JPH06327935A - Removing method of nf3 - Google Patents

Removing method of nf3

Info

Publication number
JPH06327935A
JPH06327935A JP5123948A JP12394893A JPH06327935A JP H06327935 A JPH06327935 A JP H06327935A JP 5123948 A JP5123948 A JP 5123948A JP 12394893 A JP12394893 A JP 12394893A JP H06327935 A JPH06327935 A JP H06327935A
Authority
JP
Japan
Prior art keywords
gas
reaction tube
polysilane
reaction
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5123948A
Other languages
Japanese (ja)
Inventor
Isamu Mori
勇 毛利
Tadashi Fujii
正 藤井
Yoshiyuki Kobayashi
義幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP5123948A priority Critical patent/JPH06327935A/en
Publication of JPH06327935A publication Critical patent/JPH06327935A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently and stably remove an NF3-containing gas at less than specified temp. by allowing the NF3-containing gas to react with polysilane, polysilane oxide or halogen-containing polysilane oxide within a specified temp. range and capturing an obtained gaseous fluoride. CONSTITUTION:The NF3-containing gas is allowed to react with polysilane, polysilane oxide or halogen-containing polysilane oxide within the range of 120-300 deg.C, and the obtained gaseous fluoride is captured. In such a way, the NF3-containing gas is removed efficiently at a low temp. of <=300 deg.C, and this method can be executed safely without secondary production of the gas having explosive property.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ドライエッチングガス
やクリーニングガスとして使用されているNF3 ガスの
除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing NF 3 gas used as a dry etching gas or a cleaning gas.

【0002】[0002]

【従来の技術および解決すべき問題点】NF3 はLS
I、TFT、太陽電池や電子写真プロセスにおけるドラ
イエッチングガスやクリーニングガスとして使用されて
いる。しかし、NF3 は大気中で極めて安定であり、水
にもほとんど溶解せずTLV10ppmの毒性ガスであ
り、これを使用する場合にはその残ガスの排気の際には
除去が常に必要である。
PRIOR ART AND PROBLEMS TO BE SOLVED NF 3 is LS
It is used as dry etching gas and cleaning gas in I, TFT, solar cells and electrophotographic processes. However, NF 3 is extremely stable in the atmosphere, is hardly dissolved in water, and is a toxic gas with a TLV of 10 ppm, and when it is used, its residual gas must always be removed when exhausted.

【0003】NF3 の除去方法としては次に示す方法が
取られている。 燃焼法 NF3 を加熱分解し、分解生成物をアルカリに吸収させ
る方法 カーボンと反応させる方法 NF3 、C→N2 、N2 4 、CF4 、C2 6 金属及びこれらの非酸化物系の化合物と反応させる方
法 NF3 、Me→MeFX 、N2 これらの方法は何れも500℃以上の高温での処理が必
要ある。そのため、装置のランニングコストが高く、作
業者の安全面での問題、さらにプロセスに流れるSiH
4 等の可燃性ガスとNF3 が高温で混合し爆発の危険性
があるといった問題を有する。そこで、低温で処理がで
き、かつ高効率な除去方法が望まれている。
The following method has been adopted as a method for removing NF 3 . Combustion method Heat decomposition of NF 3 and absorption of decomposition products into alkali Method of reacting with carbon NF 3 , C → N 2 , N 2 F 4 , CF 4 , C 2 F 6 metal and non-oxides thereof Method of reacting with system compound NF 3 , Me → MeF X , N 2 All of these methods require treatment at a high temperature of 500 ° C. or higher. Therefore, the running cost of the device is high, there is a problem in terms of worker safety, and SiH flowing in the process
There is a problem that combustible gas such as 4 and NF 3 are mixed at high temperature and there is a danger of explosion. Therefore, there is a demand for a highly efficient removal method that can be processed at a low temperature.

【0004】また、の方法において金属シリコンを用
いてNF3 を分解したガスを捕集して除去する方法も提
案されているが(特公昭63−48570号)、実用的
には400℃以上に金属シリコンを加熱しないと充分な
反応速度が得られない。また、NF3 の除去を必要とす
るプロセスではO2 やN2 O等の酸化力を有するガスが
混在している場合が多い。この様なガスが400℃以上
の高温で金属シリコンと接触すると表面に膜状のシリコ
ン酸化物を形成し、NF3 の分解効率が著しく低下する
という問題が生じる。
Further, in the method (1), a method of collecting and removing a gas obtained by decomposing NF 3 by using metallic silicon has been proposed (Japanese Patent Publication No. 63-48570), but it is practically 400 ° C. or higher. Unless the metallic silicon is heated, a sufficient reaction rate cannot be obtained. In addition, in a process that requires removal of NF 3 , gases having oxidizing power such as O 2 and N 2 O are often mixed. When such a gas comes into contact with metallic silicon at a high temperature of 400 ° C. or higher, a film-like silicon oxide is formed on the surface, which causes a problem that the decomposition efficiency of NF 3 is significantly reduced.

