JPH06328066A - Water treatment - Google Patents

Water treatment

Info

Publication number
JPH06328066A
JPH06328066A JP12371093A JP12371093A JPH06328066A JP H06328066 A JPH06328066 A JP H06328066A JP 12371093 A JP12371093 A JP 12371093A JP 12371093 A JP12371093 A JP 12371093A JP H06328066 A JPH06328066 A JP H06328066A
Authority
JP
Japan
Prior art keywords
water
membrane
vaporizable
dissolved substance
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12371093A
Other languages
Japanese (ja)
Inventor
Masaomi Kondo
雅臣 近藤
Masao Nasu
正夫 那須
Akira Shimazu
彰 島津
Hisashi Ikehata
永 池端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP12371093A priority Critical patent/JPH06328066A/en
Publication of JPH06328066A publication Critical patent/JPH06328066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To provide a method for obtaining water which is free from a gasifiable dissolved substance. CONSTITUTION:Water containing a gasifiable dissolved substance is allowed to come into contact with a supplied carrier gas through a water impermeable membrane which permit gas permeation, while a decompressed state is maintained on the opposite side of the membrane. Thus, the gasifiable dissolved substance is selectively allowed to permeate as a gas through the membrane, and water free from the dissolved substance is obtained on the impermeable side of the membrane. At the same time, the gasifiable dissolved substance which is passed through a permeation process is removed and recovered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気化可能な物質が溶存
している水処理方法に関する。
TECHNICAL FIELD The present invention relates to a water treatment method in which a vaporizable substance is dissolved.

【0002】[0002]

【従来の技術】最近、気化可能な溶存物質による水環境
の汚染が問題となっている。特に、ハロゲン化合物など
の気化可能な物質が水中に含まれていることが明らかに
なり、人体・環境への悪影響が懸念されており、その除
去・回収が必要となってきている。
2. Description of the Related Art Recently, the pollution of the water environment by a vaporizable dissolved substance has become a problem. In particular, it has been clarified that a vaporizable substance such as a halogen compound is contained in water, and there is a concern that it may have an adverse effect on the human body and the environment, and its removal / recovery is needed.

【0003】水道事業における浄水処理工程において、
天然腐食物質であるフミン酸やフルボ酸の増加や生活排
水がもたらす有機物質が問題となって、水源の川や湖な
どの有機物汚染が環境基準以上の値を示すようになって
来ている。かかる汚染の進行とともに塩素酸化殺菌のた
めの塩素使用量が増大し、この結果化学反応によって、
ハロゲン化合物、特にクロロホルム、ブロモジクロロメ
タン、ジブロモクロロメタン、ブロモホルムなどのトリ
ハロメタン類を含む気化可能な溶存物質が生成され、こ
れらの中には発癌性を有するものもあるため、これらを
除去・回収しなければならない。
In the water purification process in the water supply business,
Increasing amounts of humic acid and fulvic acid, which are natural corrosive substances, and organic substances brought by domestic wastewater have become a problem, and the pollution of organic substances such as rivers and lakes, which are the source of water, has come to exceed the environmental standard. As the pollution progresses, the amount of chlorine used for chlorine oxidative sterilization increases, and as a result, the chemical reaction causes
Vaporizable dissolved substances containing halogen compounds, especially trihalomethanes such as chloroform, bromodichloromethane, dibromochloromethane, bromoform, etc., are produced, and some of them have carcinogenicity, so these must be removed and recovered. I have to.

