JPH06327199A - Formation of film - Google Patents

Formation of film

Info

Publication number
JPH06327199A
JPH06327199A JP4340594A JP4340594A JPH06327199A JP H06327199 A JPH06327199 A JP H06327199A JP 4340594 A JP4340594 A JP 4340594A JP 4340594 A JP4340594 A JP 4340594A JP H06327199 A JPH06327199 A JP H06327199A
Authority
JP
Japan
Prior art keywords
weight
parts
coating film
terms
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4340594A
Other languages
Japanese (ja)
Other versions
JP2894942B2 (en
Inventor
Kazuya Nakamura
一也 中村
Shigenori Uda
成徳 宇田
Tsuguo Inasawa
嗣夫 稲澤
Masaru Kikuya
勝 菊屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Panasonic Holdings Corp
Original Assignee
Nippon Paint Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP4340594A priority Critical patent/JP2894942B2/en
Publication of JPH06327199A publication Critical patent/JPH06327199A/en
Application granted granted Critical
Publication of JP2894942B2 publication Critical patent/JP2894942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Paints Or Removers (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

PURPOSE:To make an insulator film executed between a winding and a metal part thin while its insulating and pressure-resistant performance is being maintained by a method wherein the surface of a metal for an electronic component having a burr is electrodeposition-coated with an electrodeposition paint which contains an emulsion or the like and its coating film is baked. CONSTITUTION:The surface of a metal for an electronic component having a burr is electrodeposition-coated with a specific electrodeposition paint which is composed of at least an emulsion, a gel fine-particle dispersed liquid and a pigment paste. The emulsion contains an epoxy resin or the like whose number-average molecular weight is 1000 to 3000, which is provided with one or more epoxy groups on the average per molecule and which contains a bisphenol A residual group. The gel fine-particle dispersed liquid contains 20 to 50 pts.wt., in terms of a solid portion, of a methylolphenol component whose number-average molecular weight is 200 to 1000. In addition, the pigment paste contains 50 to 70 pts.wt. of a pigment in terms of a solid portion. The electrodeposition paint is baked under a definite condition, and an insulating film having an average film thickness of 20 to 100mum is formed. Consequently, the tip of the burr cannot be exposed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はバリのある電子部品用金
属表面への被膜形成方法、さらに詳しくはバリのある金
属部のスロット部内に巻線を納める構造を持つ電子部品
表面に絶縁被膜を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a coating on a metal surface for burrs having an electronic component, and more particularly to forming an insulating coating on the surface of an electronic component having a structure in which a winding is housed in a slot of a metal portion having burrs. Relates to a method of forming.

【0002】[0002]

【従来の技術】金属部のスロット部内に巻線を納める構
造を持つ電子部品、たとえばモータ用ロータコアは巻線
の導電部と金属部との短絡を避けるため、巻線−金属部
間に絶縁処理を施すものが一般的である。
2. Description of the Related Art An electronic component having a structure in which a winding is housed in a slot of a metal portion, such as a rotor core for a motor, has an insulating treatment between the winding and the metal portion in order to avoid a short circuit between the conductive portion and the metal portion of the winding. It is common to apply.

【0003】従来の一例のモータ用ロータコアを上から
眺めたときの形状を概略的模式的に図1に示した。図1
には3つのスロット部を有するロータコアを例示した
が、3つに限らず4つ以上のスロット部を有するものも
もちろん存在するし、形状も種々のものが存在する。モ
ータの大きさにもよるが、たとえば厚さ約0.35m
m、直径約40mmの図1の形状のロータコア薄片を複
数枚重ねロータコア2とし、スロット部6に導線が巻か
れる。ロータコア2は、回転軸1を中心に矢印(e)の
方向に回転する。
FIG. 1 schematically shows the shape of a conventional rotor core for a motor as viewed from above. Figure 1
In the above, a rotor core having three slot portions is illustrated, but not limited to three, there are of course those having four or more slot portions, and there are various shapes. Depending on the size of the motor, for example, the thickness is about 0.35m
A plurality of rotor core thin pieces each having a diameter of about 40 mm and a shape of FIG. 1 are stacked to form a rotor core 2, and a conductor wire is wound around the slot portion 6. The rotor core 2 rotates about the rotating shaft 1 in the direction of arrow (e).

【0004】図1におけるロータコア2のスロット6部
のd−d′線に沿った概略断面図を図2に示した。ロー
タコア薄片2′が複数枚重ねられ、その回りに絶縁被膜
8が形成されている。この絶縁被膜8の回りに巻線(図
示せず)が施される。ここで打ち抜きバリ3が露出して
いる場合、巻線処理時に打ち抜きバリ3の先端で巻線の
被膜を傷つけ巻線−ロータコア2間の短絡の原因とな
る。そのためロータコア2の表面にはPBT、PET、
PPS、PAなどの熱可塑性樹脂の成形加工品(厚みは
成形加工限界厚みである100μm以上)である絶縁被
膜8が装着される。
FIG. 2 is a schematic sectional view of the slot 6 portion of the rotor core 2 in FIG. 1 taken along the line dd '. A plurality of rotor core thin pieces 2'are stacked, and an insulating coating 8 is formed around them. A winding (not shown) is provided around the insulating coating 8. If the punching burr 3 is exposed here, the coating of the winding is damaged at the tip of the punching burr 3 during the winding process, causing a short circuit between the winding and the rotor core 2. Therefore, on the surface of the rotor core 2, PBT, PET,
An insulating coating 8 which is a molded product of thermoplastic resin such as PPS or PA (thickness is 100 μm or more which is a molding limit thickness) is attached.

【0005】あるいはこのような絶縁被膜8は、粉体塗
装や電着塗装等の方法で電子部品の表面に塗装し、焼き
付けを行い形成される。しかし、いずれの塗装方法を採
るにせよ、従来の塗料を用いて従来のように塗装焼き付
けを行うと、塗膜の膜厚が薄い場合、図3(a)に示す
ように、焼き付け後打ち抜きバリ3先端に塗料の表面張
力に起因するスケ10が生じる。これによって、打ち抜
きバリ3先端が露出してしまうため、モータとしての巻
線とロータコア間の絶縁が確保できなくなる。
Alternatively, such an insulating coating 8 is formed by coating the surface of an electronic component with a method such as powder coating or electrodeposition coating and baking. However, whichever coating method is used, when conventional paint baking is performed using a conventional paint, when the film thickness of the coating film is thin, as shown in FIG. The scale 10 caused by the surface tension of the coating material is generated at the tip of the coating. As a result, the tip of the punching burr 3 is exposed, and insulation between the winding as the motor and the rotor core cannot be ensured.

【0006】以上述べたように、打ち抜きバリ先端の露
出を防止し、かつ巻線処理による導線の絶縁被膜食い込
みによる巻線−ロータコア間の短絡を防止するために
は、100〜200μm程度の比較的厚い膜を必要とす
る。
As described above, in order to prevent the exposure of the punching burr tip and to prevent the short circuit between the winding and the rotor core due to the penetration of the insulating film of the conducting wire due to the winding treatment, a relatively short length of about 100 to 200 μm. Requires a thick film.

【0007】[0007]

【発明が解決しようとする課題】しかしこのような厚い
膜はスロット部6内体積に占める絶縁被膜の割合が大き
いという欠点を有している。モータの軽薄短小化、パワ
ーアップ化のためには、巻線とロータコア2間に施され
る絶縁被膜の低厚み化が望まれている。
However, such a thick film has a drawback that a large proportion of the insulating film occupies the inner volume of the slot portion 6. In order to make the motor lighter, thinner, shorter, smaller, and more powerful, it is desired to reduce the thickness of the insulating coating applied between the winding and the rotor core 2.

【0008】またバリ取りのためのブラスト処理を施し
た場合、コスト的に不利になるばかりか、コア2の磁気
特性の変化によりブラスト処理を施さない場合に比べ、
発生トルクが5%以上低下するという欠点を有してい
る。
Further, when the blast treatment for deburring is performed, not only is it disadvantageous in terms of cost, but in comparison with the case where the blast treatment is not performed due to the change in the magnetic characteristics of the core 2,
It has a drawback that the generated torque is reduced by 5% or more.

【0009】本発明は上記事情に鑑みなされたものであ
り、短絡防止のためにモータ等に使用される電子部品の
巻線と金属部との間に絶縁被膜形成に際して、バリのあ
る電子部品用金属表面であっても、バリ先端が露出せ
ず、しかも100μm以下の薄膜絶縁被膜を形成するこ
とのできる被膜形成方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is intended for electronic parts which have burrs when an insulating film is formed between a winding and a metal part of an electronic part used for a motor or the like to prevent a short circuit. An object of the present invention is to provide a film forming method capable of forming a thin film insulating film of 100 μm or less without exposing the burr tip even on a metal surface.