【0005】以上の問題から300℃以下の低温でNF
3 を効率よく除去できる方法が望まれている。
Due to the above problems, NF can be used at a low temperature of 300 ° C. or lower.
A method capable of efficiently removing 3 is desired.

【0006】[0006]

【問題点を解決するための手段】本発明は、前記した従
来法の問題点を解決する工業的なNF3 の除去方法を提
供するものである。具体的には、ポリシラン、酸化ポリ
シラン等とNF3 を120〜300℃の温度範囲で反応
させ、得られるフッ化物ガスを補集することを特徴とす
るNF3 の除去方法である。
The present invention provides an industrial method for removing NF 3 which solves the above-mentioned problems of the conventional method. Specifically, it is a method for removing NF 3 , which comprises reacting polysilane, oxidized polysilane or the like with NF 3 in a temperature range of 120 to 300 ° C. to collect the obtained fluoride gas.

【0007】本発明は、NF3 を処理剤と反応させ生成
するフッ化物ガスとN2 を得る工程と得られるフッ化物
ガスを補集する工程とよりなるものである。以下第1段
階で用いる処理剤について説明すると、SiH4 、Si
n m (X:ハロゲン)等のシラン系の化合物をプラ
ズマ中に導入すると、高次シラン(SiHn m ,0<
n , 0≦m )を生成する。高次シランがある程度の大き
さを持つようになるとプラズマ中で漂う物体と見なされ
るようになり、その表面は負に帯電する。そのため、正
の電位を持つプラズマ中に長時間滞在することになり、
次第に大きなサイズとなり、粉体となる。ここで言うポ
リシランはこの様にして生成した高次シランの粉体を表
している。
The present invention comprises a step of reacting NF 3 with a treating agent to obtain a fluoride gas produced and N 2 , and a step of collecting the obtained fluoride gas. The processing agents used in the first stage will be described below. SiH 4 , Si
When a silane-based compound such as H n X m (X: halogen) is introduced into the plasma, a higher order silane (SiH n X m , 0 <
n, 0 ≦ m) is generated. When the higher-order silane has a certain size, it is regarded as an object floating in the plasma, and its surface becomes negatively charged. Therefore, they will stay in plasma with a positive potential for a long time,
Gradually larger size and powder. The polysilane referred to here represents a powder of higher order silane thus produced.

【0008】また、ポリシランは加熱することにより生
成することも知られている。本発明においてはポリシラ
ンの生成法は、プラズマ、熱どちらの方法かは問わな
い。この様にして生成したポリシランは、多数のダング
リングボンドを有するため、大気中に放出するとダング
リングボンドの一部がすぐに自然酸化し、SiHn m
L (0<n,0≦m,0<L )なる酸化物となる。本発明
においては、この酸化ポリシラン(または含ハロゲン酸
化ポリシラン)を処理剤として用いる。この酸化ポリシ
ランをNF3 と接触させると容易に反応し、主生成物で
あるSiF4 、N 2 とHF、HCl等のガスを生じる。
また固体としては、極少量のSiO2 を生成する。生成
物は、毒性、爆発性を有するN2 4 の副生もなく、何
れもNF3との混合による爆発の危険性もなく、極めて
安全である。また、自然酸化を受けたポリシランは、前
記したNF3 の除去温度条件では酸素が混合した場合で
も反応性が低下するという問題も無い。
Polysilane is also produced by heating it.
It is also known to In the present invention, polysila
It does not matter whether plasma is generated or heat is generated.
Yes. The polysilane produced in this way is
Since it has a ring bond, it is dangling when released into the atmosphere.
Part of the ring bond immediately spontaneously oxidizes and SiHnXm
OLThe oxide becomes (0 <n, 0 ≦ m, 0 <L). The present invention
In this case, the oxidized polysilane (or halogen-containing acid
Polysilane) is used as a treating agent. This oxidation policy
Run to NF3It reacts easily when contacted with
SiFFour, N 2And gases such as HF and HCl are produced.
As a solid, a very small amount of SiO2To generate. Generate
Thing is toxic and explosive N2FFourWithout by-product of what
This is also NF3There is no danger of explosion due to mixing with
It's safe. In addition, polysilane that has undergone natural oxidation
NF noted3In the removal temperature condition of
However, there is no problem that reactivity decreases.

