗さのパラメータを直接求める方法
などがあり、さらには、金属の加工面に極板を接触させ
て両者の間に生じる空げき量に対応する電気容量の変化
を測定する方法などもあった。
[0006] Conventionally, when measuring the surface cut surface roughness of such a work material, a diamond probe having a small tip radius of, for example, 10 μm or less is used, and the diamond probe has a constant unevenness on the surface of the polished steel bar. A stylus-type surface roughness meter was often used to measure the displacement of vertical movement that occurs when moving at high speed. In addition, other general surface roughness measuring methods include a method of measuring the distribution of reflected light from a rough surface, for example, a roughness using the direction of the reflected light of a light spot or a phase change. There is a method to obtain a curve, a method to directly obtain the parameter of surface roughness by using the property of reflected light distribution, and moreover, the amount of vacancy generated between the electrode plate and the metal surface There was also a method of measuring the change in electric capacity corresponding to.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、ダイヤ
モンド触針を磨棒鋼の表面に直接接触させて、ダイヤモ
ンド触針の上下動の変位を測定する方法では、ダイヤモ
ンド触針の摩耗が大きいため、とくに近年のピーリング
加工速度の上昇に対応できがたいという問題点があり、
このような加工速度の大きいラインでは触針式表面粗さ
計を用いるのが適切でないことから、工具摩耗によって
磨棒鋼の表面肌粗さが大きくなる状況を目視によりオフ
ラインで調べ、表面肌粗さが過大となったときには加工
ラインを停止して工具バイトを交換する方法を採用せね
ばならないこととなって、加工効率が低下することにな
るという問題を生じ、このような問題を解消することが
課題となっていた。また、その他粗面からの反射光の分
布を利用する方法や静電容量の変化を測定する方法にあ
っては、例えば、丸棒形状をなす磨棒鋼の表面肌粗さの
測定には適していないという課題があった。
However, in the method of measuring the vertical displacement of the diamond stylus by bringing the diamond stylus into direct contact with the surface of the polished steel bar, since the diamond stylus is largely worn, it has been particularly difficult in recent years. There is a problem that it is difficult to cope with the increase in peeling speed of
Since it is not appropriate to use a stylus type surface roughness meter in such a line with a high processing speed, the situation where the surface roughness of the polished steel bar increases due to tool wear is visually inspected offline to determine the surface roughness. If the tool becomes too large, a method of stopping the machining line and exchanging the tool bite must be adopted, which causes a problem that the machining efficiency is reduced, and such a problem can be solved. It was a challenge. In addition, in the method of utilizing the distribution of the reflected light from the rough surface and the method of measuring the change in the capacitance, for example, it is suitable for measuring the surface roughness of the round bar-shaped polished steel bar. There was a problem that there was not.

【0008】[0008]

【発明の目的】本発明は、このような従来の課題にかん
がみてなされたものであって、切削工具により被加工材
表面の切削加工を行う間に被加工材の表面切削肌粗さを
測定するに際し、被加工材の表面切削肌粗さをインライ
ンでそして非接触で連続して測定することが可能であっ
て、被加工材の表面切削肌粗さが所定値以上となったと
きには切削加工ラインを自動的に停止して切削工具等の
更新を行うことが可能であり、被加工材に対する表面切
削加工の加工能率を著しく向上させることが可能である
と共に、触針式における針摩耗のごとき不具合が生じな
いようにしたインライン切削肌粗さ測定方法を提供する
ことを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and measures the surface cut surface roughness of a work material while cutting the work material surface with a cutting tool. In doing so, it is possible to continuously measure the surface cut surface roughness of the work material in-line and in a non-contact manner, and when the surface cut surface roughness of the work material exceeds a specified value, the cutting work is performed. It is possible to automatically stop the line and update the cutting tool, etc., and it is possible to significantly improve the processing efficiency of surface cutting processing on the work material, as well as needle wear in the stylus type. It is an object of the present invention to provide an in-line cutting surface roughness measuring method that does not cause a problem.