【0010】[0010]

【課題を解決するための手段】本発明は前記目的を達成
するために、バリのある電子部品用金属の表面に、少な
くとも(A)数平均分子量1000〜3000で1分子
当たり平均1個以上のエポキシ基を有するビスフェノー
ルA残基含有エポキシ樹脂またはその誘導体と1価の第
2級アミンとの反応生成物であるアミノ基含有ポリマー
を固形分換算で60〜80重量部、およびブロックイソ
シアネート架橋剤を固形分換算で20〜40重量部を含
有してなるエマルジョン、(B)数平均分子量200〜
1000のメチロールフェノール化合物を固形分換算で
20〜50重量部、および数平均分子量1000〜30
00のアミン付加ポリブタジエン樹脂を固形分換算50
〜80重量部を含有してなるゲル微粒子分散液、および
(C)顔料を固形分換算で50〜70重量部、および顔
料分散樹脂を固形分換算で5〜15重量部を含有してな
る顔料ペーストを、固形分換算で、(A)/(B)/
(C)=1/0.18〜0.72/0.5〜0.9の割
合で含有してなる電着塗料を電着塗装し、その塗装膜を
焼き付け、平均膜厚さ20〜100μmの絶縁被膜を形
成する被膜形成方法とする。
In order to achieve the above-mentioned object, the present invention has at least (A) a number average molecular weight of 1,000 to 3,000 on the surface of a metal for electronic parts having burrs and an average of 1 or more per molecule. A bisphenol A residue-containing epoxy resin having an epoxy group or a derivative thereof and an amino group-containing polymer, which is a reaction product of a monovalent secondary amine, are contained in an amount of 60 to 80 parts by weight in terms of solid content, and a blocked isocyanate crosslinking agent. Emulsion containing 20 to 40 parts by weight in terms of solid content, (B) number average molecular weight of 200 to
20 to 50 parts by weight of 1000 methylolphenol compound in terms of solid content, and number average molecular weight 1000 to 30
00 amine-added polybutadiene resin is converted into solid content 50
To 80 parts by weight of a gel fine particle dispersion, and (C) a pigment containing 50 to 70 parts by weight of solid content, and a pigment dispersion resin containing 5 to 15 parts by weight of solid content. The paste is (A) / (B) / in terms of solid content
(C) = 1 / 0.18 to 0.72 / 0.5 to 0.9: The electrodeposition coating composition is electrodeposited, the coating film is baked, and the average film thickness is 20 to 100 µm. The insulating film is formed by the method.

【0011】本発明の被膜形成方法に使用する塗料は少
なくともエマルジョン、ゲル微粒子分散液および顔料ペ
ーストを混合してなる。本発明の電着塗料に用いるエマ
ルジョンの樹脂成分はカチオン樹脂とブロックイソシア
ネート架橋剤からなる。
The coating material used in the film forming method of the present invention comprises at least an emulsion, a gel particle dispersion and a pigment paste. The resin component of the emulsion used in the electrodeposition coating composition of the present invention comprises a cationic resin and a blocked isocyanate crosslinking agent.

【0012】カチオン樹脂は、数平均分子量1000〜
3000で1分子当たり平均1個以上のエポキシ基を有
するビスフェノールA残基含有エポキシ樹脂および、そ
れらのエステル化物、エーテル化物、イミド化物と1価
の第2級アミンとの反応生成物であるアミノ基含有ポリ
マーである。このカチオン樹脂は固形分換算でエマルジ
ョン樹脂成分全体を100重量部としたとき、60〜8
0重量部含有させる。60重量部より少ないと耐食性が
低下し、80重量部より多いと塗膜の強度が不足する。
The cation resin has a number average molecular weight of 1,000 to
Bisphenol A residue-containing epoxy resin having an average of 1 or more epoxy groups per molecule at 3000, and an amino group which is a reaction product of an esterified product, an etherified product, an imidized product thereof and a monovalent secondary amine It is a contained polymer. This cationic resin is 60 to 8 when the total emulsion resin component is 100 parts by weight in terms of solid content.
0 parts by weight is contained. If it is less than 60 parts by weight, the corrosion resistance will be reduced, and if it is more than 80 parts by weight, the strength of the coating film will be insufficient.

【0013】一方ブロックイソシアネート架橋剤はイソ
シアネート類をアルコール類、オキシム類、アミン類、
フェノール類でブロック化したものである。イソシアネ
ート類としては、芳香族イソシアネート、たとえば2,
4−あるいは2,6−トリレンジイソシアネート、m−
あるいはp−フェニレンジイソシアネート、または脂肪
族イソシアネート、たとえばヘキサメチレンジイソシア
ネート等が挙げられる。
On the other hand, the blocked isocyanate cross-linking agent is prepared by converting isocyanates into alcohols, oximes, amines,
Blocked with phenols. Isocyanates include aromatic isocyanates such as 2,
4- or 2,6-tolylene diisocyanate, m-
Alternatively, p-phenylene diisocyanate or aliphatic isocyanate such as hexamethylene diisocyanate may be used.

【0014】イソシアネートのブロック剤としては脂肪
族または芳香族のモノアルコール類、たとえばメタノー
ル、エタノール、ブタノール、2−エチルヘキサノール
あるいはベンジルアルコール、オキシム類、たとえばメ
チルエチルケトンオキシムあるいはメチルイソブチルケ
トンオキシム、アミン類、たとえばジメチルアミンある
いはジメチルエタノールアミン、またはフェノール類、
たとえばフェノールあるいはメチルフェノール等が挙げ
られる。
Blocking agents for isocyanates include aliphatic or aromatic monoalcohols such as methanol, ethanol, butanol, 2-ethylhexanol or benzyl alcohol, oximes such as methyl ethyl ketone oxime or methyl isobutyl ketone oxime, amines such as Dimethylamine or dimethylethanolamine, or phenols,
Examples include phenol and methylphenol.

【0015】固形分換算でエマルジョン全体を100重
量部としたときの前記ブロックイソシアネートの配合量
は20重量部未満では硬化が不足し、40重量部を超え
ると水溶性の不足による塗料安定性が低下するので、2
0〜40重量部とする。
When the amount of the blocked isocyanate is less than 20 parts by weight based on the total solid content of 100 parts by weight, the curing is insufficient, and when it exceeds 40 parts by weight, the coating stability is deteriorated due to insufficient water solubility. So do 2
The amount is 0 to 40 parts by weight.

【0016】本発明に使用するエマルジョンはカチオン
樹脂とブロックイソシアネートとの所定量を水性媒体中
において酸で中和して乳化することにより調整される。
本発明の電着塗料に用いるゲル微粒子溶液はメチロール
化合物とアミン付加ポリブタジエン樹脂からなる。
The emulsion used in the present invention is prepared by neutralizing a predetermined amount of a cationic resin and a blocked isocyanate with an acid in an aqueous medium and emulsifying.
The gel particle solution used in the electrodeposition coating composition of the present invention comprises a methylol compound and an amine-added polybutadiene resin.

【0017】メチロールフェノール化合物はフェノール
類とホルムアルデヒドを反応させて得られるもので、数
平均分子量200〜1000のものを使用し、具体的に
はレゾール型フェノール樹脂、たとえば荒川化学工業社
製タコノール720721および群栄化学工業社製WP
551、WP201等、またはフェノールエーテル化合
物が利用可能である。
The methylolphenol compound is obtained by reacting phenols with formaldehyde and has a number average molecular weight of 200 to 1000. Specifically, it is a resol type phenol resin such as Taconol 720721 manufactured by Arakawa Chemical Industry Co., Ltd. Gunei Chemical Industry WP
551, WP201, or the like, or a phenol ether compound can be used.

【0018】メチロールフェノール化合物の配合量は、
固形分換算でゲル微粒子分散液全体を100重量部とし
たとき、20重量部未満では塗膜硬化が不足し、50重
量部を超えると耐食性が低下するので、20〜50重量
部とする。
The compounding amount of the methylolphenol compound is
When the total amount of the gel particle dispersion is 100 parts by weight in terms of solid content, if the amount is less than 20 parts by weight, the curing of the coating film will be insufficient, and if it exceeds 50 parts by weight, the corrosion resistance will decrease, so the amount is set to 20 to 50 parts by weight.

【0019】アミン付加ポリブタジエン樹脂としては、
数平均分子量1000〜3000、1,2結合30〜1
00%のポリブタジエン樹脂を過酢酸によりエポキシ化
し、アミンを付加させたものである。このような樹脂と
してはたとえば日本石油化学工業社製C−1800−
6,5等が利用できる。固形分換算でゲル微粒子分散液
全体を100重量部としたときのアミン付加ポリブタジ
エン樹脂の配合量は50重量部未満では水溶性不足によ
るゲル粒子の安定性が低下し、80重量部を超えると粒
子内部のゲル化不足によるエッジカバー性が低下するの
で、50〜80重量部とする。
As the amine-added polybutadiene resin,
Number average molecular weight 1000-3000, 1,2 bond 30-1
It is obtained by epoxidizing a polybutadiene resin of 00% with peracetic acid and adding an amine. As such a resin, for example, C-1800- manufactured by Nippon Petrochemical Industry Co., Ltd.
6, 5, etc. can be used. When the total amount of the gel particle dispersion is 100 parts by weight in terms of solid content, the amount of the amine-added polybutadiene resin is less than 50 parts by weight, the stability of the gel particles decreases due to insufficient water solubility, and when the amount exceeds 80 parts by weight, the particles become particles. Since the edge covering property is deteriorated due to insufficient gelation inside, it is 50 to 80 parts by weight.

【0020】ゲル微粒子分散液は上記メチロールフェノ
ール化合物およびアミン付加ポリブタジエン樹脂の所定
量に氷酢酸を加え十分に攪拌し、これに脱イオン水を加
えて乳化しエマルジョンとして得る。
The gel fine particle dispersion is obtained as an emulsion by adding glacial acetic acid to a predetermined amount of the methylolphenol compound and the amine-added polybutadiene resin, stirring the mixture sufficiently, and adding deionized water thereto to emulsify.

【0021】本発明の電着塗料に用いる顔料ペーストは
顔料分散樹脂と顔料からなる。顔料分散樹脂成分は顔料
粒子をコーティングして顔料粒子をカチオン化する働き
をするもので、たとえば第4級アンモニウム樹脂等から
挙げられる。
The pigment paste used in the electrodeposition coating composition of the present invention comprises a pigment dispersion resin and a pigment. The pigment-dispersed resin component functions to coat the pigment particles and to cationize the pigment particles, and examples thereof include a quaternary ammonium resin.