【0009】本発明で処理するNF3 ガスは、NF3
00%はもちろんこと、N2 、Ar、He等不活性ガス
で希釈されたNF3 を含むガスについても勿論適用可能
である。しかし、処理剤とNF3 との反応は発熱反応で
あり、その反応速度は非常に速いため、高濃度のNF3
を反応させると、温度が急上昇する可能性がある。従っ
て、処理するNF3 濃度は、処理剤を充填する反応管の
構造にもよるが、50vol%以下の濃度に希釈するこ
とが望ましい。
The NF 3 gas treated in the present invention is NF 3 1
Of course, it is applicable not only to 00% but also to a gas containing NF 3 diluted with an inert gas such as N 2 , Ar or He. However, reaction with the treatment agent and NF 3 is exothermic, therefore the reaction rate is very fast, high concentration of NF 3
When reacted with, the temperature may rise sharply. Therefore, although the NF 3 concentration to be treated depends on the structure of the reaction tube filled with the treatment agent, it is desirable to dilute it to a concentration of 50 vol% or less.

【0010】また、反応温度は、一般に120〜300
℃、より好ましくは、150〜200℃の範囲が選択さ
れる。また、接触時間は用いる反応管の構造により0.
1秒から数時間の範囲で適時選択すればよい。また、圧
力は、加圧下であれば反応は促進されるが、大気圧もし
くは減圧下でも充分な速度で除去できるため、適時選択
すればよい。
The reaction temperature is generally 120 to 300.
C., more preferably in the range of 150-200.degree. In addition, the contact time depends on the structure of the reaction tube used and is 0.
The time may be appropriately selected within the range of 1 second to several hours. The reaction is accelerated if the pressure is increased, but the reaction can be removed at a sufficient rate even under atmospheric pressure or reduced pressure.

【0011】反応器としては、固気反応を行うものであ
れば、特に制限はないが、強制循環式、固定床流通式、
流動層式などの接触良好な反応器が好ましい。また、そ
の材質としては、モネル、Ni等の高耐フッ素性材料が
好ましいが、該方法においては反応温度が低いためにス
テンレス、ハステロイ等の通常の構造材料でも差し支え
ない。
The reactor is not particularly limited as long as it can carry out a solid-gas reaction, but a forced circulation type, a fixed bed flow type,
A reactor with good contact such as a fluidized bed type is preferable. Further, as the material thereof, a high fluorine resistance material such as Monel or Ni is preferable, but since the reaction temperature is low in this method, a normal structural material such as stainless steel or Hastelloy may be used.

【0012】第一段階で生成したフッ化物及びN2 は、
次いでフッ化物の補集工程で処理される。その方法は、
従来公知の種々の方式が可能であり、例えば、水もしく
はアルカリ性水溶液によるスクラッビング、ソーダライ
ム、KOH、NaOH、CaO、Ca(OH)2 等のア
ルカリ性固体及びNaF、ゼオライト等の吸着剤との接
触により容易に除去できる。そして、最終的にはNF3
を10ppm以下に効果的に除去することができるもの
である。
The fluoride and N 2 produced in the first step are
Then, it is treated in a fluoride collecting step. The method is
Various conventionally known methods are possible, for example, by scrubbing with water or an alkaline aqueous solution, contact with an alkaline solid such as soda lime, KOH, NaOH, CaO or Ca (OH) 2 and an adsorbent such as NaF or zeolite. Can be easily removed. And finally NF 3
Can be effectively removed to 10 ppm or less.

【0013】[0013]