【0004】また近年、水道水の不快臭による実例が多
発している。水道水の不快臭としては、塩素処理工程に
由来する塩素、水源に存在する藍藻類、放線菌によるジ
オスミン、2−メチルイソボルネオール等が確認されて
いる。これらを除去するためには、通常、塩素やオゾン
による酸化分解処理を必要とし、その結果として、特に
限定されないが、例えば、クロロホルムなどのトリハロ
メタン類やアセトアルデヒドなどのアルデヒド類などの
気化性不快臭成分を含む気化可能な溶存物質が発生す
る。 気化性不快臭のある水道水は毒性を有する恐れが
あり、飲む人に不安感を与えるため除去されるべきであ
る。一方、各種産業界において、トリクロロエチレン、
テトラクロロエチレンなどで代表される気化可能な溶存
物質が、金属機械部分の洗浄剤、クリーニング溶剤、原
毛処理剤、および半導体製造工程における洗浄剤として
多様に使用されており、その結果として排水中に溶存し
た気化可能な物質による汚染が深刻化しつつある。今
日、環境基準が強化されつつある中、これらの物質の除
去、および回収が急務となって来ている。
In recent years, many cases of unpleasant odor of tap water have occurred. As the unpleasant odor of tap water, chlorine derived from the chlorination process, cyanobacteria existing in the water source, diosmin by actinomycetes, 2-methylisoborneol, etc. have been confirmed. In order to remove these, usually, oxidative decomposition treatment with chlorine or ozone is required, and as a result, for example, but not limited to, trihalomethanes such as chloroform and volatile offensive odor components such as aldehydes such as acetaldehyde. A vaporizable dissolved substance containing is generated. Tap water, which has an unpleasant odor of vaporization, can be toxic and should be removed as it makes the drinker anxious. Meanwhile, in various industries, trichlorethylene,
Dissolvable substances that can be vaporized, such as tetrachloroethylene, are widely used as cleaning agents for metal machinery, cleaning solvents, hair treatment agents, and cleaning agents in the semiconductor manufacturing process.As a result, they are dissolved in wastewater. Pollution by vaporizable substances is becoming more serious. Nowadays, as environmental standards are being strengthened, removal and recovery of these substances are urgently needed.

【0005】しかし、近年の水環境への関心の高まりと
ともに、上記物質を除去する高度処理が必要とされてい
るにもかかわらず、運転管理や環境上の問題から有効な
処理がなされていないのが現状である。
However, with the recent increasing interest in the water environment, even though advanced treatment for removing the above substances is required, effective treatment has not been achieved due to operational management and environmental problems. Is the current situation.

【0006】[0006]

【発明が解決しようとする課題】これまでも、活性炭吸
着法や曝気法などによるトリハロメタンや気化性不快臭
成分などの気化可能な溶存物質の除去方法も検討されて
いるが、活性炭吸着法は、気化可能な溶存物質とともに
不気化性物質も選択的に活性炭に吸着してしまうため、
活性炭再生頻度を多く必要とし運転管理に手間がかかる
ことや、曝気法は大きな気液接触比を必要とするので設
備容積が大きくなるうえに、曝気で除かれる溶存物質が
大気中に放出されてしまうという問題があり、満足でき
る処理方法ではなかった。
Although a method for removing vaporizable dissolved substances such as trihalomethane and vaporizable unpleasant odor components by an activated carbon adsorption method or an aeration method has been studied so far, the activated carbon adsorption method is Since the non-vaporizable substance is selectively adsorbed on the activated carbon together with the dissolved substance that can be vaporized,
Activated carbon needs to be frequently regenerated, which requires time and effort for operation management.Since the aeration method requires a large gas-liquid contact ratio, the equipment volume becomes large, and dissolved substances that are removed by aeration are released into the atmosphere. However, there was a problem that it was not a satisfactory processing method.

【0007】[0007]

【課題を解決するための手段】本発明者は、水中に含ま
れる気化可能な溶存物質の除去および回収における前記
問題点を解決するために鋭意研究した結果、気体を透過
させる水不透過性膜を介して、その一方に、キャリア用
気体を供給しながら気化可能な溶存物質が含まれている
水を接触させ、他方を、減圧状態に保つことにより、気
化可能な溶存物質を気体として選択的に膜を透過させる
ことにより、効率よく上記物質を除去することができ、
さらに除去した気化可能な溶存物質を種々の方法で回収
することによって、外部に放出することなく処分できる
ことを見い出して、本発明に至ったものである。特に、
水道水を処理する場合は、硬度および殺菌に必要な残留
塩素濃度を保持しつつ上記物質を効率よく除去および回
収できることを見いだした。
DISCLOSURE OF THE INVENTION As a result of intensive studies conducted by the present inventor to solve the above-mentioned problems in the removal and recovery of vaporizable dissolved substances contained in water, a water-impermeable membrane that allows gas to permeate therethrough. Through one of them, contacting one of them with water containing a vaporizable dissolved substance while supplying a carrier gas, and maintaining the other under reduced pressure to selectively vaporize the vaporizable dissolved substance as a gas. By permeating the membrane through, it is possible to efficiently remove the above substances,
Further, the inventors of the present invention have found that the vaporized dissolved substance thus removed can be disposed of without being released to the outside by recovering the dissolved substance by various methods. In particular,
It has been found that when treating tap water, the above substances can be efficiently removed and recovered while maintaining the hardness and the residual chlorine concentration required for sterilization.