【0022】顔料は通常粒径20μm以下の着色顔料、
防錆顔料および体質顔料等を適宜使用しうる。着色顔料
としてはたとえばカーボンブラック、二酸化チタンなど
が使用可能である。防錆顔料としてはたとえばクロム酸
ストロンチウム、塩基性ケイ酸鉛などが挙げられる。体
質顔料成分としてはたとえばケイ酸アルミニウム、炭酸
カルシウムなどが挙げられる。
The pigment is usually a color pigment having a particle size of 20 μm or less,
A rust preventive pigment and an extender pigment may be appropriately used. As the color pigment, for example, carbon black or titanium dioxide can be used. Examples of the rust preventive pigment include strontium chromate and basic lead silicate. Examples of extender pigment components include aluminum silicate and calcium carbonate.

【0023】顔料組成としては顔料成分全体を100重
量部としたとき体質顔料を10〜80重量部含有させる
ことが好ましい。10重量部以下ではエッジカバー性に
効果がなく、80重量部以上では塗面の平滑性が大幅に
低下する。なかでも粒子形状が偏平なケイ酸アルミニウ
ムが、塗膜の焼き付け溶融時の粘性を制御するためエッ
ジカバー率の向上に効果的である。
As the pigment composition, it is preferable to add 10 to 80 parts by weight of an extender pigment when the total amount of the pigment components is 100 parts by weight. If it is 10 parts by weight or less, the edge covering property is not effective, and if it is 80 parts by weight or more, the smoothness of the coated surface is significantly reduced. Among them, aluminum silicate having a flat particle shape is effective in improving the edge coverage because it controls the viscosity of the coating film during baking and melting.

【0024】顔料ペーストは上記顔料分散樹脂および顔
料に脱イオン水を加えディスパーにて約1時間攪拌混合
し、この混合物にガラスビーズを加えたあと、サンドミ
ルで粒径20μm以下に分散することにより調整され
る。
The pigment paste is prepared by adding deionized water to the above pigment-dispersed resin and pigment, stirring and mixing with a disper for about 1 hour, adding glass beads to this mixture, and dispersing with a sand mill to a particle size of 20 μm or less. To be done.

【0025】顔料は固形分換算で50〜70重量部使用
する。その量が少なすぎると膜硬度が不足するし、多す
ぎると塗膜の脆化が問題となる。顔料分散樹脂は、5〜
15重量部使用する。5重量部より少ないと顔料を樹脂
で均一にコーティングできない。また15重量部より多
く加えてもそれ以上加える効果がなく、経済的不利益が
大きくなる。
The pigment is used in an amount of 50 to 70 parts by weight in terms of solid content. If the amount is too small, the film hardness will be insufficient, and if it is too large, the coating film becomes brittle. Pigment dispersion resin is 5
Use 15 parts by weight. If it is less than 5 parts by weight, the pigment cannot be uniformly coated with the resin. Also, if more than 15 parts by weight is added, there is no effect of adding any more, and the economic disadvantage becomes large.

【0026】本発明の電着塗装に使用する塗料は上記エ
マルジョン、顔料ペースト、ゲル微粒子分散液を脱イオ
ン水とともに混合してなる。混合方法は各溶液が均一に
混合できる方法であれば特に限定されないが、混合に際
しては上記エマルジョン、顔料ペースト、ゲル微粒子分
散液を採取し、発泡しないようにゆっくり攪拌しながら
脱イオン水を添加して調製する。
The paint used in the electrodeposition coating of the present invention comprises the above emulsion, pigment paste and gel particle dispersion liquid mixed with deionized water. The mixing method is not particularly limited as long as each solution can be uniformly mixed, but at the time of mixing, the emulsion, the pigment paste, and the gel particle dispersion liquid are sampled, and deionized water is added while gently stirring so as not to foam. To prepare.

【0027】エマルジョン、顔料ペースト、ゲル微粒子
分散液の各溶液の配合割合は、固形分換算でエマルジョ
ン100重量部に対して、顔料ペースト50〜90重量
部、ゲル微粒子分散液18〜72重量部である。この配
合にて焼き付け時の溶融粘度を増加させることによりエ
ッジ部における塗料の流動を抑制し、エッジカバー性の
著しい向上を実現している。特にゲル微粒子分散液を3
0〜60重量部を配合した場合、その効果が大きい。ゲ
ル微粒子分散液が18重量部より少ないとエッジカバー
性が著しく低下し、72重量部より多いと塗面の平滑性
が大幅に低下し、巻線に支障を来す。また、顔料ペース
トの割合を増やしすぎると塗膜が脆くなり、エリクセン
値も小さくなり、ボイドが増える傾向にある。
The mixing ratio of each solution of emulsion, pigment paste and gel particle dispersion is 50 to 90 parts by weight of pigment paste and 18 to 72 parts by weight of gel particle dispersion based on 100 parts by weight of solid content. is there. By increasing the melt viscosity at the time of baking with this composition, the flow of the paint in the edge portion is suppressed, and the edge cover property is remarkably improved. Especially, the gel particle dispersion is
The effect is large when 0 to 60 parts by weight is blended. If the amount of the gel particle dispersion is less than 18 parts by weight, the edge covering property is remarkably deteriorated, and if the amount is more than 72 parts by weight, the smoothness of the coated surface is significantly deteriorated and the winding is hindered. Further, if the proportion of the pigment paste is increased too much, the coating film becomes brittle, the Erichsen value becomes small, and voids tend to increase.

【0028】電着塗料の配合を上記条件にすることによ
り、塗膜にエリクセン値40mm以上の被塗物に対する
密着性と、巻線工程時に打ち抜きバリ先端部に生じる高
圧力に耐え得る剛性とを同時に付与することができる。
なお、エリクセン値とはJIS−K−5400、8・2
項記載の試験方法にて測定した値であり、塗膜の基材へ
の密着性および塗膜そのものの可撓性を表すに適した値
である。
By adjusting the composition of the electrodeposition coating material to the above-mentioned conditions, the coating film should have good adhesion to an object having an Erichsen value of 40 mm or more and rigidity enough to withstand the high pressure generated at the tip of the punching burr during the winding process. It can be given at the same time.
The Erichsen value is JIS-K-5400, 8.2.
It is a value measured by the test method described in the paragraph, and is a value suitable for representing the adhesion of the coating film to the substrate and the flexibility of the coating film itself.

【0029】以上のようにして得られた塗料を用いてバ
リのある電子部品をカチオン電着塗装する。カチオン電
着塗装は被塗物である電子部品を電着塗料に浸漬し、被
塗物側を陰極(−)、電着槽内の隔膜室内に設置した極
板を陽極(+)として、この間に直流電流を流し、帯電
した被塗物に膜を析出させる被覆方法である。
Using the coating material obtained as described above, electronic parts with burrs are subjected to cationic electrodeposition coating. Cationic electrodeposition coating involves immersing an electronic component, which is the object to be coated, in the electrodeposition coating material, with the object side as the cathode (-) and the electrode plate installed in the diaphragm chamber in the electrodeposition tank as the anode (+). It is a coating method in which a direct current is applied to the substrate to deposit a film on the charged object to be coated.

【0030】カチオン電着塗装方法としては特に制限さ
れるものではなく、上記で得られた塗料を使用し公知の
方法を適用することができる。電着塗装の具体的条件
は、被塗物である電子部品の種類、形状、大きさ、塗料
の種類等に合わせて、適宜設定すべきものである。ただ
本発明においては電着焼き付け後の塗膜が平均20〜1
00μm、特に30〜60μmの膜厚を形成した場合で
も、バリ部分における薄膜化、それにともなう金属部と
巻線の短絡が防止できる。
The cationic electrodeposition coating method is not particularly limited, and a known method can be applied using the coating material obtained above. The specific conditions for the electrodeposition coating should be appropriately set in accordance with the type, shape, size, type of paint, etc. of the electronic component as the article to be coated. However, in the present invention, the coating film after electrodeposition baking has an average of 20 to 1
Even when a film thickness of 00 μm, especially 30 to 60 μm is formed, it is possible to prevent thinning of the burr portion and the accompanying short circuit between the metal portion and the winding.

【0031】本発明によれば絶縁耐圧性能は維持したま
ま電子部品巻線−金属部間に施される絶縁体の低膜厚化
が可能であり、それにともない巻線の実効面積の増加、
電子部品の軽薄短小化を実現することができる。
According to the present invention, it is possible to reduce the film thickness of the insulator provided between the electronic component winding and the metal portion while maintaining the dielectric strength performance, and accordingly increase the effective area of the winding.
It is possible to realize light, thin, short and compact electronic components.

【0032】塗膜厚さを100μmより厚く形成すると
巻線の実効面積の著しい減少を招くという問題があり、
20μmより薄いと、金属部と巻線部の短絡を有効に防
止することができない。なお本発明において塗膜厚は図
2における(b)により表される厚さの平均であり、同
図エッジ部の塗膜厚の部分(a)は考慮にいれていな
い。
When the coating film thickness is made thicker than 100 μm, there is a problem that the effective area of the winding is remarkably reduced.
If the thickness is less than 20 μm, it is impossible to effectively prevent a short circuit between the metal part and the winding part. In the present invention, the coating film thickness is the average of the thicknesses represented by (b) in FIG. 2, and the portion (a) of the coating film thickness at the edge portion in FIG. 2 is not taken into consideration.