【実施例】以下、本発明を実施例により詳細に説明す
る。 実施例1 直径1インチ、長さ2mのSUS製パイプに酸化ポリシ
ラン((SiH1.3 0.5)n 、BET比表面積:91m
2 /g)を500g充填し、外部ヒータで200℃に加
温させたのち、100%NF3 を3L/minで60分
供給した。その際、反応管のガス導入孔から10cmの
位置に設置した熱電対の計測温度が240℃に上昇し
た。出口ガスの一部を補集しFT−IR、ガスクロマト
グラフで分析したところ、NF3 の濃度は定量下限(1
ppm)未満で、他は主にN2 、SiF4 、HFであっ
た。また、出口ガスを直径4インチ高さ1mにラッシリ
ングを充填したスクラバーに供給し、20%NaOH溶
液で洗浄したところ、排ガスのフッ素分は2ppmであ
った。
EXAMPLES The present invention will be described in detail below with reference to examples.
It Example 1 A pipe made of SUS with a diameter of 1 inch and a length of 2 m was oxidized with a poly
Run ((SiH1.3O 0.5)n, BET specific surface area: 91m
2/ G) to 500g and heated to 200 ° C with an external heater.
After warming, 100% NF360 min at 3 L / min
Supplied. At that time, 10 cm from the gas introduction hole of the reaction tube
The temperature measured by the thermocouple installed at the
It was A part of the outlet gas is collected to collect FT-IR and gas chromatography.
When analyzed by graph, NF3Is the lower limit of quantification (1
ppm), other than mainly N2, SiFFour, HF
It was In addition, the outlet gas is 4 inches in diameter and 1 m in height.
Supplied to a scrubber filled with
After cleaning with a liquid, the fluorine content of the exhaust gas was 2 ppm
It was.

【0014】反応終了後、反応管内にN2 を流通させ、
5×10-3Torrまで真空引きを行ったのち、760
TorrまでN2 を封入し、大気開放して内部を観察し
たが反応管内の腐食はなかった。また、反応管壁に微量
の白色粉体(SiO2 )が付着していたが、反応管や排
気系配管の閉塞等は起こらなかった。
After the reaction is completed, N 2 is circulated in the reaction tube,
After vacuuming to 5 × 10 -3 Torr, 760
N 2 was sealed up to Torr, the atmosphere was opened to the inside, and the inside was observed, but there was no corrosion in the reaction tube. Further, a small amount of white powder (SiO 2 ) adhered to the wall of the reaction tube, but the reaction tube and the exhaust system piping were not blocked.

【0015】実施例2 実施例1と同様の装置を用いて、酸化ポリシラン500
gを充填し、外部ヒータで200℃に昇温させた後、N
2 で希釈した1%のNF3 を3L/minで60分間供
給した。その際、反応管の何れの温度も上昇しなかっ
た。出口ガスの濃度は、NF3 1ppmで、他は主にS
iF4 、N2 、HFであった。さらに、このガスを直径
2インチ高さ1mのステンレス管にソーダライムを充填
し、外部ヒータで150℃に昇温させたのち、供給した
ところ排ガスのフッ素分は3ppmであった。
Example 2 Using the same apparatus as in Example 1, polyoxysilane oxide 500 was used.
After charging g and heating up to 200 ° C. with an external heater,
1% NF 3 diluted with 2 was supplied at 3 L / min for 60 minutes. At that time, neither temperature of the reaction tube increased. The concentration of the outlet gas is 1 ppm of NF 3 and the other is mainly S
iF 4 , N 2 and HF. Further, this gas was filled in a stainless steel tube having a diameter of 2 inches and a height of 1 m with soda lime and heated to 150 ° C. by an external heater. When supplied, the fluorine content of the exhaust gas was 3 ppm.

【0016】反応終了後、反応管内にN2 を流通させ、
5×10-3Torrまで真空引きを行ったのち、760
TorrまでN2 を封入し、大気開放して内部を観察し
たが反応管内の腐食はなかった。また、反応管壁に微量
の白色粉体(SiO2 )が付着していたが、反応管や排
気系配管の閉塞等は起こらなかった。
After the reaction is completed, N 2 is circulated in the reaction tube,
After vacuuming to 5 × 10 -3 Torr, 760
N 2 was sealed up to Torr, the atmosphere was opened to the inside, and the inside was observed, but there was no corrosion in the reaction tube. Further, a small amount of white powder (SiO 2 ) adhered to the wall of the reaction tube, but the reaction tube and the exhaust system piping were not blocked.

【0017】実施例3 実施例1と同様の装置を用いて、酸化ポリシラン500
gを充填し、外部ヒータで150℃に加温したのち、N
2 で1%に希釈したNF3 を3L/minで60分間供
給した。その際、出口ガスの濃度はNF3 が1ppm
で、他は主にN2、SiF4 、HFであった。さらにこ
のガスを実施例1と同様のスクラバーに供給し、洗浄し
たところフッ素分は2ppmであった。
Example 3 Using the same equipment as in Example 1, polysilane oxide 500 was used.
After filling with g and heating to 150 ° C with an external heater, N
NF 3 diluted to 1% with 2 was supplied at 3 L / min for 60 minutes. At that time, the concentration of the outlet gas was 1 ppm of NF 3.
Others were mainly N 2 , SiF 4 and HF. Further, this gas was supplied to the same scrubber as in Example 1 and washed, and the fluorine content was 2 ppm.