【0009】[0009]

【課題を解決するための手段】本発明に係わるインライ
ン切削肌粗さ測定方法は、切削工具(研削工具等の類似
のものをも含む。)により旋盤加工,ピーリング加工等
の被加工材表面の切削加工(研削加工等の類似のものを
も含む。)を行う間に被加工材の表面切削(研削等の類
似のものをも含む。)肌粗さを測定するに際し、切削加
工状態にある被加工材の側方片側から被加工材に対し該
被加工材の直径よりも広い照射幅のレーザ光を照射する
と共に被加工材の側方反対側でレーザ光を受光し、受光
値の最大値と最小値との差をもとにして被加工材の表面
切削肌粗さをインラインでそしてまた非接触で連続して
測定するようにしたことを特徴としている。
An in-line cutting surface roughness measuring method according to the present invention uses a cutting tool (including a similar one such as a grinding tool) for lathe processing, peeling processing, and the like of the surface of a work material. During cutting (including similar things such as grinding), surface cutting (including similar things such as grinding) of the work material is in a cutting state when measuring the surface roughness. The workpiece is irradiated with a laser beam having an irradiation width wider than the diameter of the workpiece from one side of the workpiece and the laser beam is received on the opposite side of the workpiece, and the maximum received light value is obtained. It is characterized in that the surface cut surface roughness of the work material is continuously measured in-line and also in a non-contact manner based on the difference between the value and the minimum value.

【0010】[0010]

【発明の作用】本発明に係わるインライン切削肌粗さ測
定方法では、切削加工状態にある被加工材の側方片側か
ら被加工材に対し該被加工材の直径よりも広い照射幅の
レーザ光を照射すると共に被加工材の側方反対側で該被
加工材により遮断されなかったレーザ光を受光するよう
にしているので、被加工材の表面切削肌粗さが小さいと
きには、レーザ光の受光値の最大値と最小値との差が小
さいことによって、被加工材の表面肌粗さが小さいこと
が認識され、切削加工の摩耗等によって被加工材の表面
肌粗さが大きくなったときには、レーザ光の受光値の最
大値と最小値との差が大きくなることによって、被加工
材の表面肌粗さが大きくなったことが認識され、このよ
うにして、被加工材表面の切削加工を行う間に被加工材
に遮断されなかったレーザ光を受光して、受光値の最大
値と最小値との差を連続して検出処理することにより、
被加工材の表面肌粗さがインラインでかつまた非接触で
連続して測定されるようになり、被加工材の表面肌粗さ
がインラインで測定されることによって、被加工材の切
削加工効率が向上すると共に、非接触で測定されること
によって、従来の触針の摩耗による不具合も回避される
こととなる。
According to the in-line cutting surface roughness measuring method of the present invention, the laser beam having the irradiation width wider than the diameter of the work material is applied to the work material from one side of the work material in the cut working state. When the surface cutting surface roughness of the work material is small, the laser light is received on the side opposite to the work material while receiving the laser light which is not blocked by the work material. By the small difference between the maximum value and the minimum value of the value, it is recognized that the surface roughness of the work material is small, when the surface roughness of the work material becomes large due to abrasion of cutting, etc., It was recognized that the surface roughness of the work material increased as the difference between the maximum value and the minimum value of the received laser light increased, and in this way, the cutting of the work surface was performed. Not interrupted by the material being processed Receives the laser beam, by detecting continuously process difference between the maximum value and the minimum value of the received-light value,
The surface roughness of the workpiece can be measured continuously in-line and in a non-contact manner. By measuring the surface roughness of the workpiece in-line, the cutting efficiency of the workpiece can be improved. In addition, the non-contact measurement makes it possible to avoid problems caused by abrasion of the conventional stylus.