【0033】次に、電着塗装膜を乾燥後焼き付ける。乾
燥は電着塗膜中に存在する溶剤、水素ガス、水分を膜中
から取り除き、その後の焼き付け時、塗膜にボイドある
いはピンホールが発生するのを防止するのに有効であ
る。乾燥条件は約60℃〜水の沸点未満の温度環境下に
着塗膜を置くことにより行われる。左記温度雰囲気下に
置く時間は、あまり短かすぎると焼き付け硬化前の塗膜
中に存在する水素ガス、溶剤、水が十分に除去されず、
乾燥後の焼き付け工程において塗膜にボイドあるいはピ
ンホールが発生しやすい。その時間が長いと乾燥効果は
その分高くなるが、生産の面から好ましくない。したが
って上記の問題が生じないように乾燥時間を適宜設定す
べきであり、通常1〜3分程度で十分である。
Next, the electrodeposition coating film is dried and baked. Drying is effective in removing the solvent, hydrogen gas, and water present in the electrodeposition coating film from the film, and preventing the formation of voids or pinholes in the coating film during the subsequent baking. The drying condition is performed by placing the coating film in a temperature environment of about 60 ° C. to below the boiling point of water. If the time left under the temperature atmosphere shown on the left is too short, hydrogen gas, solvent, and water present in the coating film before baking and curing will not be sufficiently removed,
Voids or pinholes are likely to occur in the coating film in the baking process after drying. The longer the time, the higher the drying effect, but it is not preferable in terms of production. Therefore, the drying time should be appropriately set so that the above problem does not occur, and normally about 1 to 3 minutes is sufficient.

【0034】乾燥後焼き付けを行う。焼き付けは乾燥後
の最終温度から所定の焼き付け温度に昇温させる。この
昇温期間中にエマルジョン樹脂成分は溶融軟化するが、
このときはゲル微粒子樹脂成分は粒子固体の状態で膜中
に存在する。そのため、エマルジョン樹脂成分は溶融し
たとしてもその流動が押さえられ溶融樹脂の垂れや、特
に電子部品のバリのある部分の樹脂の薄膜化が防止され
る。焼き付け温度までの昇温は生産性の面から通常10
分以下、好ましくは5分前後でおこなわれるが、昇温時
間を長くかけて行なうとよりエッジカバー性が向上す
る。
After drying, baking is performed. For baking, the temperature is raised from the final temperature after drying to a predetermined baking temperature. During this temperature rising period, the emulsion resin component melts and softens,
At this time, the gel fine particle resin component exists in the film in the form of solid particles. Therefore, even if the emulsion resin component is melted, its flow is suppressed, and the drooping of the molten resin and the thinning of the resin particularly in the burred portion of the electronic component are prevented. From the viewpoint of productivity, the heating up to the baking temperature is usually 10
The time is not more than 5 minutes, preferably about 5 minutes, but if the temperature rising time is prolonged, the edge cover property is further improved.

【0035】所定の焼き付け温度に達すると、その温度
で一定期間保持しエマルジョン樹脂の焼き付けを完了す
る。焼き付け条件はその塗料の種類にもよるが、135
〜195℃の雰囲気下に約20〜40分経る工程で行わ
れる。電着塗装後の膜はそれ自体がある程度硬度を有す
る膜であり、手で少し触れたぐらいでは何ら変形しない
樹脂膜である。この膜を焼き付けることによりさらに硬
化させ硬度のある膜にし、より電子部品基材との付着力
が高められる。焼き付けを上記条件より緩やかに設定す
ると塗膜の硬化を十分達成することはできず、また厳し
すぎる塗膜の脆化が問題となる。
When the predetermined baking temperature is reached, the temperature is maintained for a certain period of time to complete the baking of the emulsion resin. Although the baking conditions depend on the type of paint, 135
It is performed in a step of about 20 to 40 minutes under an atmosphere of about 195 ° C. The film after electrodeposition coating has a certain degree of hardness by itself, and is a resin film that is not deformed even if it is touched with a hand. By baking this film, it is further hardened to form a hard film, and the adhesive force with the electronic component base material is further enhanced. If the baking is set more slowly than the above conditions, the curing of the coating cannot be sufficiently achieved, and the embrittlement of the coating becomes too severe.

【0036】本発明の被膜形成方法が適用可能な電子部
品としては、打ち抜きにより形成されバリのある金属部
品であって、金属部のスロット部内に巻線を納める構造
を持つものであればいかなる部品にも適用することが可
能であり、特にモータ用ロータコアまたはトランス用コ
ア等に適している。
The electronic component to which the method of forming a coating film of the present invention can be applied, as long as it is a metal component formed by punching and having a burr and having a structure in which the winding is housed in the slot portion of the metal portion. The present invention can also be applied to, and is particularly suitable for a rotor core for a motor or a core for a transformer.

【0037】本発明においては、金属部の製造時に生じ
る打ち抜きバリをブラスト処理などにより取り除く必要
がないためブラスト圧による金属部の変形などの不良を
防止でき、またブラスト処理の要らない今までにないプ
ロセスが可能となる。
In the present invention, since it is not necessary to remove the punching burr generated during the manufacturing of the metal part by the blasting process or the like, it is possible to prevent defects such as deformation of the metal part due to the blast pressure, and there is no need for the blasting process. The process becomes possible.

【0038】本発明をモータ用ロータコアに適用した場
合、巻線と金属部間の絶縁被膜の低膜厚化が得られ、こ
れにともない巻線の実効面積の増加、あるいはモータの
軽薄短小化が実現できる。
When the present invention is applied to a rotor core for a motor, the film thickness of the insulating film between the winding and the metal portion can be reduced, and accordingly, the effective area of the winding can be increased or the motor can be made lighter and thinner. realizable.

【0039】焼き付け処理後の塗膜は、表面粗さ(図2
中のcであらわされる)で表して5〜20μmのオレン
ジピーリング状の凹凸に形成され、巻線処理時の巻線と
金属部間の摩擦係数が増大して巻線の滑りを防止するの
で、巻線の下地材として非常に有効である。
The coating film after the baking treatment had a surface roughness (see FIG. 2).
It is formed as an orange peeling-shaped unevenness of 5 to 20 μm as represented by c), and the friction coefficient between the winding and the metal part at the time of winding treatment is increased to prevent the winding from slipping. Very effective as a base material for windings.

【0040】本発明に用いるモータ用ロータコアは、打
ち抜き工程後ブラスト処理等二次加工は施されていな
い。このようなロータコアに対してはロータコアの打ち
抜きバリ先端において、塗膜のエッジカバー率は50%
以上、好ましくは70%以上あることが望ましい。エッ
ジカバー率とは図2に示すa,bから、a/b×100
としてあらわされる。エッジカバー率50%は本発明の
塗膜に要求される最小膜厚である20μm厚に塗膜を形
成した場合、電子部品用金属部の打ち抜きバリ先端部に
おける被覆導線導電部−金属部間の最小要求絶縁耐圧7
50Vを満たす打ち抜きバリ先端部の塗膜厚10μmを
保証する値である。また、エッジカバー率は焼き付け処
理時に硬化前塗膜粘度低下点付近の昇温速度を減少させ
ることにより向上する。ここで硬化前塗膜粘度低下点と
はエマルジョン樹脂成分が溶融し始める温度到達点をい
う。
The rotor core for a motor used in the present invention is not subjected to secondary processing such as blasting after the punching step. For such a rotor core, the edge coverage of the coating film is 50% at the punched burr tip of the rotor core.
Or more, preferably 70% or more. The edge coverage is a / b × 100 from a and b shown in FIG.
Is expressed as. When the coating film is formed to a thickness of 20 μm, which is the minimum film thickness required for the coating film of the present invention, the edge coverage ratio of 50% is between the coated conductive wire conductive portion and the metal portion at the tip of the punching burr of the metal portion for electronic parts. Minimum required withstand voltage 7
It is a value that guarantees a coating film thickness of 10 μm at the tip of a punching burr satisfying 50V. Further, the edge coverage is improved by reducing the temperature rising rate near the point where the viscosity of the coating film before curing is lowered during baking. Here, the lowering point of the viscosity of the coating film before curing means the temperature reaching point at which the emulsion resin component starts to melt.

【0041】また、顔料成分中で焼き付け時のフロー性
の悪い顔料の割合を高めることにより、同エッジカバー
率は向上する。さらに、塗料の性能上問題のない程度溶
剤の配合量を低減することにより、同エッジカバー率は
向上する。
The edge coverage is improved by increasing the proportion of pigment having poor flowability during baking in the pigment component. Further, the edge coverage ratio is improved by reducing the blending amount of the solvent to the extent that there is no problem in the performance of the paint.

【0042】本発明により形成される電着被膜は断面
2.25mm×1.0mmの絶縁処理済み金属柱にφ
0.18導線をテンション150gで4層に巻いたとき
の塗膜に発生する巻線跡深さが20μm以下、好ましく
は10μm以下の特性を有するように電着塗装を施す。
そうすることにより、このロータコアの表面にコア製造
時に生じる打ち抜きバリを完全被覆し、さらに巻線工程
時に打ち抜きバリ先端部に生じる高圧力に耐え得る均一
で低膜厚な高性能の絶縁被覆となるものである。巻線跡
深さ20μmは巻直し工程においても支障をきたすこと
なく整列巻きを可能にする固さを有せしめるための限界
塗膜変形値である。
The electrodeposition coating formed according to the present invention is formed on an insulating treated metal column having a cross section of 2.25 mm × 1.0 mm.
Electrodeposition coating is applied so that the winding trace depth generated in the coating film when a 0.18 conductor wire is wound in four layers with a tension of 150 g is 20 μm or less, preferably 10 μm or less.
By doing so, the surface of the rotor core is completely covered with punching burrs generated during core manufacturing, and a high-performance insulating coating with a uniform and low film thickness that can withstand the high pressure generated at the tip of the punching burrs during the winding process is obtained. It is a thing. The winding trace depth of 20 μm is a critical coating film deformation value for imparting a hardness that enables aligned winding without causing any trouble in the rewinding process.