【0018】反応終了後、反応管内にN2 を流通させ、
5×10-3Torrまで真空引きを行ったのち、760
TorrまでN2 を封入し、大気開放して内部を観察し
たが反応管内の腐食はなかった。また、反応管壁に微量
の白色粉体(SiO2 )が付着していたが、反応管や排
気系配管の閉塞等は起こらなかった。
After the reaction is completed, N 2 is passed through the reaction tube,
After vacuuming to 5 × 10 -3 Torr, 760
N 2 was sealed up to Torr, the atmosphere was opened to the inside, and the inside was observed, but there was no corrosion in the reaction tube. Further, a small amount of white powder (SiO 2 ) adhered to the wall of the reaction tube, but the reaction tube and the exhaust system piping were not blocked.

【0019】実施例4 実施例1と同様の装置を用いて、酸化ポリシラン500
gを充填し、外部ヒータで120℃に加温したのち、N
2 で1%に希釈したNF3 を3L/minで60分間供
給した。その際、出口ガスの濃度はNF3 が3ppm
で、他は主にN2、SiF4 、HFであった。さらにこ
のガスを実施例1と同様のスクラバーに供給し、洗浄し
たところフッ素分は5ppmであった。
Example 4 Using the same apparatus as in Example 1, polyoxidized oxide 500 was used.
After filling with g and heating to 120 ° C with an external heater, N
NF 3 diluted to 1% with 2 was supplied at 3 L / min for 60 minutes. At that time, the concentration of the outlet gas has NF 3 3 ppm
Others were mainly N 2 , SiF 4 and HF. Further, this gas was supplied to the same scrubber as in Example 1 and washed, and the fluorine content was 5 ppm.

【0020】反応終了後、反応管内にN2 を流通させ、
5×10-3Torrまで真空引きを行ったのち、760
TorrまでN2 を封入し、大気開放して内部を観察し
たが反応管内の腐食はなかった。また、反応管壁に微量
の白色粉体(SiO2 )が付着していたが、反応管や排
気系配管の閉塞等は起こらなかった。
After the reaction is completed, N 2 is circulated in the reaction tube,
After vacuuming to 5 × 10 -3 Torr, 760
N 2 was sealed up to Torr, the atmosphere was opened to the inside, and the inside was observed, but there was no corrosion in the reaction tube. Further, a small amount of white powder (SiO 2 ) adhered to the wall of the reaction tube, but the reaction tube and the exhaust system piping were not blocked.

【0021】実施例5 実施例1と同様の装置を用いて、酸化ポリシラン500
gを充填し、外部ヒータで120℃に加温したのち、N
3 を3L/minで60分間供給した。その際、出口
ガスのNF3 濃度は定量下限(1ppm)未満で、他は
主にN2 、SiF4 、HFであった。また、反応のガス
導入口から10cmの位置に設置した熱電対の計測温度
は140℃に上昇した。さらにこのガスを実施例1と同
様のスクラバーに供給し、洗浄したところフッ素分は2
ppmであった。
Example 5 Using the same apparatus as in Example 1, polyoxysilane oxide 500 was used.
After filling with g and heating to 120 ° C with an external heater, N
F 3 was supplied at 3 L / min for 60 minutes. At that time, the NF 3 concentration of the outlet gas was less than the lower limit of quantification (1 ppm), and the others were mainly N 2 , SiF 4 , and HF. Moreover, the measured temperature of the thermocouple installed at a position 10 cm from the gas introduction port of the reaction rose to 140 ° C. Further, this gas was supplied to the same scrubber as in Example 1 and washed, and as a result, the fluorine content was 2
It was ppm.

【0022】反応終了後、反応管内にN2 を流通させ、
5×10-3Torrまで真空引きを行ったのち、760
TorrまでN2 を封入し、大気開放して内部を観察し
たが反応管内の腐食はなかった。また、反応管壁に微量
の白色粉体(SiO2 )が付着していたが、反応管や排
気系配管の閉塞等は起こらなかった。
After the reaction is completed, N 2 is circulated in the reaction tube,
After vacuuming to 5 × 10 -3 Torr, 760
N 2 was sealed up to Torr, the atmosphere was opened to the inside, and the inside was observed, but there was no corrosion in the reaction tube. Further, a small amount of white powder (SiO 2 ) adhered to the wall of the reaction tube, but the reaction tube and the exhaust system piping were not blocked.