【0008】即ち本発明は、気体を透過させる水不透過
性膜を介して、その一方に、キャリア用気体を供給しな
がら気化可能な溶存物質が含まれている水を接触させ、
他方を、減圧状態に保つことにより、気化可能な溶存物
質を気化させ、気体として選択的に膜を透過させて、気
化可能な溶存物質が除去された水を膜の不透過側に得る
と共に、透過した気化可能な溶存物質を除去及び回収す
ることを特徴とする水処理方法を提供する。
That is, according to the present invention, water containing a dissolved substance that can be vaporized while supplying a carrier gas is brought into contact with one side of the water-impermeable membrane that allows the gas to pass therethrough,
On the other hand, by maintaining a reduced pressure state, the vaporizable dissolved substance is vaporized and selectively permeated through the membrane as a gas, and water from which the vaporizable dissolved substance is removed is obtained on the impermeable side of the membrane, Provided is a water treatment method characterized by removing and recovering a permeated vaporizable dissolved substance.

【0009】本発明において、処理対象物である水と
は、気化可能な溶存物質が含まれていれば特に限定され
ないが、例えば、水道水、井水、地下水、河川水、工業
用水、農業用水、工業排水、農業排水、生活排水、下水
等が挙げられる。
In the present invention, the water to be treated is not particularly limited as long as it contains a dissolved substance that can be vaporized. For example, tap water, well water, ground water, river water, industrial water, agricultural water. , Industrial wastewater, agricultural wastewater, domestic wastewater, sewage, etc.

【0010】本発明において気化可能な溶存物質とは、
例えば、ハロゲン化合物や気化性不快臭成分が挙げられ
る。ハロゲン化合物としては、クロロホルム、ブロモジ
クロロメタン、ジブロモクロロメタン、ブロモホルム、
塩化メチレン、四塩化炭素、トリクロロエタン、トリク
ロロエチレン、テトラクロロエチレン、臭化メチレン、
フッ化メチル、フッ化メチレンなどが挙げられる。
In the present invention, the vaporizable dissolved substance is
For example, a halogen compound and a vaporizable unpleasant odor component may be mentioned. As the halogen compound, chloroform, bromodichloromethane, dibromochloromethane, bromoform,
Methylene chloride, carbon tetrachloride, trichloroethane, trichloroethylene, tetrachloroethylene, methylene bromide,
Examples thereof include methyl fluoride and methylene fluoride.

【0011】また気化性不快臭成分としては、上記水中
の溶存ハロゲン化合物及びホルムアルデヒド、アセトア
ルデヒド、プロピルアルデヒドなどのアルデヒド類など
が挙げられる。
Examples of the vaporizing unpleasant odor component include the above-mentioned halogen compounds dissolved in water and aldehydes such as formaldehyde, acetaldehyde and propylaldehyde.

【0012】本発明においては、上記物質を含む水を水
不透過性膜の一方に接触させて、他方(透過側)を減圧
状態に保ち、かつキャリア用気体を膜の不透過側に供給
することにより、各物質を選択的に透過させる。
In the present invention, water containing the above substances is brought into contact with one of the water-impermeable membranes, the other (permeation side) is kept under reduced pressure, and the carrier gas is supplied to the impermeable side of the membrane. Thus, each substance is selectively permeated.

【0013】本発明において透過側を減圧状態に保つ方
法は、特に限定されないが、例えば真空ポンプなどを用
いて、透過側を、5〜150Torr程度の真空度に保つこ
とができる。またキャリア用気体としては、特に限定さ
れないが、例えば空気や、窒素、ヘリウム等の不活性ガ
スを用いることができる。
In the present invention, the method of keeping the permeate side in a reduced pressure state is not particularly limited, but the permeate side can be kept at a vacuum degree of about 5 to 150 Torr by using, for example, a vacuum pump. The carrier gas is not particularly limited, but for example, air or an inert gas such as nitrogen or helium can be used.