【0043】また本発明を変圧用電子部品の一つである
トランスに適用可能である。トランスは従来、図4
(a)に示すように、コア11に形成された打ち抜きバ
リを絶縁テープ17やPET、PBT、ナイロンなどの
熱可塑性樹脂、あるいはフェノールなどの熱硬化性樹脂
を形成加工したボビン14にて完成被覆し、さらにボビ
ン14に一次巻線12、二次巻線13を施し、その外周
を絶縁ケース15、絶縁テープ16で覆い、巻線12、
13−コア11間の絶縁を確保していた。このようなト
ランスに本発明の被膜形成方法を適用すれば、一次巻線
12および二次巻線13−コア11間に施される絶縁体
(従来の絶縁処理ではボビン膜厚は1mm以上)の低厚
み化が可能で、モータ用ロータコアと同様にトランスつ
いても軽薄短小化、変圧能力のパワーアップ化が図れ
る。
Further, the present invention can be applied to a transformer which is one of transformer electronic components. The conventional transformer is shown in Fig. 4.
As shown in (a), the punching burrs formed on the core 11 are completely covered with a bobbin 14 on which an insulating tape 17, a thermoplastic resin such as PET, PBT, nylon, or a thermosetting resin such as phenol is formed and processed. Then, the bobbin 14 is further provided with the primary winding 12 and the secondary winding 13, and the outer circumference thereof is covered with the insulating case 15 and the insulating tape 16.
The insulation between 13 and the core 11 was secured. When the film forming method of the present invention is applied to such a transformer, an insulator (bobbin film thickness of 1 mm or more in the conventional insulation treatment) applied between the primary winding 12 and the secondary winding 13 and the core 11 is formed. It is possible to reduce the thickness, and, like the motor rotor core, a transformer can be made lighter, thinner, shorter, and smaller, and the power of the transformer capacity can be increased.

【0044】[0044]

【実施例】以下、実施例を用いてさらに詳しく本発明を
説明する。本発明の電着塗料に含まれる顔料ペースト、
エマルジョンおよびゲル微粒子分散液を以下のように調
製した。(顔料ペーストの製造) 4級アンモニウム樹脂ワニス 192重量部 カーボンブラック 9重量部 二酸化チタン 318重量部 塩基性ケイ酸鉛 27重量部 カオリン 101重量部 ジブチル錫オキサイド 1重量部 脱イオン水 318重量部 上記の配合に基づいて4級アンモニウム樹脂ワニスに脱
イオン水を加えて溶解した後、顔料およびジブチル錫オ
キサイドを添加してディスパーで1時間攪拌した。この
混合物にガラスビーズを加え、サンドミルで15μm以
下に分散してガラスビーズを濾別した。(エマルジョン) (1)アミン化エポキシ樹脂の製造 ビスフェノールAのジグリシジルエーテル(エポキシ当
量910)1000重量部を攪拌下に70℃に保ちなが
ら、チエレングリコールモノエチルエーテル463重量
部に溶解させ、さらにジエチルアミン80.3重量部を
加え、100℃で2時間反応させて水性アミン化エポキ
シ樹脂を得た。
EXAMPLES The present invention will be described in more detail with reference to examples. Pigment paste contained in the electrodeposition coating composition of the present invention,
The emulsion and gel particle dispersions were prepared as follows. (Production of pigment paste) Quaternary ammonium resin varnish 192 parts by weight carbon black 9 parts by weight titanium dioxide 318 parts by weight basic lead silicate 27 parts by weight kaolin 101 parts by weight dibutyltin oxide 1 part by weight deionized water 318 parts by weight Based on the formulation, deionized water was added to the quaternary ammonium resin varnish to dissolve it, then the pigment and dibutyltin oxide were added, and the mixture was stirred with a disper for 1 hour. Glass beads were added to this mixture and dispersed to 15 μm or less by a sand mill, and the glass beads were separated by filtration. (Emulsion) (1) Production of Aminated Epoxy Resin 1000 parts by weight of diglycidyl ether of bisphenol A (epoxy equivalent 910) was dissolved in 463 parts by weight of thielen glycol monoethyl ether while maintaining the temperature at 70 ° C. under stirring. 80.3 parts by weight of diethylamine was added and reacted at 100 ° C. for 2 hours to obtain an aqueous aminated epoxy resin.

【0045】(2)ブロックイソシアネート架橋剤の製
造 反応容器に仕込んだトルエジイソシアネート(2,4−
トルエンジイソシアネート/2,6トルエンジイソシア
ネートの80/20混合物:TDI)174重量部にメ
チルエチルケトンオキシム87重量部を、反応温度を外
部冷却により50℃以下に保ちながら徐々に滴下してハ
ーフブロックイソシアネートを得た。
(2) Production of Blocked Isocyanate Crosslinking Agent Toluenediisocyanate (2,4-
To 174 parts by weight of 80/20 mixture of toluene diisocyanate / 2,6 toluene diisocyanate: TDI), 87 parts by weight of methyl ethyl ketone oxime was gradually added dropwise while keeping the reaction temperature at 50 ° C. or lower by external cooling to obtain a half-blocked isocyanate. .

【0046】次いで、トリメチロールプロパン45重量
部およびジブチル錫ジラウレート0.05重量部を加
え、120℃で90分反応させた。得られた反応生成物
をエチレングリコールモノエチルエーテル131重量部
で希釈し水性ブロックイソシアネートを得た。
Then, 45 parts by weight of trimethylolpropane and 0.05 parts by weight of dibutyltin dilaurate were added and the reaction was carried out at 120 ° C. for 90 minutes. The obtained reaction product was diluted with 131 parts by weight of ethylene glycol monoethyl ether to obtain an aqueous blocked isocyanate.

【0047】上記アミン化エポキシ樹脂220重量部、
およびブロックイソシアネート146重量部を氷酢酸
4.8重量部で中和した後、脱イオン水342重量部を
用いて希釈し、不揮発分約36%のエマルジョンを得
た。(ゲル微粒子分散液) (1)アミン付加ポリブタジエン樹脂の製造 ポリブタジエン(B−2000、日石社製、数平均分子
量2000、1,2結合65%)を過酢酸を用いてエポ
キシ化し、オキシラン酸素含有量6.4%のエポキシ化
ポリブタジエンを製造した。
220 parts by weight of the above-mentioned aminated epoxy resin,
After 146 parts by weight of the blocked isocyanate and 4.8 parts by weight of glacial acetic acid were neutralized, the mixture was diluted with 342 parts by weight of deionized water to obtain an emulsion having a nonvolatile content of about 36%. (Gel Fine Particle Dispersion) (1) Production of amine-added polybutadiene resin Polybutadiene (B-2000, Nisseki Co., number average molecular weight 2000, 1,2 bond 65%) is epoxidized using peracetic acid to contain oxirane oxygen. An amount of 6.4% epoxidized polybutadiene was produced.

【0048】このエポキシ化ポリブタジエン1000g
およびエチルセロソルブ354gをオートクレーブに仕
込んだ後、ジメチルアミン62.1gを加え、150℃
で5時間反応させた。未反応アミンを留除してアミン付
加ポリブタジエン樹脂溶液を製造した。
1000 g of this epoxidized polybutadiene
And 354 g of ethyl cellosolve were charged into the autoclave, 62.1 g of dimethylamine was added, and the temperature was 150 ° C.
And reacted for 5 hours. Unreacted amine was distilled off to prepare an amine-added polybutadiene resin solution.

【0049】得られたアミン付加ポリブタジエン樹脂溶
液のアミン価は120ミリモル/100g(固形分)で
あった。不揮発分は75%であった。 (2)ゲル微粒子分散液の製造 アミン付加ポリブタジエン樹脂 100 重量
部(固形分75%) タマノール722(※1) 33.3重量
部(固形分25%) 氷酢酸 2.8重量
部 脱イオン水 363.9重量
部 ※1 荒川化学工業(株)製、レゾール型フェノール樹
脂 上記で得られたアミン付加ポリブタジエン樹脂100重
量部にタマノール722を33.3重量部、さらに氷酢
酸2.8重量部を加え十分に攪拌した。これに脱イオン
水363.9重量部を加えて乳化した。
The amine value of the resulting amine-added polybutadiene resin solution was 120 mmol / 100 g (solid content). The nonvolatile content was 75%. (2) Production of gel fine particle dispersion Amine-added polybutadiene resin 100 parts by weight (solid content 75%) Tamanol 722 (* 1) 33.3 parts by weight (solid content 25%) Glacial acetic acid 2.8 parts by weight Deionized water 363 9.3 parts by weight * 1 Resol type phenol resin manufactured by Arakawa Chemical Industry Co., Ltd. To 3 parts by weight of Tamanol 722 and 2.8 parts by weight of glacial acetic acid are added to 100 parts by weight of the amine-added polybutadiene resin obtained above. Stir well. To this, 363.9 parts by weight of deionized water was added and emulsified.

【0050】得られた乳化溶液の一部を取り、100倍
量のテトラヒドロフランへ加えたところ透明に溶解し
た。ここでアミン付加ポリブタジエン樹脂に含まれるエ
チルセロソルブを除去し、次に上記で得られた乳化溶液
を95℃で6時間保温し、冷却してカチオン性ゲル微粒
子分散液を得た。
A part of the obtained emulsified solution was taken and added to 100 times amount of tetrahydrofuran, and it was transparently dissolved. Here, ethyl cellosolve contained in the amine-added polybutadiene resin was removed, and then the emulsified solution obtained above was kept at 95 ° C. for 6 hours and cooled to obtain a cationic gel fine particle dispersion.

【0051】このカチオン性ゲル微粒子分散液はテトラ
ヒドロフラン中に透明に溶解せず白濁した。次に不揮発
分10%のゲル微粒子分散液にブリキ板をディップし、
風乾して室温で減圧乾燥後、電子顕微鏡で観察したとこ
ろ、100nm以下の粉径の微粒子が観察された。 (実施例1)電着塗料の調製 顔料ペースト 112重量部(固形分 6
1.6重量部) エマルジョン 278重量部(固形分 100
重量部) ゲル微粒子分散液 75重量部(固形分 18
重量部) 脱イオン水 433重量部(固形分 −
重量部) を攪拌混合することにより混合し電着塗料を調製した。
This cationic gel fine particle dispersion liquid did not dissolve transparently in tetrahydrofuran and became cloudy. Next, dip a tin plate into a gel particle dispersion liquid with a nonvolatile content of 10%,
After air-drying and drying under reduced pressure at room temperature, observation with an electron microscope revealed fine particles having a particle diameter of 100 nm or less. (Example 1) Preparation of electrodeposition paint 112 parts by weight of pigment paste (solid content 6
1.6 parts by weight) 278 parts by weight of emulsion (solid content 100
75 parts by weight (solid content: 18 parts by weight)
Parts by weight) deionized water 433 parts by weight (solid content-
(Parts by weight) were mixed by stirring to prepare an electrodeposition coating composition.