【0023】実施例6 実施例1と同様の装置を用いて、酸化ポリシラン500
gを充填し、外部ヒータで300℃に加温したのち、N
3 を3L/minで60分間供給した。その際、出口
ガスのNF3 濃度は定量下限(1ppm)未満で、他は
主にN2 、SiF4 、HFであった。また、反応のガス
導入口から10cmの位置に設置した熱電対の計測温度
は上昇したが、その温度は計測不可能であった。さらに
このガスを実施例1と同様のスクラバーに供給し、洗浄
したところフッ素分は2ppmであった。
Example 6 Using the same device as in Example 1, polysilane oxide 500 was used.
After filling with g and heating to 300 ° C with an external heater,
F 3 was supplied at 3 L / min for 60 minutes. At that time, the NF 3 concentration of the outlet gas was less than the lower limit of quantification (1 ppm), and the others were mainly N 2 , SiF 4 , and HF. Moreover, although the measured temperature of the thermocouple installed at a position 10 cm from the gas introduction port of the reaction increased, the temperature could not be measured. Further, this gas was supplied to the same scrubber as in Example 1 and washed, and the fluorine content was 2 ppm.

【0024】反応終了後、反応管内にN2 を流通させ、
5×10-3Torrまで真空引きを行ったのち、760
TorrまでN2 を封入し、大気開放して内部を観察し
たが反応管内が腐食していた。また、反応管壁に微量の
白色粉体(SiO2 )が付着していたが、反応管や排気
系配管の閉塞等は起こらなかった。
After the reaction is completed, N 2 is circulated in the reaction tube,
After vacuuming to 5 × 10 -3 Torr, 760
N 2 was sealed up to Torr, the atmosphere was opened to the inside, and the inside was observed, but the inside of the reaction tube was corroded. Further, a small amount of white powder (SiO 2 ) adhered to the wall of the reaction tube, but the reaction tube and the exhaust system piping were not blocked.

【0025】実施例7 実施例1と同様の装置を用いて、酸化ポリシラン500
gを充填し、外部ヒータで300℃に加温したのち、N
2 で1%に希釈したNF3 を3L/minで60分間供
給した。その際、出口ガスのNF3 濃度は定量下限(1
ppm)未満で、他は主にN2 、SiF4 、HFであっ
た。さらにこのガスを実施例1と同様のスクラバーに供
給し、洗浄したところフッ素分も定量下限(1ppm)
未満であった。
Example 7 Using the same device as in Example 1, polysilane oxide 500 was used.
After filling with g and heating to 300 ° C with an external heater,
NF 3 diluted to 1% with 2 was supplied at 3 L / min for 60 minutes. At that time, the NF 3 concentration of the outlet gas was determined by the lower limit of quantification (
ppm) and others were mainly N 2 , SiF 4 and HF. Further, this gas was supplied to the same scrubber as in Example 1 and was washed, and the fluorine content was also the lower limit of quantification (1 ppm).
Was less than.

【0026】反応終了後、反応管内にN2 を流通させ、
5×10-3Torrまで真空引きを行ったのち、760
TorrまでN2 を封入し、大気開放して内部を観察し
たが反応管内の腐食はなかった。また、反応管壁に微量
の白色粉体(SiO2 )が付着していたが、反応管や排
気系配管の閉塞等は起こらなかった。
After the reaction is completed, N 2 is circulated in the reaction tube,
After vacuuming to 5 × 10 -3 Torr, 760
N 2 was sealed up to Torr, the atmosphere was opened to the inside, and the inside was observed, but there was no corrosion in the reaction tube. Further, a small amount of white powder (SiO 2 ) adhered to the wall of the reaction tube, but the reaction tube and the exhaust system piping were not blocked.