【0014】本発明においては、前記のごとく透過側を
減圧状態に保ちながら、キャリア用気体を供給する際、
透過成分として被除去成分以外に水蒸気が透過して真空
ポンプの負荷が増大し、運転コストが増加する場合があ
る。かかる場合には、操作温度の飽和水蒸気以上に真空
度を上げないように運転することで対応できる。
In the present invention, when the carrier gas is supplied while the pressure on the permeate side is reduced as described above,
In addition to the components to be removed, water vapor may permeate as a permeation component, which may increase the load on the vacuum pump and increase operating costs. Such a case can be dealt with by operating so as not to raise the degree of vacuum above the saturated steam at the operating temperature.

【0015】本発明におけるキャリア用気体の不透過側
への供給は、特に限定されないが、膜の不透過側におい
てキャリア用気体の供給量が、不透過側流出水量の20
%以上、好ましくは40%〜10倍となるようにキャリ
ア用気体を供給するのが望ましい。キャリア用気体の供
給が少なすぎて、20%未満の場合は、透過成分の除去
性を高める効果が少なくなる恐れがある。
The supply of the carrier gas to the impermeable side in the present invention is not particularly limited, but the supply amount of the carrier gas at the impermeable side of the membrane is 20 times the outflow water amount of the impermeable side.
It is desirable to supply the carrier gas in an amount of at least 40%, preferably 40% to 10 times. If the supply of the carrier gas is too small and is less than 20%, the effect of enhancing the removability of the permeation component may be reduced.

【0016】本発明において用いる水不透過性膜は、特
にその構造に限定されないが、例えば非多孔質活性薄膜
からなる均質膜や、緻密層または活性緻密層とこれを一
体に支持する多孔質層とからなる非対称膜や、かかる非
対称膜上に非多孔質活性薄膜が形成されてなる複合膜、
好ましくは非対称膜の緻密層中に非多孔質活性薄膜が一
部しみこんで形成されてなる複合膜等である。ここで活
性とは、気化可能な溶存物質と水とを分離する性質を有
するという意味である。
The water-impermeable membrane used in the present invention is not particularly limited in its structure. For example, a homogeneous membrane composed of a non-porous active thin film, a dense layer or an active dense layer and a porous layer integrally supporting the same. An asymmetric membrane composed of and a composite membrane in which a non-porous active thin film is formed on the asymmetric membrane,
Preferred is a composite film in which a non-porous active thin film is partially impregnated and formed in a dense layer of an asymmetric film. Here, the activity means that it has a property of separating a vaporizable dissolved substance from water.

【0017】上記水不透過性膜の30℃における窒素ガス
透過速度は、7×10-4〜2×102 Nm3/m2・ h ・ atm 、
好ましくは、3×10-3〜5×100 Nm3/m2・ h ・ atm で
ある。 窒素ガス透過速度が7×10-4Nm3/m2・ h ・ at
m より小さい場合、気化可能な溶存物質の透過速度が小
さくなる恐れがあり、一方 2×102 Nm3/m2・ h ・atm
より大きい場合は、水不透過性が維持できなくなる可
能性があるため好ましくない。
The nitrogen gas permeation rate of the water-impermeable membrane at 30 ° C. is 7 × 10 -4 to 2 × 10 2 Nm 3 / m 2 .h.atm,
Preferably, it is 3 × 10 −3 to 5 × 10 0 Nm 3 / m 2 · h · atm. Nitrogen gas permeation rate is 7 × 10 -4 Nm 3 / m 2 · h · at
If it is smaller than m, the permeation rate of the vaporizable dissolved substance may be reduced, while 2 × 10 2 Nm 3 / m 2 · h · atm
If it is larger than this, water impermeability may not be maintained, which is not preferable.

【0018】上記均質膜や非多孔質活性薄膜の具体例と
しては、シリコーン、ポリ(4−メチルペンテン−
1)、天然ゴム、ポリ(2,6−ジメチルフェニレンオ
キシド)、テフロン、ネオプレン、ポリエチレン、ポリ
スチレン、ポリプロピレン、ポリトリメチルシリルプロ
ピン等が挙げられる。
Specific examples of the above-mentioned homogeneous film and non-porous active thin film include silicone and poly (4-methylpentene-).
1), natural rubber, poly (2,6-dimethylphenylene oxide), Teflon, neoprene, polyethylene, polystyrene, polypropylene, polytrimethylsilylpropyne and the like.