【0052】上記塗料を用いてハードディスク用20φ
スピンドルモータ(サンプル個数(N)=10)のロー
タコアに電着塗装した。電着塗装後、水切乾燥炉内で、
室温から100℃まで約2分、100℃から160℃ま
で約5分かけて加熱し、水切乾燥を行い、引き続いて焼
き付け炉内で160℃25分間かけて焼き付けを行っ
た。
20φ for hard disk using the above paint
The rotor core of the spindle motor (sample number (N) = 10) was electrodeposited. After electrodeposition coating, in the water-drying oven,
The mixture was heated from room temperature to 100 ° C. for about 2 minutes and from 100 ° C. to 160 ° C. for about 5 minutes, drained and dried, and subsequently baked in a baking furnace at 160 ° C. for 25 minutes.

【0053】以上のようにして形成した電着塗膜はバリ
を完全に被覆しており、以下のような特性を有してい
た。 平均膜厚:50μm、ロータコア表面のエッジカバー
率:70%以上、巻線跡深さ:8μm以下(断面2.2
5mm×1.0mmの絶縁処理済み金属角柱にφ0.1
8導線をテンション150gで4層に巻いたとき) 比較として上記と同じロータコアに従来工法の粉体塗装
による絶縁被膜を形成した。結果を下記表1にまとめ
た。
The electrodeposition coating film formed as described above completely covered the burrs and had the following characteristics. Average film thickness: 50 μm, edge coverage on the rotor core surface: 70% or more, winding trace depth: 8 μm or less (cross section 2.2
Φ0.1 on a 5 mm x 1.0 mm insulated metal prism
When 8 conductors were wound into 4 layers with a tension of 150 g) For comparison, an insulating coating film was formed by powder coating by a conventional method on the same rotor core as above. The results are summarized in Table 1 below.

【0054】[0054]

【表1】 [Table 1]

【0055】表1から明らかなように、本発明を使用す
ると同じ絶縁耐圧性能が得られる絶縁塗膜厚を5分の1
に低減することができる。 (実施例2)本実施例においてはフロッピーディスク用
38φスピンドルモータ(N=10)のロータコアに適
用した以外、実施例1と同様の塗料を使用し実施例1と
同様に平均厚さ50μmの電着塗装焼き付けを行った。
As is apparent from Table 1, when the present invention is used, the same withstand voltage performance can be obtained.
Can be reduced to (Example 2) In this example, the same coating material as in Example 1 was used except that it was applied to the rotor core of a 38φ spindle motor for floppy disks (N = 10). It was painted and baked.

【0056】比較のために打ち抜きバリを取り除くブラ
スト処理を施したロータコア(φ38スピンドルモータ
(N=10)用)に、一般電気機器用塗料パワートップ
Uエクセル200(日本ペイント社製)を使用した以
外、実施例1と同様に電着塗装(膜厚50μm)を行っ
た。
For comparison, except that the power core U paint for general electric equipment, Power Top U Excel 200 (manufactured by Nippon Paint Co., Ltd.) was used for the rotor core (for φ38 spindle motor (N = 10)) which was subjected to the blast treatment for removing the punching burr. Then, electrodeposition coating (film thickness 50 μm) was performed in the same manner as in Example 1.

【0057】上記で得られた両ロータコアに同一仕様
(巻線径0.17mm、巻数100、巻線テンション1
50g)を施し、最低始動トルク、最高始動トルクおよ
び平均始動トルクを測定した。結果を表2に示した。
Both rotor cores obtained above have the same specifications (winding diameter 0.17 mm, winding number 100, winding tension 1
50 g) was applied and the minimum starting torque, maximum starting torque and average starting torque were measured. The results are shown in Table 2.

【0058】[0058]

【表2】 [Table 2]

【0059】表2から明らかなように同一仕様であって
も本発明を使用すると発生トルクが5%以上向上する。
さらに比較のため打ち抜きバリを取り除くブラスト処理
を施していないロータコア(φ38スピンドルモータ
(N=10)用)に従来工法の粉体塗装(膜厚200μ
m)を行った。
As is clear from Table 2, even if the specifications are the same, the generated torque is improved by 5% or more by using the present invention.
For comparison, a rotor core (for φ38 spindle motor (N = 10)) that has not been subjected to blasting to remove punching burrs is powder-coated by the conventional method (film thickness: 200μ).
m) was performed.

【0060】上記で得られたロータコアおよび本実施例
で得られた巻ロータコアを線径0.17mm、巻数80
の同一仕様に仕上げた。得られたロータコアをモータに
組み込み、トルクと回転数および電流の関係を測定し
た。結果を図5に示した。図5中、実線は本発明を適用
したロータコアを組み込んだモータの結果であり、点線
は従来工法の粉体塗装を適用したロータコアを組み込ん
だモータの結果を表している。
The rotor core obtained as described above and the wound rotor core obtained in this embodiment were wire-coated with a diameter of 0.17 mm and a number of turns of 80.
Finished to the same specifications. The obtained rotor core was incorporated into a motor, and the relationship between torque, rotation speed and current was measured. The results are shown in Fig. 5. In FIG. 5, the solid line indicates the result of the motor incorporating the rotor core to which the present invention is applied, and the dotted line indicates the result of the motor incorporating the rotor core to which the powder coating of the conventional method is applied.

【0061】図5から明らかなように、同一仕様であっ
ても始動トルクを向上させることができたことがわか
る。これは絶縁体厚の低減にともない巻線とロータコア
間距離が減少し電磁空隙が減少し、モータ効率が向上す
るためである。
As is clear from FIG. 5, it was found that the starting torque could be improved even with the same specifications. This is because the distance between the winding and the rotor core is reduced as the insulator thickness is reduced, the electromagnetic air gap is reduced, and the motor efficiency is improved.

【0062】さらに上記で得られた両ロータコアをロー
タ厚みが設定値(一定)になるようにスロット部巻線を
試みたところ、本発明品は径が0.18mmの巻線が1
00ターン施せたが、従来工法品は径0.17mmの巻
線が80ターンしか施せなかった。
Further, when an attempt was made to wind the slot portions of both rotor cores obtained as described above so that the rotor thickness would be a set value (constant), the product of the present invention was found to have one winding having a diameter of 0.18 mm.
Although it was possible to make 00 turns, in the conventional method, the winding having a diameter of 0.17 mm could only make 80 turns.

【0063】得られたロータコアをモータに組み込み、
トルクと回転数および電流の関係を測定した。結果を図
6に示した。図6中、実線は本発明を適用したロータコ
アを組み込んだモータの結果であり、点線は従来工法を
適用したロータコアを組み込んだモータの結果を表して
いる。
The rotor core thus obtained was incorporated into a motor,
The relationship between torque, rotation speed and current was measured. The results are shown in Fig. 6. In FIG. 6, the solid line indicates the result of the motor incorporating the rotor core to which the present invention is applied, and the dotted line indicates the result of the motor incorporating the rotor core to which the conventional method is applied.

【0064】図6から明らかなように、始動トルク、発
生トルクT−電流1特性が著しく向上し、モータのパワ
ーアップ化あるいは省電力化が図れたことがわかる。巻
線とロータコア2間に施される絶縁膜厚は従来工法の粉
体塗装による場合の絶縁体厚200μmから50μmに
することができ、巻線の実効面積を著しく増加させるこ
とができ、それに伴い巻線径および巻数の増加が可能と
なったことによるものである。 (実施例3)オートフォーカス用スピンドルモータのロ
ータコアを用いた以外、実施例1と同様にしてコア表面
に電着塗装し、焼き付けを行った。
As is apparent from FIG. 6, the starting torque and the generated torque T-current 1 characteristics are remarkably improved, and the motor power-up or power saving is achieved. The insulating film thickness applied between the winding wire and the rotor core 2 can be increased from 200 μm to 50 μm in the case of powder coating by the conventional method, and the effective area of the winding wire can be significantly increased. This is because it is possible to increase the winding diameter and the number of windings. (Example 3) The core surface was electrodeposited and baked in the same manner as in Example 1 except that the rotor core of the autofocus spindle motor was used.

【0065】巻線とロータコア2間に施される絶縁膜厚
は従来のインシューレーター(POM、ポリプラスチッ
クス社製)の場合の130μmから20μmにすること
ができた。このため巻線の実効面積が著しく増加した。
The insulating film thickness applied between the winding and the rotor core 2 can be set to 130 μm to 20 μm in the case of the conventional insulator (POM, manufactured by Polyplastics Co., Ltd.). This significantly increased the effective area of the winding.