【0027】実施例8 直径1インチ、長さ2mのSUS製パイプに含塩素酸化
ポリシラン((SiH 1.3 Cl0.9 0.5)n 、BET比
表面積:91m2 /g)を500g充填し、外部ヒータ
で200℃に加温させたのち、100%NF3 を3L/
minで60分供給した。その際、反応管のガス導入孔
から10cmの位置に設置した熱電対の計測温度が24
7℃に上昇した。出口ガスの一部を補集しFT−IR、
ガスクロマトグラフで分析したところ、NF3 の濃度は
定量下限(1ppm)未満で、他は主にN2 、Si
4 、HF、HCl、Cl2 であった。また、出口ガス
を直径4インチ高さ1mにラッシリングを充填したスク
ラバーに供給し、20%NaOH溶液で洗浄したとこ
ろ、排ガスのフッ素分は2ppmであった。
Example 8 Chlorine-containing oxidation was performed on a SUS pipe having a diameter of 1 inch and a length of 2 m.
Polysilane ((SiH 1.3Cl0.9O0.5)n, BET ratio
Surface area: 91m2/ G) 500 g, external heater
After heating to 200 ° C with 100% NF33L /
It was supplied for 60 minutes at min. At that time, the gas introduction hole of the reaction tube
The temperature measured by the thermocouple installed at a position 10 cm from the
Raised to 7 ° C. FT-IR collecting a part of the outlet gas,
When analyzed by gas chromatography, NF3The concentration of
Below the lower limit of quantification (1 ppm), the others are mainly N2, Si
FFour, HF, HCl, Cl2Met. Also the outlet gas
A disc with a diameter of 4 inches and a height of 1 m is filled with a lashing ring.
It was fed to a rubber and washed with a 20% NaOH solution.
The exhaust gas had a fluorine content of 2 ppm.

【0028】反応終了後、反応管内にN2 を流通させ、
5×10-3Torrまで真空引きを行ったのち、760
TorrまでN2 を封入し、大気開放して内部を観察し
たが反応管内の腐食はなかった。また、反応管壁に微量
の白色粉体(SiO2 )が付着していたが、反応管や排
気系配管の閉塞等は起こらなかった。
After the reaction is completed, N 2 is circulated in the reaction tube,
After vacuuming to 5 × 10 -3 Torr, 760
N 2 was sealed up to Torr, the atmosphere was opened to the inside, and the inside was observed, but there was no corrosion in the reaction tube. Further, a small amount of white powder (SiO 2 ) adhered to the wall of the reaction tube, but the reaction tube and the exhaust system piping were not blocked.

【0029】実施例9 実施例1と同様の装置を用いて、含塩素酸化ポリシラン
500gを充填し、外部ヒータで200℃に昇温させた
後、N2 で希釈した1%のNF3 を3L/minで60
分間供給した。その際、反応管の何れの温度も上昇しな
かった。出口ガスの濃度は、NF3 1ppmで、他は主
にSiF4 、N2 、HF、HCl、Cl 2 であった。さ
らに、このガスを直径2インチ高さ1mのステンレス管
にソーダライムを充填し、外部ヒータで150℃に昇温
させたのち、供給したところ排ガスのフッ素分は3pp
mであった。
Example 9 Using the same apparatus as in Example 1, chlorine-containing oxidized polysilane was used.
Filled with 500 g and heated to 200 ° C. with an external heater
Later, N21% NF diluted with360 at 3 L / min
Supplied for minutes. At that time, do not raise any temperature in the reaction tube.
won. The concentration of the outlet gas is NF31 ppm, others are main
To SiFFour, N2, HF, HCl, Cl 2Met. It
In addition, this gas is a stainless steel tube with a diameter of 2 inches and a height of 1 m.
Filled with soda lime and heated to 150 ° C with an external heater
After being made to supply, the fluorine content of the exhaust gas is 3 pp
It was m.

【0030】反応終了後、反応管内にN2 を流通させ、
5×10-3Torrまで真空引きを行ったのち、760
TorrまでN2 を封入し、大気開放して内部を観察し
たが反応管内の腐食はなかった。また、反応管壁に微量
の白色粉体(SiO2 )が付着していたが、反応管や排
気系配管の閉塞等は起こらなかった。
After the reaction is completed, N 2 is circulated in the reaction tube,
After vacuuming to 5 × 10 -3 Torr, 760
N 2 was sealed up to Torr, the atmosphere was opened to the inside, and the inside was observed, but there was no corrosion in the reaction tube. Further, a small amount of white powder (SiO 2 ) adhered to the wall of the reaction tube, but the reaction tube and the exhaust system piping were not blocked.

【0031】実施例10 実施例1と同様の装置を用いて、含塩素酸化ポリシラン
500gを充填し、外部ヒータで150℃に加温したの
ち、N2 で1%に希釈したNF3 を3L/minで60
分間供給した。その際、出口ガスのNF3 濃度は1pp
mで、他は主にN2 、SiF4 、HF、HCl、Cl2
であった。さらにこのガスを実施例1と同様のスクラバ
ーに供給し、洗浄したところフッ素分は2ppmであっ
た。
Example 10 Using the same apparatus as in Example 1, 500 g of chlorine-containing polysilane oxide was charged, heated to 150 ° C. by an external heater, and NF 3 diluted to 1% with N 2 was added to 3 L / L. 60 in min
Supplied for minutes. At that time, the NF 3 concentration of the outlet gas is 1 pp
m, and the others are mainly N 2 , SiF 4 , HF, HCl, Cl 2
Met. Further, this gas was supplied to the same scrubber as in Example 1 and washed, and the fluorine content was 2 ppm.

【0032】反応終了後、反応管内にN2 を流通させ、
5×10-3Torrまで真空引きを行ったのち、760
TorrまでN2 を封入し、大気開放して内部を観察し
たが反応管内の腐食はなかった。また、反応管壁に微量
の白色粉体(SiO2 )が付着していたが、反応管や排
気系配管の閉塞等は起こらなかった。
After the reaction is completed, N 2 is circulated in the reaction tube,
After vacuuming to 5 × 10 -3 Torr, 760
N 2 was sealed up to Torr, the atmosphere was opened to the inside, and the inside was observed, but there was no corrosion in the reaction tube. Further, a small amount of white powder (SiO 2 ) adhered to the wall of the reaction tube, but the reaction tube and the exhaust system piping were not blocked.

【0033】[0033]

【発明の効果】本発明により、NF3 を含むガスを30
0℃以下の低温で効率よく除去でき、爆発性を有するガ
スの副生もなく安全に実施できるものである。
According to the present invention, a gas containing NF 3 is added to 30
It can be efficiently removed at a low temperature of 0 ° C. or lower, and can be safely carried out without the byproduct of explosive gas.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 NF3 を含むガスをポリシラン、酸化ポ
リシランまたは含ハロゲン酸化ポリシランと120〜3
00℃の温度範囲で反応させ、得られるフッ化物ガスを
補集することを特徴とするNF3 の除去方法。
1. A gas containing NF 3 and polysilane, oxidized polysilane, or halogen-containing oxidized polysilane is added to 120 to 3 gas.
A method for removing NF 3 , which comprises reacting in a temperature range of 00 ° C. and collecting the obtained fluoride gas.
JP5123948A 1993-05-26 1993-05-26 Removing method of nf3 Pending JPH06327935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5123948A JPH06327935A (en) 1993-05-26 1993-05-26 Removing method of nf3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5123948A JPH06327935A (en) 1993-05-26 1993-05-26 Removing method of nf3

Publications (1)

Publication Number Publication Date
JPH06327935A true JPH06327935A (en) 1994-11-29

Family

ID=14873313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5123948A Pending JPH06327935A (en) 1993-05-26 1993-05-26 Removing method of nf3

Country Status (1)

Country Link
JP (1) JPH06327935A (en)

Similar Documents

Publication Publication Date Title
TW510819B (en) Method and apparatus for treating a waste gas containing fluorine-containing compounds
US7494628B2 (en) Apparatus for abatement of by-products generated from deposition processes and cleaning of deposition chambers
US6514471B1 (en) Removing fluorine from semiconductor processing exhaust gas
JP4080336B2 (en) Decomposition of fluorine-containing compounds
JP2003236337A (en) Method and apparatus for treating exhaust gas
JP2001293335A (en) Method for treating waste gas containing fluoride
JPH06327935A (en) Removing method of nf3
CN112206642A (en) Exhaust gas treatment method
JP5471313B2 (en) Methods for removing chlorine trifluoride
US9259683B2 (en) Methods and apparatus for treating fluorinated greenhouse gases in gas streams
JPH08257359A (en) Method for processing perfluorocarbon-containinggas flow
JP3188830B2 (en) Method and apparatus for removing NF3 exhaust gas
JP2000271429A (en) Waste gas treating method and treating device
JP4037475B2 (en) Method for treating exhaust gas containing halogen compounds
JP2776700B2 (en) Cleaning method of ammonium silicofluoride
WO2005077496A1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
JPH0716582B2 (en) Method for removing gaseous acidic halogen compounds
JPH07171339A (en) Treatment of nf3
JP2728926B2 (en) Method for treating exhaust gas containing nitrogen fluoride
JPS6312322A (en) Treatment of exhaust gas
JP2013138097A (en) Acid mixture liquid recovery system, acid mixture liquid recovery method, and silicon material cleaning method
JP3004204B2 (en) Purification and recovery method of plasma CVM exhaust gas
KR102114042B1 (en) Hybrid scrubber having heating chamber and dry scrubber chamber and method for operating the hybrid scrubber
EP1043058A1 (en) NF3 treating process
JP3649426B2 (en) How to clean harmful gases