【0019】また本発明において用いる非対称膜は特に
限定されないが、例えば芳香族ポリスルホン系、芳香族
ポリアミド系、芳香族ポリイミド系等が挙げられるが、
特に耐塩素性、耐pH性、耐熱性等の水系での耐久性を
有するという理由により、芳香族ポリスルホン系が好ま
しく用いられる。
The asymmetric membrane used in the present invention is not particularly limited, and examples thereof include aromatic polysulfone type, aromatic polyamide type and aromatic polyimide type.
In particular, aromatic polysulfones are preferably used because they have durability in water such as chlorine resistance, pH resistance, and heat resistance.

【0020】前記水不透過性膜の形状は特に限定されな
いが、中空糸状または平膜状が挙げられ、また不織布の
ような補強材上に形成されていてもよい。かかる水不透
過性膜及びその膜を内蔵してなるモジュールの形状は何
ら限定されないが、例えばシート状の膜を巻回してなる
所謂スパイラル型膜モジュールを用いることができる。
The shape of the water-impermeable membrane is not particularly limited, but may be hollow fiber or flat membrane, and may be formed on a reinforcing material such as nonwoven fabric. The shape of such a water-impermeable membrane and the module containing the membrane are not particularly limited, but a so-called spiral type membrane module formed by winding a sheet-like membrane can be used, for example.

【0021】本発明における気化可能な溶存物質の除去
現象は、気化可能な溶存物質が選択的に膜透過すること
に基づいているため、気化可能な溶存物質の膜透過をで
きるだけ妨げないことが望ましい。このため、上記スパ
イラル型膜モジュールを用いる場合には、その透過側流
路間隙(透過側膜間ギヤップ)が、0.3〜2.5mmで
あるのが好ましく、特に好ましくは0.5〜2.0mmで
ある。0.3mmよりも薄くなると、透過側流路間隙にお
ける圧力損失が大きくなりすぎるため、気化した溶存物
質の膜透過が抑えられてしまい、それら物質の除去速度
が悪くなる恐れがある。また、2.5mmより厚くなる
と、各物質の除去速度に対する膜モジュールの容積効率
が悪くなってしまう恐れがある。
Since the phenomenon of removing the vaporizable dissolved substance in the present invention is based on the selective permeation of the vaporizable dissolved substance through the membrane, it is desirable that the permeation of the vaporizable dissolved substance through the membrane is prevented as much as possible. . For this reason, when the above spiral type membrane module is used, the permeation side flow path gap (permeation side intermembrane gap) is preferably 0.3 to 2.5 mm, particularly preferably 0.5 to 2 mm. It is 0.0 mm. If the thickness is less than 0.3 mm, the pressure loss in the permeation-side flow path gap becomes too large, so that permeation of vaporized dissolved substances through the membrane is suppressed, and the removal rate of these substances may be deteriorated. If the thickness is more than 2.5 mm, the volumetric efficiency of the membrane module with respect to the removal rate of each substance may deteriorate.

【0022】本発明において、前記のごとく透過した気
化可能な溶存物質を回収する方法は、特に限定されない
が、例えば、活性炭吸着法、溶剤吸収法、冷却凝縮法な
どを用いるのが好ましい。
In the present invention, the method of recovering the vaporizable dissolved substance that has permeated as described above is not particularly limited, but it is preferable to use, for example, an activated carbon adsorption method, a solvent absorption method, a cooling condensation method or the like.

【0023】活性炭吸着法は、通常脱臭などに用いられ
ている小型のものでよく、吸着効率を向上させるため、
ハニカム構造、繊維状、粒状、微粉状などを適宜選ぶこ
とができる。また、透過成分中に水蒸気が通常より多く
含まれるため、前処理として乾燥工程を経ることが好ま
しい。
The activated carbon adsorption method may be a small one usually used for deodorization and the like, and in order to improve adsorption efficiency,
A honeycomb structure, a fibrous shape, a granular shape, a fine powder shape, or the like can be appropriately selected. Further, since the permeation component contains more water vapor than usual, it is preferable to perform a drying step as a pretreatment.