【0066】また、モータを絶縁体厚130μmのイン
シュレーターが施されたモータと同一仕様で考えた場合
の絶縁耐圧特性との関係を図7に示した。図7から明ら
かなように巻線−ロータコア間の絶縁耐圧は約2倍に向
上し、モータ寸法は維持したまま大電力仕様化が図れ、
20μmの膜厚でも130μmのインシュレーターと同
一の絶縁耐圧が達成できることがわかる。 (実施例4)顔料ペースト、エマルジョン、ゲル微粒子
分散液および脱イオン水を下記表3に記載のように配合
した電着塗料を使用し実施例1と同様に、フロッピーデ
ィスク用38φスピンドルモータのロータコア表面に塗
膜厚50μmで塗装を施した。
FIG. 7 shows the relationship with the dielectric strength characteristics when the motor has the same specifications as a motor provided with an insulator having an insulator thickness of 130 μm. As is clear from FIG. 7, the withstand voltage between the winding and the rotor core has been improved about twice, and the large power specifications can be achieved while maintaining the motor dimensions.
It can be seen that even with a film thickness of 20 μm, the same withstand voltage as that of the insulator of 130 μm can be achieved. (Example 4) A rotor core of a 38φ spindle motor for a floppy disk was prepared in the same manner as in Example 1 except that an electrodeposition paint prepared by blending a pigment paste, an emulsion, a gel particle dispersion and deionized water as shown in Table 3 below was used. The surface was coated with a coating thickness of 50 μm.

【0067】このときの配合割合とエッジカバー率との
関係、ボイド発生の有無、エリクセン値(mm)、絶縁
耐圧(V)、実用性の各評価を表3に示した。表3中、
ボイド発生の有無は以下のようにランク付けした。
Table 3 shows the relationship between the blending ratio and the edge coverage, the presence / absence of voids, the Erichsen value (mm), the withstand voltage (V) and the practicality. In Table 3,
The presence or absence of voids was ranked as follows.

【0068】 ○:焼き付け後の表面を目視により観察し、ピンホール
が観察されなかった。 △:焼き付け後の表面を目視により観察し、ピンホール
の発生が観察されるが、実用性には問題ない。
◯: The surface after baking was visually observed, and no pinhole was observed. (Triangle | delta): Although the surface after baking is visually observed and pinhole generation is observed, there is no problem in practicality.

【0069】×:焼き付け後の表面を目視により観察
し、ピンホールの発生が激しく実用性がない。 実用性は以下のようにランク付けした。
X: The surface after baking was visually observed, and pinholes were severely generated, which was not practical. The practicality was ranked as follows.

【0070】 ○:800Vより高い絶縁耐圧を有する。 ×:絶縁耐圧が800V以下である。 なお、以下において絶縁耐圧は平均の絶縁耐圧を意味す
る。
◯: It has a withstand voltage higher than 800V. X: The withstand voltage is 800 V or less. In the following, withstand voltage means the average withstand voltage.

【0071】[0071]

【表3】 [Table 3]

【0072】表3から、ゲル微粒子分散液配合割合の増
加に伴い、エッジカバー率が向上し、それに伴い巻線−
ロータコア間の絶縁耐圧が向上することがわかる。一
方、ゲル微粒子分散配合割合の増加に伴い、塗膜中のボ
イド発生量は増加している。これはゲル微粒子分散液配
合割合の増加に伴い塗膜の溶融粘度が増加するため、焼
き付け時に、硬化前の塗膜中に存在する水素ガス、溶
剤、水の排出効率が低下するためである。ボイドの発生
の増加は塗膜の多孔構造化を促進し、結果的に塗膜強度
が低下して巻線−ロータコア間の絶縁耐圧の低下を招
く。顔料ペーストの割合を増やしすぎると塗膜が脆くな
り、エリクセン値も小さくなり、ボイドが増え、一方、
顔料ペーストの割合が少なすぎるとエッジカバー性が低
下する。 (実施例5)実施例1に記載の塗料を使用し、焼き付け
炉内の温度を下記表4に記載のように設定した以外、実
施例1と同様にして、φ38スピンドルモータ用のロー
タコア(N=10)表面に塗膜厚50μmとなるように
塗装を施した。結果を表4に示す。なお表中のランク付
は表3中のそれと同義である。
From Table 3, as the blending ratio of the gel fine particle dispersion increases, the edge coverage improves and the winding-
It can be seen that the dielectric strength between the rotor cores is improved. On the other hand, the amount of voids generated in the coating film increases with an increase in the proportion of gel particles dispersed and mixed. This is because the melt viscosity of the coating film increases as the blending ratio of the gel particle dispersion increases, so that the efficiency of discharging hydrogen gas, solvent, and water present in the coating film before curing during baking decreases. The increase in the generation of voids promotes the formation of a porous structure in the coating film, and as a result, the strength of the coating film is reduced and the withstand voltage between the winding and the rotor core is reduced. If the proportion of pigment paste is increased too much, the coating becomes brittle, the Erichsen value decreases, and the voids increase, while
If the proportion of the pigment paste is too small, the edge covering property will deteriorate. (Example 5) A rotor core for a φ38 spindle motor (N) was prepared in the same manner as in Example 1 except that the coating material described in Example 1 was used and the temperature in the baking furnace was set as shown in Table 4 below. = 10) The surface was coated so that the coating thickness would be 50 μm. The results are shown in Table 4. The ranking in the table is synonymous with that in Table 3.

【0073】[0073]

【表4】 [Table 4]

【0074】上記表4から焼き付け炉内温度の増加に伴
い、塗膜は以下のような性状を有するようになることが
わかる。 エッジカバー率が低下する。
It can be seen from Table 4 above that the coating film has the following properties as the temperature inside the baking oven increases. Edge coverage is reduced.

【0075】 エリクセン値が減少していることから塗膜が脆化す
る。 ピンホールの発生が増加する。 巻線跡深さが減少していることから塗膜強度が向上す
る。 (実施例6)本発明を電子部品の一例である1Wトラン
スに適用した場合について図4(b)を参照して説明す
る。18はコア11に施された膜厚が50μmの本発明
を適用した絶縁被膜であり、図4(b)に示すように、
従来の絶縁ケース15、絶縁テープ16、17の装着を
省くことが可能で、ボビン14についても一次巻線12
−二次巻線13間の絶縁を確保するためだけの極く簡単
な構造にすることができる。
Since the Erichsen value decreases, the coating film becomes brittle. Occurrence of pinholes increases. The coating strength is improved because the winding trace depth is reduced. (Embodiment 6) A case where the present invention is applied to a 1 W transformer which is an example of an electronic component will be described with reference to FIG. Reference numeral 18 denotes an insulating coating applied to the core 11 and having a film thickness of 50 μm, to which the present invention is applied. As shown in FIG.
It is possible to omit the conventional mounting of the insulating case 15 and the insulating tapes 16 and 17, and the bobbin 14 is also equipped with the primary winding 12
-It is possible to have an extremely simple structure only for ensuring insulation between the secondary windings 13.

【0076】このため巻線の実効面積が著しく増加し、
スロット部に対する有効面積率が52.9%から(従来
の絶縁処理)から85.2%(本発明)へと大幅に向上
した。このことによりトランスの著しい軽薄短小化、あ
るいは変圧能力のパワーアップ化が図れる。
Therefore, the effective area of the winding is significantly increased,
The effective area ratio with respect to the slot portion is significantly improved from 52.9% (conventional insulation treatment) to 85.2% (present invention). As a result, the transformer can be made extremely light, thin, short, and compact, or the transformation capability can be increased.

【0077】[0077]

【発明の効果】本発明によれば、バリのある電子部品で
あっても、絶縁耐圧性能は維持したまま巻線−金属部間
に施される絶縁体の低膜厚化が可能であり、それにとも
ない巻線の実効面積の増加、電子部品の軽薄短小化を実
現することができる。
According to the present invention, it is possible to reduce the film thickness of the insulator applied between the winding and the metal portion while maintaining the withstand voltage performance even in the case of electronic parts having burrs. Along with that, it is possible to increase the effective area of the winding and to reduce the size, weight, and size of electronic components.

【図面の簡単な説明】[Brief description of drawings]

【図1】モータ用ロータコアの概念を説明するための平
面図
FIG. 1 is a plan view for explaining the concept of a motor rotor core.

【図2】本発明に従い表面絶縁処理を施した図1のロー
タコアのd−d′線に沿った概略断面図
2 is a schematic cross-sectional view taken along the line dd 'of the rotor core of FIG. 1 which has been surface-insulated according to the present invention.

【図3】(a)従来の表面絶縁処理を施したロータコア
(バリあり)の概略部分断面図 (b)従来の表面絶縁処理を施したロータコア(バリ取
り処理済)の概略部分断面図
FIG. 3A is a schematic partial cross-sectional view of a conventional surface-insulated rotor core (with burrs). FIG. 3B is a schematic partial cross-sectional view of a conventional surface-insulated rotor core (deburred).

【図4】(a)コアに従来の表面絶縁処理を施したトラ
ンスのコア断面図 (b)本発明の他の実施例を示すトランスのコア断面図
FIG. 4A is a cross-sectional view of a core having a conventional surface insulation treatment applied to the core. FIG. 4B is a cross-sectional view of a transformer core showing another embodiment of the present invention.

【図5】φ38スピンドルモータの特性比較図FIG. 5: Characteristic comparison diagram of φ38 spindle motor

【図6】φ38スピンドルモータの特性比較図FIG. 6 is a characteristic comparison diagram of φ38 spindle motor.