【0011】[0011]

【実施例】図1は、本発明に係わるインライン切削肌粗
さ測定方法の一実施例を示すものであって、被加工材で
ある丸棒素材1が切削工具であるピーリングマシン2に
よって表面切削加工されることにより丸棒形状の被加工
材である磨棒鋼3となる加工ラインを示している。
EXAMPLE FIG. 1 shows an example of an in-line cutting surface roughness measuring method according to the present invention, in which a round bar material 1 as a workpiece is surface-cut by a peeling machine 2 as a cutting tool. The processing line which becomes the bar steel 3 which is a round bar-shaped processed material by processing is shown.

【0012】図に示すピーリングマシン2は、円錐形状
の分割外周面21aを有する分割カッタヘッド21をそ
なえ、このカッタヘッド21の内側にはカッタヘッドロ
ール22とカッタヘッドバイト23をそなえていると共
に、カッタヘッド21の外周側には円錐形状の内周面2
4aを有するコニカルスリーブ24をそなえ、このコニ
カルスリーブ24はウオーム25が回転することによっ
て軸方向(すなわち、図示左右方向)に移動し、この結
果、コニカルスリーブ24の円錐形状の内周面24aと
カッタヘッド21の円錐形状の外周面21aとが対偶接
触していることによってカッタヘッドロール22とカッ
タヘッドバイト23とによる切込深さが変化するように
してある。
The peeling machine 2 shown in the figure has a divided cutter head 21 having a conical outer peripheral surface 21a, and inside the cutter head 21, a cutter head roll 22 and a cutter head bite 23 are provided. A conical inner peripheral surface 2 is provided on the outer peripheral side of the cutter head 21.
4a, the conical sleeve 24 is moved in the axial direction (that is, the left-right direction in the drawing) by the rotation of the worm 25, and as a result, the conical inner peripheral surface 24a of the conical sleeve 24 and the cutter. The cutting depth by the cutter head roll 22 and the cutter head bite 23 is changed by the paired contact with the conical outer peripheral surface 21a of the head 21.

【0013】また、表面が切削加工された磨棒鋼3の側
方片側(図示上側)にはレーザ発振器31が設置してあ
り、このレーザ発振器31からは磨棒鋼3の直径よりも
広い照射幅を有するレーザ光32が発射される。
A laser oscillator 31 is installed on one side (upper side in the figure) of the polished steel bar 3 whose surface is cut, and an irradiation width wider than the diameter of the polished steel bar 3 is provided from the laser oscillator 31. The laser light 32 which it has is emitted.

【0014】そして、磨棒鋼3によって遮断されないレ
ーザ光32はレーザ受光器33で受光され、このレーザ
受光器33での受光値が演算器34で演算される。
The laser light 32 which is not blocked by the polished steel bar 3 is received by the laser light receiver 33, and the light reception value at this laser light receiver 33 is calculated by the calculator 34.

【0015】そして、前記レーザ受光器33での受光値
によって演算器34において磨棒鋼3の外径が測定され
てこの外径測定結果がステップ35において外径出力と
して出力され、磨棒鋼3の直径が規定の上限値よりも大
きいときにはステップ36において切込指令が出され、
パルスジェネレータ(PG)37によってモータ(M)
38を回転させてウオーム25を回転させることにより
コニカルスリーブ24を図示左方向に移動させ、カッタ
ヘッドロール22とカッタヘッドバイト23の径を小さ
くして磨棒鋼用丸棒素材1に対する切込深さを増大す
る。
The outer diameter of the polished steel bar 3 is measured by the calculator 34 based on the value received by the laser receiver 33, and the outer diameter measurement result is output as the outer diameter output in step 35 to determine the diameter of the polished steel bar 3. Is larger than the specified upper limit value, a cutting command is issued in step 36,
Motor (M) by pulse generator (PG) 37
By rotating 38 to rotate the worm 25, the conical sleeve 24 is moved to the left in the drawing, the diameters of the cutter head roll 22 and the cutter head bite 23 are reduced, and the cutting depth of the round bar material 1 for polished steel bar is reduced. Increase.

【0016】また、磨棒鋼3の直径が規定の下限値より
も小さくなりないしは小さくなりそうなときにはステッ
プ39において警報を発生する。
Further, when the diameter of the polished steel bar 3 becomes smaller than or is about to become smaller than the specified lower limit value, an alarm is issued in step 39.

【0017】他方、前記レーザ受光器33での受光値の
最大値と最小値との差によって磨棒鋼3の表面肌粗さが
演算器34で演算測定されてこの表面肌粗さの測定結果
がステップ41において粗さ出力として出力され、磨棒
鋼3の表面肌粗さが所定値よりも大きくなりないしは大
きくなりそうになったときには、ステップ42において
警報を発生し、ピーリング加工を停止してカッタヘッド
バイト23の交換を適宜行う。
On the other hand, the surface roughness of the polished steel bar 3 is calculated and calculated by the calculator 34 based on the difference between the maximum value and the minimum value of the light received by the laser receiver 33, and the measurement result of the surface roughness is obtained. When it is output as the roughness output in step 41 and the surface roughness of the polished steel bar 3 becomes or becomes larger than a predetermined value, an alarm is generated in step 42, the peeling process is stopped, and the cutter head is stopped. The bite 23 is replaced appropriately.

【0018】表1および図2は、磨棒鋼用丸棒素材1に
対する表面切削加工速度(ライン速度)と表面肌粗さと
の関係を例示したものであって、切削加工速度が増大し
たときでも、非接触により切削表面肌粗さを測定するよ
うにしているため、測定を良好に行うことが可能であっ
た。
Table 1 and FIG. 2 exemplify the relationship between the surface cutting speed (line speed) and the surface roughness of the round bar material 1 for polished steel, and even when the cutting speed increases, Since the surface roughness of the cutting surface is measured by non-contact, it was possible to perform the measurement satisfactorily.

【0019】[0019]

【表1】 [Table 1]

【0020】そして、図3に示すように、本発明法によ
るレーザ光を用いた非接触式表面肌粗さ測定結果(測定
計は○印および△印の2種類,切削加工速度は4m/m
in,6m/minおよび10m/minの3種類)
は、従来の接触子式表面肌粗さ測定結果と良好に対応す
るものとなっており、本発明法によっても十分正確に切
削肌粗さを測定できることが確かめられた。
As shown in FIG. 3, the results of non-contact type surface roughness measurement using laser light according to the method of the present invention (measurement meter: two types, ○ and Δ, cutting speed: 4 m / m)
3 types, in, 6m / min and 10m / min)
Corresponds to the conventional contact-type surface roughness measurement result, and it was confirmed that the cutting surface roughness can be measured sufficiently accurately by the method of the present invention.

【0021】[0021]

【発明の効果】本発明に係わるインライン切削肌粗さ測
定方法では、切削工具により被加工材表面の切削加工を
行う間に被加工材の表面切削肌粗さを測定するに際し、
切削加工状態にある被加工材の側方片側から被加工材に
対し該被加工材の直径よりも広い照射幅のレーザ光を照
射すると共に被加工材の側方反対側でレーザ光を受光
し、受光値の最大値と最小値との差をもとにして被加工
材の表面切削肌粗さをインラインで測定するようにした
から、被加工材に対して表面の切削加工を行うに際して
被加工材の表面切削肌粗さをインラインでそして非接触
で連続して測定することが可能であって、被加工材の表
面切削肌粗さが所定値以上となったときには切削加工ラ
インを自動的に停止して切削工具等の更新を行うことが
可能であり、被加工材に対する表面切削加工の加工能率
を著しく向上させることが可能であると共に、従来の触
針式における針摩耗のごとき不具合が生じないようにし
たインライン切削肌粗さ測定方法を提供することが可能
であるという著しく優れた効果がもたらされる。
According to the in-line cutting surface roughness measuring method of the present invention, when measuring the surface cutting surface roughness of the work material while cutting the work material surface with the cutting tool,
A laser beam having an irradiation width wider than the diameter of the workpiece is irradiated to the workpiece from one side of the workpiece in the cutting state and the laser beam is received on the opposite side of the workpiece. Since the surface cutting surface roughness of the workpiece is measured inline based on the difference between the maximum value and the minimum value of the received light value, when the surface of the workpiece is cut, The surface cutting surface roughness of the processed material can be continuously measured inline and without contact, and when the surface cutting surface roughness of the processed material exceeds a specified value, the cutting line is automatically It is possible to stop at this time and update the cutting tool etc., it is possible to significantly improve the processing efficiency of surface cutting processing on the work material, and at the same time, there is a problem such as needle wear in the conventional stylus type. In-line cutting skin that did not occur Leads to significantly better effect that it is possible to provide a measuring method is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による基本構成を示す説明図
である。
FIG. 1 is an explanatory diagram showing a basic configuration according to an embodiment of the present invention.

【図2】本発明の一実施例において被加工材の表面肌粗
さを測定した結果を示すグラフである。
FIG. 2 is a graph showing the results of measuring the surface roughness of the workpiece in one example of the present invention.

【図3】本発明の一実施例において接触式粗さ測定との
対応を調べた結果を示すグラフである。
FIG. 3 is a graph showing the results of examining the correspondence with contact type roughness measurement in one example of the present invention.

【符号の説明】[Explanation of symbols]

1 被加工材(丸棒素材) 2 切削工具(ピーリングマシン) 3 被加工材(磨棒鋼) 31 レーザ発振器 32 レーザ光 33 レーザ受光器 34 演算器 1 Work Material (Round Bar Material) 2 Cutting Tool (Peeling Machine) 3 Work Material (Polished Steel Bar) 31 Laser Oscillator 32 Laser Light 33 Laser Receiver 34 Arithmetic Unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 切削工具により被加工材表面の切削加工
を行う間に被加工材の表面切削肌粗さを測定するに際
し、切削加工状態にある被加工材の側方片側から被加工
材に対し該被加工材の直径よりも広い照射幅のレーザ光
を照射すると共に被加工材の側方反対側でレーザ光を受
光し、受光値の最大値と最小値との差をもとにして被加
工材の表面切削肌粗さをインラインで測定することを特
徴とするインライン切削肌粗さ測定方法。
1. When measuring the surface-cutting surface roughness of a workpiece while cutting the surface of the workpiece with a cutting tool, the workpiece is cut from one side of the workpiece in the cutting state. On the other hand, while irradiating a laser beam having an irradiation width wider than the diameter of the work material and receiving the laser light on the side opposite to the work material, based on the difference between the maximum value and the minimum value of the received light value. An inline cutting surface roughness measuring method characterized by measuring the surface cutting surface roughness of a work material inline.
JP12006793A 1993-05-21 1993-05-21 Inline measuring method for roughness of cut surface Pending JPH06328349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12006793A JPH06328349A (en) 1993-05-21 1993-05-21 Inline measuring method for roughness of cut surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12006793A JPH06328349A (en) 1993-05-21 1993-05-21 Inline measuring method for roughness of cut surface

Publications (1)

Publication Number Publication Date
JPH06328349A true JPH06328349A (en) 1994-11-29

Family

ID=14777075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12006793A Pending JPH06328349A (en) 1993-05-21 1993-05-21 Inline measuring method for roughness of cut surface

Country Status (1)

Country Link
JP (1) JPH06328349A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027258A (en) * 2002-06-21 2004-01-29 Sanyo Special Steel Co Ltd Cutting-finished bar steel having excellent shear cuttability and method of producing the bar steel
JP2007175847A (en) * 2005-12-28 2007-07-12 Ricoh Co Ltd Surface treatment apparatus, developing sleeve, developing apparatus, and image forming apparatus
JP2008040483A (en) * 2006-07-10 2008-02-21 Ricoh Co Ltd Developer holding member, development device, process cartridge, image forming apparatus and method of manufacturing hollow body
JP2010052103A (en) * 2008-08-29 2010-03-11 Mitsubishi Heavy Ind Ltd Method and device for measuring surface roughness and processing device
JP2017030065A (en) * 2015-07-29 2017-02-09 株式会社Ihi Cutting device and cutting method
JP2017030066A (en) * 2015-07-29 2017-02-09 株式会社Ihi Abnormality detection method of cutting tool and cutting processing device
CN108317976A (en) * 2018-03-31 2018-07-24 苏州梅克兰检测服务有限公司 A kind of LED display flatness detecting device
JP2022024717A (en) * 2020-07-28 2022-02-09 Dmg森精機株式会社 Image processing device and machine tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027258A (en) * 2002-06-21 2004-01-29 Sanyo Special Steel Co Ltd Cutting-finished bar steel having excellent shear cuttability and method of producing the bar steel
JP2007175847A (en) * 2005-12-28 2007-07-12 Ricoh Co Ltd Surface treatment apparatus, developing sleeve, developing apparatus, and image forming apparatus
JP2008040483A (en) * 2006-07-10 2008-02-21 Ricoh Co Ltd Developer holding member, development device, process cartridge, image forming apparatus and method of manufacturing hollow body
JP2010052103A (en) * 2008-08-29 2010-03-11 Mitsubishi Heavy Ind Ltd Method and device for measuring surface roughness and processing device
JP2017030065A (en) * 2015-07-29 2017-02-09 株式会社Ihi Cutting device and cutting method
JP2017030066A (en) * 2015-07-29 2017-02-09 株式会社Ihi Abnormality detection method of cutting tool and cutting processing device
CN108317976A (en) * 2018-03-31 2018-07-24 苏州梅克兰检测服务有限公司 A kind of LED display flatness detecting device
JP2022024717A (en) * 2020-07-28 2022-02-09 Dmg森精機株式会社 Image processing device and machine tool

Similar Documents

Publication Publication Date Title
JP4824166B2 (en) Method and grinding machine for process guides in peel grinding of workpieces
US4170726A (en) Method of working outer periphery of articles with laser light
JP2022525521A (en) Method for automatic process monitoring during continuous creation grinding
JPH03504945A (en) Methods and equipment for micromachining or microfinishing
US3800117A (en) Edm apparatus for finishing rolls
JPH07100761A (en) Grinding device
JP6405098B2 (en) Method for identifying topography deviation of dressing tool of polishing machine and CNC control machine configured accordingly
EP0521096A1 (en) Process and device for machine-working of rolls and similar workpieces.
CN109317752A (en) A kind of processing technology of cold saw blade
US3878353A (en) Method for finishing rolls
US6283837B1 (en) Grinding machine
JPH06328349A (en) Inline measuring method for roughness of cut surface
CA1209806A (en) Method and apparatus for abrasively machining a workpiece
JPH07121502B2 (en) How to cylindrically grind a workpiece
CN102107376B (en) Process chain method for realizing optimal grinding efficiency and quality
Young et al. Online dressing of profile grinding wheels
Mabuchi et al. High precision turning of hardened steel by use of PcBN insert sharpened with short pulse laser
Valiño et al. Non-contact measurement of grinding pins by means of a 2D laser micrometer
JPH0740172A (en) Tool on which cutting-edge is formed and useage thereof
Singh et al. Diamond tool wear measurement by profilometry method for ultra-precision machining of silicon
CN111390567A (en) Butterfly bearing positioning hole machining equipment and machining process
CN212071070U (en) Butterfly bearing locating hole processing equipment
CN211889011U (en) Online grinding device for wheel belt and sliding shoe grinding of rotary kiln
JP2009028890A (en) Grinding device
JP2001191206A (en) Surface defect removing method for steel plate