【0024】また溶剤吸収法は、気化可能な溶存物質の
溶解性の高い溶剤に吸収し分離・回収する方法で、例え
ば、エチルアルコール、イソプロピルアルコール、ブチ
ルアルコールなどのアルコール類、アセトン、メチルエ
チルケトンなどのケトン類、酢酸ブチル、プロピオン酸
ブチル、酪酸ブチルなどのエステル類、ヘキサン、ペン
タン、石油ベンジン、ケロシン、重油、軽油、トルエン
などの炭化水素類、機械油、パラフィン油、植物油など
が用いられる。この場合、気化可能な溶存物質の回収効
率を上げるためには、蒸気圧の低い高沸点性の溶剤など
が優れており、特にケロシン、重油、軽油、機械油、パ
ラフィン油、植物油などが好ましく用いられる。これら
の液状物はまた、吸収回収された気化可能な溶存物質と
ともに焼却することにより処理することも可能である。
この場合も前処理として乾燥工程を経ることが好まし
い。
The solvent absorption method is a method of absorbing and separating and recovering a vaporizable dissolved substance in a solvent having a high solubility. For example, alcohols such as ethyl alcohol, isopropyl alcohol, butyl alcohol, acetone, methyl ethyl ketone, etc. Ketones, butyl acetate, butyl propionate, butyl butyrate, and other esters, hexane, pentane, petroleum benzine, kerosene, heavy oil, light oil, hydrocarbons such as toluene, machine oil, paraffin oil, and vegetable oil are used. In this case, in order to improve the recovery efficiency of the vaporizable dissolved substance, a solvent having a low vapor pressure and a high boiling point is excellent, and particularly kerosene, heavy oil, light oil, machine oil, paraffin oil, vegetable oil and the like are preferably used. To be These liquids can also be treated by incineration with the absorbed and recovered vaporizable dissolved substances.
Also in this case, it is preferable to perform a drying step as a pretreatment.

【0025】冷却凝縮法は、水冷、アルコール類、ドラ
イアイス、液体窒素などを用いて凝縮器により凝縮回収
する方法であり、上記方法よりも回収方法が簡単である
反面、回収率が劣る場合もある。
The cooling condensation method is a method of condensing and recovering with a condenser using water cooling, alcohols, dry ice, liquid nitrogen, etc. Although the recovering method is simpler than the above method, there are cases where the recovery rate is inferior. is there.

【0026】[0026]

【発明の効果】本発明の処理方法によれば、気化可能な
溶存物質の膜透過速度を大きくでき、かつ水蒸気の膜透
過を抑えることができるため、従来法に比べて運転管理
を簡素化できかつ環境汚染を引き起こさないという利点
がある。特に、水道水を処理する場合は、硬度および殺
菌に必要な残留塩素濃度を保持しつつ上記物質を効率よ
く除去することができる。かかる水道水中の殺菌に必要
な残留塩素濃度は、水源の川や湖などの汚染程度により
異なるが、水道法施行規則により0.1ppm以上と定
められている。
According to the treatment method of the present invention, the membrane permeation rate of a vaporizable dissolved substance can be increased, and the membrane permeation of water vapor can be suppressed. Therefore, the operation management can be simplified as compared with the conventional method. Moreover, there is an advantage that it does not cause environmental pollution. Especially when treating tap water, the above substances can be efficiently removed while maintaining the hardness and the residual chlorine concentration required for sterilization. The residual chlorine concentration required for sterilization in tap water varies depending on the degree of pollution of the water source such as rivers and lakes, but is regulated to be 0.1 ppm or more by the Waterworks Law Enforcement Regulations.

【0027】[0027]

【実施例】以下に実施例により本発明を説明するが、本
発明はこれら実施例に何ら限定されるものではない。 実施例1 不織布上に形成されたポリスルホン多孔質膜上に、ポリ
ジメチルシロキサンを1.5μmの厚みで形成させて複
合膜を得た。 かかる複合膜の30℃における窒素ガス透
過速度は、0.6 Nm3/m2・ h ・ atm であった。この膜
(膜面積:2.0m2)を、外径2インチ、長さ1m 、透
過側流路間隙0.6mmのスパイラル型膜モジュールに成
型した。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. Example 1 Polydimethylsiloxane was formed on the porous polysulfone membrane formed on the nonwoven fabric to a thickness of 1.5 μm to obtain a composite membrane. The nitrogen gas permeation rate at 30 ° C. of this composite film was 0.6 Nm 3 / m 2 · h · atm. This membrane (membrane area: 2.0 m 2 ) was molded into a spiral type membrane module having an outer diameter of 2 inches, a length of 1 m and a permeation side flow path gap of 0.6 mm.

【0028】かかる膜モジュールの一方に、硬度40pp
m,残留塩素を1.02ppm 含み、表1に示すハロゲン化
合物および気化性不快臭成分が溶解した20℃の水道水
を、120L/分で流し、他方を真空ポンプで真空度40
Torrに保ち、かつ膜モジュール内において、膜の不透過
側流出気体量が膜の不透過側流出水量の70%となるよ
うにキャリア用気体として、空気を供給した結果、硬度
および残留塩素濃度は、それぞれ39ppm および0.9
0ppm となった。得られた透過ガスを真空ポンプの後工
程に設備した充填量500mLのケロシン吸収槽に100
時間通したところ、出口気体中のハロゲン化合物および
気化性不快臭成分は検出されなかった。このときの膜モ
ジュールの供給液、処理液のハロゲン化合物およびハロ
ゲン化合物の回収量の測定結果を表1に示す。
One of such membrane modules has a hardness of 40 pp
m, residual chlorine 1.02ppm, halogen compounds shown in Table 1 and vaporized unpleasant odor components dissolved at 20 ℃ tap water, 120L / min flow the other, vacuum degree 40 vacuum
As a result of supplying air as a carrier gas so that the amount of outflow gas on the impermeable side of the membrane was 70% of the amount of outflow water on the impermeable side of the membrane in the membrane module, the hardness and residual chlorine concentration were , 39 ppm and 0.9 respectively
It became 0 ppm. 100% of the obtained permeated gas was put into a kerosene absorption tank with a filling amount of 500 mL installed in the post process of a vacuum pump.
After passing the time, no halogen compound or vaporizable unpleasant odor component was detected in the outlet gas. Table 1 shows the measurement results of the halogen compound and the halogen compound recovery amount of the membrane module supply solution and the treatment solution at this time.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例2〜3 実施例1の方法において、膜モジュール内の不透過側供
給気体量が膜の不透過側流出水量のそれぞれ45,60
%となるように、キャリア用空気を供給したときの膜モ
ジュール供給液、処理液中のクロロホルム濃度を測定
し、その結果を表2に示す。
Examples 2 to 3 In the method of Example 1, the amount of feed gas on the non-permeate side in the membrane module is 45, 60 of the amount of water discharged on the non-permeate side of the membrane, respectively.
The concentrations of chloroform in the membrane module supply liquid and the treatment liquid when the carrier air was supplied were measured so that the concentration became%, and the results are shown in Table 2.

【0031】比較例 比較例として、キャリア用空気を供給しない以外は、実
施例1と同様にした場合の結果も表2に併せて示した。
Comparative Example As a comparative example, Table 2 also shows the result when the same operation as in Example 1 was performed except that the carrier air was not supplied.

【0032】[0032]

【表2】 [Table 2]

【0033】これらの結果から、本発明の方法によれ
ば、硬度および残留塩素濃度を保持しつつハロゲン化合
物および気化性不快臭成分の除去された水が、効率的に
得られることがわかる。
From these results, it is understood that according to the method of the present invention, water free of halogen compounds and vaporizable unpleasant odor components can be efficiently obtained while maintaining hardness and residual chlorine concentration.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 気体を透過させる水不透過性膜を介し
て、その一方に、キャリア用気体を供給しながら気化可
能な溶存物質が含まれている水を接触させ、他方を、減
圧状態に保つことにより、気化可能な溶存物質を気体と
して選択的に膜を透過させて、気化可能な溶存物質が除
去された水を膜の不透過側に得ると共に、透過した気化
可能な溶存物質を除去及び回収することを特徴とする水
処理方法。
1. A water-impermeable membrane that allows gas to permeate therethrough, and one of them is brought into contact with water containing a dissolved substance that can be vaporized while supplying a carrier gas, and the other is brought into a depressurized state. By keeping it, the vaporizable dissolved substance is selectively permeated through the membrane as a gas, and the water from which the vaporizable dissolved substance is removed is obtained on the impermeable side of the membrane, and the permeated vaporizable dissolved substance is removed. And a water treatment method characterized by recovering.
【請求項2】 気化可能な溶存物質が、ハロゲン化合物
および気化性不快臭成分であることを特徴とする請求項
1記載の水処理方法。
2. The water treatment method according to claim 1, wherein the vaporizable dissolved substance is a halogen compound and a vaporizable unpleasant odor component.
【請求項3】 硬度および殺菌に必要な残留塩素濃度を
保持しつつ、ハロゲン化合物および気化性不快臭成分が
除去された水道水を得ることを特徴とする請求項2記載
の水道水処理方法。
3. The tap water treatment method according to claim 2, wherein tap water from which halogen compounds and vaporized unpleasant odor components are removed is obtained while maintaining hardness and residual chlorine concentration necessary for sterilization.
【請求項4】 膜の不透過側において、キャリア用気体
の供給量が、膜の不透過側における流出水量の20%以
上となるようにキャリア用気体を膜の不透過側に供給す
ることを特徴とする請求項1記載の水処理方法。
4. The carrier gas is supplied to the impermeable side of the membrane so that the supply amount of the carrier gas is 20% or more of the outflow water amount on the impermeable side of the membrane. The water treatment method according to claim 1, which is characterized in that.
【請求項5】 キャリア用気体が空気または不活性ガス
であることを特徴とする請求項1記載の水処理方法。
5. The water treatment method according to claim 1, wherein the carrier gas is air or an inert gas.
JP12371093A 1993-05-26 1993-05-26 Water treatment Pending JPH06328066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12371093A JPH06328066A (en) 1993-05-26 1993-05-26 Water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12371093A JPH06328066A (en) 1993-05-26 1993-05-26 Water treatment

Publications (1)

Publication Number Publication Date
JPH06328066A true JPH06328066A (en) 1994-11-29

Family

ID=14867444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12371093A Pending JPH06328066A (en) 1993-05-26 1993-05-26 Water treatment

Country Status (1)

Country Link
JP (1) JPH06328066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184239A (en) * 2001-07-16 2010-08-26 Rheodyne Llc Method for creating membrane degassing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184239A (en) * 2001-07-16 2010-08-26 Rheodyne Llc Method for creating membrane degassing system

Similar Documents

Publication Publication Date Title
US6117328A (en) Adsorbent-filled membranes for pervaporation
Ducom et al. Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production
US5032148A (en) Membrane fractionation process
JP2560944B2 (en) Method for manufacturing composite semipermeable membrane
KR100623326B1 (en) Method for treating waste water
Scaratti et al. 1, 4-Dioxane removal from water and membrane fouling elimination using CuO-coated ceramic membrane coupled with ozone
US6059857A (en) Ultrapurification of organic solvents
JP3922935B2 (en) Water treatment system
JP2001149918A (en) Treating apparatus of wastewater including volatile organic substance and treating method thereof
JPH06328066A (en) Water treatment
JPH022820A (en) Separation of mixed solution
JPH05309358A (en) Treatment of tap water
JPH05138165A (en) Treating method for city water
JPH05192543A (en) Method and apparatus for regenerating membrane evaporative concentrator of waste fluid
JP2949732B2 (en) Degassing method using pervaporation membrane module
KR102038324B1 (en) A dehydration system for mixture of water and organic solvent
JPH0671130A (en) Apparatus for treating gas containing vapor of water-soluble organic substance
KR100593600B1 (en) Separation and removal device of contaminants in wastewater evaporation condensate
JP2898080B2 (en) Operation method of degassing membrane device
Barber et al. Pervaporation technology: fundamentals and environmental applications
JPH0422425A (en) Removing and recovering method for halogenated hydrocarbon
JP4339500B2 (en) Oily substance desorption method and oily substance concentrator
JPH0755288B2 (en) How to remove bad odor from water
KR100447942B1 (en) Maintenance of membranes by prefiltration at high pressure and by cleaning their microstructures with supercritical fluids
JPH0515749A (en) Separation and recovery membrane and method for chlorine type organic solvent