【図7】オートフォーカス用スピンドルモータの絶縁膜
厚−絶縁耐圧(巻線−ロータコア間)特性図
[Fig. 7] Insulation film thickness-dielectric strength (between winding and rotor core) characteristic diagram of autofocus spindle motor

【符号の説明】[Explanation of symbols]

1 回転軸 2 ロータコア 3 打ち抜きバリ 6 スロット部 8 電着塗装絶縁被膜 11 コア 12 一次巻線 13 二次巻線 14 ボビン 18 電着塗装絶縁被膜 1 Rotating Shaft 2 Rotor Core 3 Punching Burr 6 Slot 8 Electrodeposition Insulation Film 11 Core 12 Primary Winding 13 Secondary Winding 14 Bobbin 18 Electrodeposition Insulation Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲澤 嗣夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 菊屋 勝 大阪府寝屋川市池田中町19番17号 日本ペ イント株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsuguo Inazawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Within

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 バリのある電子部品用金属の表面に、少
なくとも (A)数平均分子量1000〜3000で1分子当たり
平均1個以上のエポキシ基を有するビスフェノールA残
基含有エポキシ樹脂またはその誘導体と1価の第2級ア
ミンとの反応生成物であるアミノ基含有ポリマーを固形
分換算で60〜80重量部、およびブロックイソシアネ
ート架橋剤を固形分換算で20〜40重量部を含有して
なるエマルジョン、 (B)数平均分子量200〜1000のメチロールフェ
ノール化合物を固形分換算で20〜50重量部、および
数平均分子量1000〜3000のアミン付加ポリブタ
ジエン樹脂を固形分換算50〜80重量部を含有してな
るゲル微粒子分散液、および (C)顔料を固形分換算で50〜70重量部、および顔
料分散樹脂を固形分換算で5〜15重量部を含有してな
る顔料ペーストを、固形分換算で(A)/(B)/
(C)=1/0.18〜0.72/0.5〜0.9の割
合で含有してなる電着塗料を電着塗装し、その塗装膜を
焼き付け、平均膜厚さ20〜100μmの絶縁被膜を形
成することを特徴とする被膜形成方法。
1. A bisphenol A residue-containing epoxy resin having at least (A) a number average molecular weight of 1,000 to 3,000 and an average of one or more epoxy groups per molecule, or a derivative thereof, on the surface of a metal for electronic parts having burrs. An emulsion containing an amino group-containing polymer, which is a reaction product with a monovalent secondary amine, in an amount of 60 to 80 parts by weight in terms of solid content, and a blocked isocyanate crosslinking agent in an amount of 20 to 40 parts by weight in terms of solid content. (B) 20 to 50 parts by weight of a methylolphenol compound having a number average molecular weight of 200 to 1000 in terms of solid content, and 50 to 80 parts by weight of an amine-added polybutadiene resin having a number average molecular weight of 1000 to 3000 in terms of solid content. 50 to 70 parts by weight of the pigment fine particle dispersion liquid (C) in terms of solid content, and the pigment dispersion resin A pigment paste containing 5 to 15 parts by weight in terms of form is (A) / (B) /
(C) = 1 / 0.18 to 0.72 / 0.5 to 0.9: The electrodeposition coating composition is electrodeposited, the coating film is baked, and the average film thickness is 20 to 100 µm. A method for forming a coating film, which comprises forming the insulating coating film.
【請求項2】 電子部品がモータ用ロータコアである請
求項1記載の被膜形成方法。
2. The film forming method according to claim 1, wherein the electronic component is a rotor core for a motor.
【請求項3】 電子部品がトランス用コアである請求項
1記載の被膜形成方法。
3. The method for forming a coating film according to claim 1, wherein the electronic component is a transformer core.
【請求項4】 電着塗装膜を60℃〜水の沸点未満の温
度で乾燥工程に付した後焼付け工程に付する請求項1〜
3いずれかに記載の被膜形成方法。
4. An electrodeposition coating film is subjected to a drying step at a temperature of 60 ° C. to a temperature lower than the boiling point of water and then to a baking step.
3. The method for forming a coating film according to any one of 3 above.
【請求項5】 焼き付けを135℃〜195℃で20〜
40分行う請求項1〜4のいずれかに記載の被膜形成方
法。
5. The baking is performed at 135 ° C. to 195 ° C. for 20 to 20 ° C.
The coating film forming method according to claim 1, which is performed for 40 minutes.
JP4340594A 1993-03-16 1994-03-15 Coating method Expired - Fee Related JP2894942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4340594A JP2894942B2 (en) 1993-03-16 1994-03-15 Coating method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5445693 1993-03-16
JP5-54456 1993-03-16
JP4340594A JP2894942B2 (en) 1993-03-16 1994-03-15 Coating method

Publications (2)

Publication Number Publication Date
JPH06327199A true JPH06327199A (en) 1994-11-25
JP2894942B2 JP2894942B2 (en) 1999-05-24

Family

ID=26383166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4340594A Expired - Fee Related JP2894942B2 (en) 1993-03-16 1994-03-15 Coating method

Country Status (1)

Country Link
JP (1) JP2894942B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228444A (en) * 1994-11-15 1996-09-03 Matsushita Electric Ind Co Ltd Magnetic core coated with tin-free electrodeposited film
JPH09285078A (en) * 1996-04-06 1997-10-31 Tanaka Seisakusho:Kk Method of coating motor core with powder, and motor having motor core coated with powder by that method
JPH10145988A (en) * 1996-11-05 1998-05-29 Tanaka Seisakusho:Kk Motor core, production thereof and motor having motor core
JP2004197073A (en) * 2002-12-02 2004-07-15 Sankyo Seiki Mfg Co Ltd Electrodeposition material, motor and lens driving device
JP2004526396A (en) * 2001-03-14 2004-08-26 アクゾ ノーベル ナムローゼ フェンノートシャップ Powder coated rotor
JP2004285481A (en) * 2001-10-05 2004-10-14 Nippon Steel Corp Iron core having excellent insulation property of edge face and insulation film treatment method for edge face of iron core
US7471182B2 (en) 2001-10-05 2008-12-30 Nippon Steel Corporation Core having superior end face insulation and method of treating core end faces to give insulation coating
JP2011211806A (en) * 2010-03-29 2011-10-20 Denso Corp Method of manufacturing motor
JP2012036314A (en) * 2010-08-09 2012-02-23 Shimizu:Kk Resin composition for electrodeposition coating, water-based electrodeposition coating, coating method, and coated article
WO2019031209A1 (en) * 2017-08-10 2019-02-14 住友電気工業株式会社 Powder magnetic core, and electromagnetic component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3050463B1 (en) * 2016-04-26 2020-10-23 Valeo Equip Electr Moteur DEPOSIT OF A LAYER OF ELECTRICALLY INSULATING MATERIAL FOR A ROTATING ELECTRIC MACHINE

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228444A (en) * 1994-11-15 1996-09-03 Matsushita Electric Ind Co Ltd Magnetic core coated with tin-free electrodeposited film
JPH09285078A (en) * 1996-04-06 1997-10-31 Tanaka Seisakusho:Kk Method of coating motor core with powder, and motor having motor core coated with powder by that method
JPH10145988A (en) * 1996-11-05 1998-05-29 Tanaka Seisakusho:Kk Motor core, production thereof and motor having motor core
JP2004526396A (en) * 2001-03-14 2004-08-26 アクゾ ノーベル ナムローゼ フェンノートシャップ Powder coated rotor
US7471182B2 (en) 2001-10-05 2008-12-30 Nippon Steel Corporation Core having superior end face insulation and method of treating core end faces to give insulation coating
JP2004285481A (en) * 2001-10-05 2004-10-14 Nippon Steel Corp Iron core having excellent insulation property of edge face and insulation film treatment method for edge face of iron core
JP2004197073A (en) * 2002-12-02 2004-07-15 Sankyo Seiki Mfg Co Ltd Electrodeposition material, motor and lens driving device
JP2011211806A (en) * 2010-03-29 2011-10-20 Denso Corp Method of manufacturing motor
JP2012036314A (en) * 2010-08-09 2012-02-23 Shimizu:Kk Resin composition for electrodeposition coating, water-based electrodeposition coating, coating method, and coated article
WO2019031209A1 (en) * 2017-08-10 2019-02-14 住友電気工業株式会社 Powder magnetic core, and electromagnetic component
CN111033650A (en) * 2017-08-10 2020-04-17 住友电气工业株式会社 Dust core and electromagnetic component
JPWO2019031209A1 (en) * 2017-08-10 2020-05-28 住友電気工業株式会社 Dust core and electromagnetic parts
CN111033650B (en) * 2017-08-10 2023-05-02 住友电气工业株式会社 Dust core and electromagnetic component
US11869691B2 (en) 2017-08-10 2024-01-09 Sumitomo Electric Industries, Ltd. Powder magnetic core and electromagnetic part

Also Published As

Publication number Publication date
JP2894942B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
EP1805260B1 (en) Self-bonding coating composition
JP2894942B2 (en) Coating method
AU596262B2 (en) Multiple electrocoating process
US20060131173A1 (en) Method of coating an electric wire and insulated wire
US4788246A (en) Cationic micro gel particle dispersion and a coating composition therefrom
US5451306A (en) Method of forming film on electronic part metal surface having burrs
WO1993016139A1 (en) Process for lacquering electroconductive substrates, aqueous electro-dipcoats, process for preparing an aqueous dispersion of crosslinked polymer microparticules and dispersions prepared according to this process
JP2005312219A (en) Motor core having three-layer insulation coating film structure and method for manufacturing the same
US5658660A (en) Magnetic core coated with tin free electrodeposition coatings
WO2002017413A1 (en) Case for electronic parts
JP2018026249A (en) Insulated wire, rotary electric machine, and method for manufacturing insulated wire
JP2686635B2 (en) Cationic electrodeposition coating composition
JPH0464613B2 (en)
JP3233700B2 (en) Anticorrosion paint composition
JP5135532B2 (en) Method for coating an insulating coating on the surface of a laminated motor core
JP2002294141A (en) Cationic electrodeposition coating material composition
JP2006348316A (en) Method for forming electrodeposition coating film
JP2002060680A (en) Cationic electrodeposition coating composition
US20060219569A1 (en) Method of coating a square wire and an insulated wire of a square wire
JPH08228444A (en) Magnetic core coated with tin-free electrodeposited film
JP2002285077A (en) Electrodeposition coating composition for edge-provided electric wire
JP3375736B2 (en) Resin composition for cationic electrodeposition paint
KR20050070495A (en) Cationic electroplating resin composition and method of preparing the same
WO2004098794A1 (en) Insulating method and insulated metal product
JPS6210270B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees