JPH063269A - Method for measuring phase difference - Google Patents

Method for measuring phase difference

Info

Publication number
JPH063269A
JPH063269A JP15827492A JP15827492A JPH063269A JP H063269 A JPH063269 A JP H063269A JP 15827492 A JP15827492 A JP 15827492A JP 15827492 A JP15827492 A JP 15827492A JP H063269 A JPH063269 A JP H063269A
Authority
JP
Japan
Prior art keywords
light
transparent film
phase difference
reflected
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15827492A
Other languages
Japanese (ja)
Other versions
JP3331624B2 (en
Inventor
Toshiharu Nishino
利晴 西野
Masashi Kano
正士 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP15827492A priority Critical patent/JP3331624B2/en
Publication of JPH063269A publication Critical patent/JPH063269A/en
Application granted granted Critical
Publication of JP3331624B2 publication Critical patent/JP3331624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To calculate the phase difference of a transparent film by emitting a laser beam to the transparent film to be measured formed on the reflecting surface of a base through a polarizer, a modulator, and a first optical element, reflecting the reflected light emitted from the transparent film in different right-angled directions by first and second optical elements, respectively, and detecting the light through an analyzer by a light detector. CONSTITUTION:A transparent film 20 to be measured is formed on the reflecting surface 21a of a base 21. The output light of a laser 11 is emitted to the transparent film 20 through a polarizer, a photoelastic modulator 13, and a first half mirror prism 14. This light is reflected by the reflecting surface 21a, advanced in an optical path A1, and reflected to a right-angled optical path A2 by the reflecting surface 14b of the prism 14. This light is collided with the reflecting surface 15b of a second half mirror prism 15, and reflected in the direction right-angled to the optical paths A1, A2. Thereafter, the light is emitted to a light detector 17 through an analyzer 16. The intensity of the light passed through the analyzer 16 is measured by the light detector 17, the measurement value of the detector 17 is processed by an arithmetic device, and the phase difference of the transparent film 20 can be highly precisely measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学的異方性をもつ透
明膜の位相差を測定する位相差測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a retardation measuring method for measuring retardation of a transparent film having optical anisotropy.

【0002】[0002]

【従来の技術】例えば液晶表示素子の基板面に形成する
配向膜等、光学的異方性をもつ透明膜の位相差(常光と
異常光との位相の差)の測定は、一般に、レーザを用い
る方法によって行なわれている。
2. Description of the Related Art Generally, a laser is generally used to measure a phase difference (a phase difference between ordinary light and extraordinary light) of a transparent film having optical anisotropy such as an alignment film formed on a substrate surface of a liquid crystal display device. It depends on the method used.

【0003】このレーザによる位相差の測定は、従来、
図4(a)に示すように、透明なガラス基板11の上面
に被測定透明膜10を形成し、この透明膜10にレーザ
1からの光を偏光子2と光弾性変調器3とを介して入射
させるとともに、この透明膜10を透過してガラス基板
11の下面側に出射する光を検光子4を介して光検出器
5により検出し、この検出光の強度の変化に基づいて透
明膜10の位相差を算出する方法で行なわれている。
The measurement of the phase difference by this laser is conventionally performed
As shown in FIG. 4A, the transparent film 10 to be measured is formed on the upper surface of the transparent glass substrate 11, and the light from the laser 1 is passed through the transparent film 10 via the polarizer 2 and the photoelastic modulator 3. Light which is transmitted through the transparent film 10 and is emitted to the lower surface side of the glass substrate 11 is detected by the photodetector 5 through the analyzer 4, and the transparent film is detected based on the change in the intensity of the detected light. The phase difference of 10 is calculated.

【0004】図4(b)には、偏光子2の透過軸2a、
光弾性変調器3の屈折率振動方向3a、被測定透明膜1
0の進相軸10a、検光子4の透過軸4aをそれぞれ示
している。光弾性変調器3は屈折率が3aの方向にωの
周期で振動している。したがって光弾性変調器3の屈折
率位相差は、δ sinωtとして表される。ここで、δ
は、J0(δ) =0となるδである。J0(x) は0次のベ
ッセル関数である。このようなとき、光検出器5で検出
される光強度Iは、 I=1/2 +J1(δ)sinΔ sinωt Δ;被測定透明膜10の屈折率位相差 J1(x) ;1次のベッセル関数
FIG. 4B shows the transmission axis 2a of the polarizer 2,
Refractive index vibration direction 3a of photoelastic modulator 3, transparent film 1 to be measured
A fast axis 10a of 0 and a transmission axis 4a of the analyzer 4 are shown. The photoelastic modulator 3 vibrates in the direction of the refractive index 3a at a cycle of ω. Therefore, the refractive index phase difference of the photoelastic modulator 3 is expressed as δ sin ωt. Where δ
Is δ such that J0 (δ) = 0. J0 (x) is a zero-order Bessel function. In such a case, the light intensity I detected by the photodetector 5 is: I = 1/2 + J1 (δ) sinΔ sinωt Δ; Refractive index phase difference J1 (x) of the transparent film 10 to be measured; function

【0005】であり、ロックインアンプにより sinωt
の係数Iω=J1(δ)sinΔを引き出すことができ、これ
から次の[数1]の式により被測定透明膜10の位相差
を算出することができる。
And the lock-in amplifier causes sinωt
The coefficient Iω = J1 (δ) sinΔ of can be derived, and the phase difference of the transparent film to be measured 10 can be calculated from this by the following formula [1].

【0006】[0006]

【数1】 [Equation 1]

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の位相差測定方法においては、光検出器5で検
出される光が被測定透明膜10と、この透明膜10を形
成した基板11との両方を透過した光であるため、透明
膜10の位相差を精度よく測定できないという問題があ
る。
However, in such a conventional phase difference measuring method, the light detected by the photodetector 5 is the transparent film 10 to be measured and the substrate 11 on which the transparent film 10 is formed. Since the light is transmitted through both of them, there is a problem that the phase difference of the transparent film 10 cannot be accurately measured.

【0008】これは、透明膜10を形成したガラス基板
11にも光学的異方性があるためであり、したがって測
定された位相差が、透明膜10とガラス基板11との両
方の位相差を合成した値となってしまう。
This is because the glass substrate 11 on which the transparent film 10 is formed also has optical anisotropy. Therefore, the measured phase difference shows the phase difference between both the transparent film 10 and the glass substrate 11. It will be the combined value.

【0009】しかも従来の位相差測定方法では、被測定
透明膜10が例えば単分子膜からなる配向膜のように膜
厚が薄くて位相差が小さい透明膜であると、検出光の強
度がごく僅かしか変化しないため、上記単分子膜のよう
な位相差が小さい透明膜の位相差測定は困難であるとい
う問題もある。
Further, in the conventional phase difference measuring method, when the transparent film to be measured 10 is a transparent film having a small film thickness and a small phase difference such as an alignment film made of a monomolecular film, the intensity of the detection light is very small. Since it changes only slightly, there is also a problem that it is difficult to measure the retardation of a transparent film having a small retardation like the above-mentioned monomolecular film.

【0010】本発明はこのような点に着目してなされた
もので、その目的とするところは、被測定透明膜の位相
差を高精度に測定することができ、しかも位相差の小さ
い透明膜の位相差であってもその測定が可能な位相差測
定方法を提供することにある。
The present invention has been made paying attention to such a point, and an object thereof is to make it possible to measure a phase difference of a transparent film to be measured with high accuracy and to obtain a transparent film having a small phase difference. An object of the present invention is to provide a phase difference measuring method capable of measuring even the phase difference of.

【0011】[0011]

【課題を解決するための手段】本発明はこのような目的
を達成するために、反射板からなる基板の反射面に被測
定透明膜を形成し、レーザからの光を偏光子と光弾性変
調器と第1の光学素子とを介して前記透明膜に入射させ
るとともに、この透明膜を透過し前記基板の反射面で反
射して再び前記透明膜を介して出射する光を、前記第1
の光学素子の反射面で直角に反射させ、この反射した光
を第2の光学素子の反射面に入射させ、この入射した光
を前記第2の光学素子の反射面から、前記第1の光学素
子の反射面に入射する光路と、該反射面から出射する光
路とを含む面に対して直角の方向に反射させ、この反射
させた光を検光子を介して光検出器により検出し、この
検出器が検出する光の強度の変化に基づいて前記透明膜
の位相差を算出することを特徴とするものである。
In order to achieve such an object, the present invention forms a transparent film to be measured on a reflecting surface of a substrate made of a reflecting plate and modulates light from a laser with a polarizer and photoelastic modulation. The light which is incident on the transparent film through the container and the first optical element, is transmitted through the transparent film, is reflected by the reflecting surface of the substrate, and is emitted again through the transparent film.
Light is reflected at a right angle on the reflection surface of the optical element, the reflected light is incident on the reflection surface of the second optical element, and the incident light is reflected from the reflection surface of the second optical element to the first optical element. An optical path incident on the reflecting surface of the element and a light path emitted from the reflecting surface are reflected in a direction perpendicular to the surface, and the reflected light is detected by a photodetector via an analyzer. It is characterized in that the phase difference of the transparent film is calculated based on the change in the intensity of light detected by the detector.

【0012】[0012]

【作用】このような位相差測定方法によれば、被測定透
明膜に入射した光が、その透明膜を透過するだけで基板
を透過することがないから、検光子を介して光検出器で
検出される光は、透明膜を透過した光だけであり、した
がって検出光の強度の変化に基づいて算出される位相差
は、基板の位相差を含まない透明膜だけの位相差とな
る。
According to such a phase difference measuring method, the light incident on the transparent film to be measured does not pass through the substrate but only through the transparent film. Therefore, the light is detected by the photodetector via the analyzer. The light detected is only the light that has passed through the transparent film, and therefore the phase difference calculated based on the change in the intensity of the detected light is the phase difference of only the transparent film that does not include the phase difference of the substrate.

【0013】また、この位相差測定方法では、透明膜に
入射した光が、その透明膜を透過して基板の反射面で反
射され、再び透明膜を透過して出射するため、光検出器
で検出される光は、透明膜を2度透過した光であり、し
たがって検出光の強度が透明膜の位相差の2倍の比率で
変化し、このため位相差が小さい透明膜の位相差の測定
も可能となる。
Further, in this phase difference measuring method, the light incident on the transparent film is transmitted through the transparent film, reflected by the reflecting surface of the substrate, and again emitted through the transparent film. The detected light is light that has been transmitted through the transparent film twice, and therefore the intensity of the detected light changes at a rate of twice the phase difference of the transparent film. Therefore, the phase difference of the transparent film having a small phase difference is measured. Will also be possible.

【0014】[0014]

【実施例】以下、本発明の一実施例について図1ないし
図3を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0015】図1は位相差を測定する装置の構成を示し
ており、この装置はレーザ11、偏光子12、光弾性変
調器13、光学素子としての第1および第2のハーフミ
ラープリズム14,15、検光子16、光検出器17と
で構成されている。
FIG. 1 shows the construction of an apparatus for measuring the phase difference. This apparatus comprises a laser 11, a polarizer 12, a photoelastic modulator 13, first and second half mirror prisms 14 as optical elements, 15, an analyzer 16, and a photodetector 17.

【0016】そして図示しないが前記レーザ11にはこ
れを駆動するレーザ発振器が接続され、光弾性変調器1
3にはこれを駆動する光弾性変調用発振器が接続され、
さらに光検出器17にはその検出光の強度の変化に基づ
いて透過光の位相差を算出する演算装置が接続されてい
る。
Although not shown, a laser oscillator for driving the laser 11 is connected to the laser 11, and the photoelastic modulator 1 is connected.
3 is connected to a photoelastic modulation oscillator for driving it,
Further, the photodetector 17 is connected to an arithmetic unit that calculates the phase difference of the transmitted light based on the change in the intensity of the detected light.

【0017】また、図1に示す20は被測定透明膜であ
り、この透明膜20は基板21の上に形成されている。
基板21は表面を鏡面仕上げしたアルミニウム板や、表
面にアルミニウム膜等の反射膜を蒸着したガラス板等か
らなる反射板であり、透明膜20はこの基板21の反射
面21aの上に形成されている。
Reference numeral 20 shown in FIG. 1 is a transparent film to be measured, and this transparent film 20 is formed on a substrate 21.
The substrate 21 is a reflecting plate made of an aluminum plate having a mirror-finished surface or a glass plate having a reflecting film such as an aluminum film deposited on the surface. The transparent film 20 is formed on the reflecting surface 21 a of the substrate 21. There is.

【0018】そして前記被測定透明膜20は例えば配向
膜であり、この配向膜は基板21の上にLB法によって
単分子が一方向に配列した単分子膜を被着させるか、あ
るいは基板21の上にポリイミド等の配向材を塗布し、
その膜面をラビング処理して形成されている。この配向
膜の光学軸は、その配向方向であり、単分子膜では単分
子の配列方向、ラビング処理膜ではラビング方向であ
る。
The transparent film 20 to be measured is, for example, an alignment film, and this alignment film is formed by depositing a monomolecular film in which single molecules are arranged in one direction by the LB method on the substrate 21, or Apply an alignment material such as polyimide on top,
The film surface is formed by rubbing. The optical axis of this alignment film is the alignment direction thereof, that is, the alignment direction of the single molecules in the monomolecular film and the rubbing direction in the rubbing-treated film.

【0019】偏光子12、光弾性変調器13および基板
21は前記レーザ11から出力する光の光軸aに対して
直角に配置している。そして光弾性変調器13と基板2
1との間に第1のハーフミラープリズム14が位置し、
この第1のハーフミラープリズム14は、光の入射面1
4aが前記光軸aに対して直角に配置し、光の反射面1
4bが前記光軸aに対して45°の角度で傾斜するよう
に設けられている。
The polarizer 12, the photoelastic modulator 13 and the substrate 21 are arranged at right angles to the optical axis a of the light output from the laser 11. Then, the photoelastic modulator 13 and the substrate 2
The first half mirror prism 14 is located between 1 and
The first half-mirror prism 14 has a light incident surface 1
4a is arranged at a right angle to the optical axis a, and a light reflecting surface 1
4b is provided so as to be inclined at an angle of 45 ° with respect to the optical axis a.

【0020】また第2のハーフミラープリズム15は、
前記第1のハーフミラープリズム14の反射面14bと
対向する側に設けられ、第1のハーフミラープリズム1
4の反射面14bを反射した光が、この第2のハーフミ
ラープリズム15の光の反射面15bに入射するように
配置している。
The second half mirror prism 15 is
The first half mirror prism 1 is provided on the side facing the reflecting surface 14b of the first half mirror prism 14.
The light reflected by the fourth reflecting surface 14b is arranged so as to enter the light reflecting surface 15b of the second half mirror prism 15.

【0021】そして第2のハーフミラープリズム15の
反射面15bに入射した光が、第1のハーフミラープリ
ズム14の反射面14bに入射する光の光路A1 と、そ
の光が第1のハーフミラープリズム14の反射面14b
で反射して第2のハーフミラープリズム15の反射面1
5bに入射する光の光路A2 とを含む平面に対して直角
の方向に反射させる向きに前記反射面15bが向いてい
る。被測定透明膜20の位相差は次のように測定され
る。まずレーザ11からの出力光を偏光子12、光弾性
変調器13、第1のハーフプリズム14の入射面14a
を通して透明膜20に入射させる。
The light incident on the reflecting surface 15b of the second half-mirror prism 15 is incident on the reflecting surface 14b of the first half-mirror prism 14, and the light path A1 of the light is the first half-mirror prism. 14 reflective surface 14b
The reflection surface 1 of the second half mirror prism 15
The reflecting surface 15b faces in a direction perpendicular to the plane containing the optical path A2 of the light incident on 5b. The phase difference of the measured transparent film 20 is measured as follows. First, the output light from the laser 11 is applied to the polarizer 12, the photoelastic modulator 13, and the incident surface 14a of the first half prism 14.
Through the transparent film 20.

【0022】透明膜20に入射した光は、基板21の反
射面21aに垂直に当たって入射と同一の光路A1 に反
射し、さらにこの反射した光が第1のハーフミラープリ
ズム14の反射面14bに当たって直角の光路A2 に反
射し、第2のハーフミラープリズム15の反射面15b
に向かって進む。
The light incident on the transparent film 20 strikes the reflecting surface 21a of the substrate 21 perpendicularly and is reflected in the same optical path A1 as the incident light, and the reflected light strikes the reflecting surface 14b of the first half mirror prism 14 to form a right angle. Reflected by the optical path A2 of the second half mirror prism 15
Head towards.

【0023】そしてこの光が第2のハーフミラープリズ
ム15の反射面15bに当たり、この反射面15bで反
射する。この反射の方向は、基板21から第1のハーフ
ミラープリズム14の反射面14bに至る光路A1 と、
第1のハーフミラープリズム14の反射面14bから第
2のハーフミラープリズム15の反射面15bに至る光
路A2 とを含む平面に対して直角の方向である。
Then, this light strikes the reflecting surface 15b of the second half mirror prism 15 and is reflected by this reflecting surface 15b. The direction of this reflection is the optical path A1 from the substrate 21 to the reflecting surface 14b of the first half mirror prism 14,
The direction is at right angles to the plane including the optical path A2 from the reflecting surface 14b of the first half mirror prism 14 to the reflecting surface 15b of the second half mirror prism 15.

【0024】そして第2のハーフミラープリズム15の
反射面15bを反射した光が検光子16を透過して光検
出器17に入射し、検光子16を通った光の強度が光検
出器17により計測され、その値が演算装置を介して算
出される。
The light reflected by the reflecting surface 15b of the second half mirror prism 15 passes through the analyzer 16 and enters the photodetector 17, and the intensity of the light passing through the analyzer 16 is determined by the photodetector 17. It is measured and the value is calculated via a computing device.

【0025】ここで、第1のハーフミラープリズム14
の反射面14bを反射した光を直接検光子16に入射さ
せてその光の強度を光検出器17で計測することが考え
られる。
Here, the first half mirror prism 14
It is conceivable that the light reflected by the reflecting surface 14b of the above is directly incident on the analyzer 16 and the intensity of the light is measured by the photodetector 17.

【0026】しかしながらこの場合、第1のハーフミラ
ープリズム14の反射面14bで反射して光が直角に曲
がるときに偏光状態が変わってしまう。その反射の状態
を図3に示しており、ハーフミラープリズム14の反射
面14bに入射する光において、図の紙面に対して直角
に振動する成分1aの強度をAH 、平行に振動する成分
1bの強度をAL 、ハーフミラープリズム14の反射面
14bで反射して直角に曲がった光において、図の紙面
に対して直角に振動する成分2aの強度をBH、平行に
振動する成分2bの強度をBL とすると、 AH = BH AL =γBL γ;紙面に平行に振動する成分の反射係数 となり、次の[数2]の式の通り、反射前後で偏光比が
違ってくる。
In this case, however, the polarization state changes when the light is reflected by the reflecting surface 14b of the first half mirror prism 14 and the light bends at a right angle. The state of the reflection is shown in FIG. 3, and in the light incident on the reflecting surface 14b of the half mirror prism 14, the intensity of the component 1a vibrating at right angles to the paper surface of the figure is AH, and the intensity of the component 1b vibrating in parallel is Intensity is AL, in the light reflected at the reflecting surface 14b of the half mirror prism 14 and bent at a right angle, the intensity of the component 2a that vibrates at a right angle to the paper surface of the drawing is BH, and the intensity of the component 2b that vibrates in a parallel direction is BL. Then, AH = BH AL = γBL γ; the reflection coefficient of the component that oscillates parallel to the paper surface, and the polarization ratio before and after reflection differs as shown in the following [Equation 2].

【0027】[0027]

【数2】 これにより正確な計測ができなくなる。[Equation 2] This makes accurate measurement impossible.

【0028】このようなことから本発明においては、第
1のハーフミラープリズム14の反射面14bを反射し
た光を第2のハーフミラープリズム15の反射面15b
に入射させ、この光を反射面15bにより、第1のハー
フミラープリズム14の反射面14bに至る光路A1
と、第1のハーフミラープリズム14の反射面14bか
ら第1のハーフミラープリズム14の反射面14bから
第2のハーフミラープリズム15の反射面15bに至る
光路A2 とを含む平面に対して直角の方向に反射させ、
この光を検光子16を介して光検出器17に入射させ、
前記検光子16を通った光の強度を光検出器17で計測
するようにしている。
Therefore, in the present invention, the light reflected by the reflecting surface 14b of the first half mirror prism 14 is reflected by the reflecting surface 15b of the second half mirror prism 15.
To the reflecting surface 15b of the first half-mirror prism 14 and the optical path A1
And a light path A2 from the reflection surface 14b of the first half mirror prism 14 to the reflection surface 15b of the second half mirror prism 15 from the reflection surface 14b of the first half mirror prism 14 to the reflection surface 15b of the second half mirror prism 15. Reflected in the direction,
This light is made incident on the photodetector 17 through the analyzer 16,
The photodetector 17 measures the intensity of the light passing through the analyzer 16.

【0029】光弾性変調器13は、従来と同様に、屈折
率が一定の方向にωの周期で振動している。したがって
光弾性変調器3の屈折率位相差は、δ sinωtとして表
される。ここで、δは、J0(δ) =0となるδである。
J0(x) は0次のベッセル関数である。このようなと
き、光検出器17で検出される光強度Iは、
As in the conventional case, the photoelastic modulator 13 oscillates in the direction of constant refractive index with a cycle of ω. Therefore, the refractive index phase difference of the photoelastic modulator 3 is expressed as δ sin ωt. Here, δ is δ such that J0 (δ) = 0.
J0 (x) is a zero-order Bessel function. In such a case, the light intensity I detected by the photodetector 17 is

【0030】次の[数3]の式により求められ、ロック
インアンプにより sinωtの係数である[数4]の式を
引き出すことができ、これから[数5]の式を導いて被
測定透明膜20の位相差を算出することができる。
The equation of [Equation 4], which is the coefficient of sin ωt, can be derived from the equation of [Equation 3], which is obtained by the equation of [Equation 3]. A phase difference of 20 can be calculated.

【0031】[0031]

【数3】 [Equation 3]

【0032】[0032]

【数4】 [Equation 4]

【0033】[0033]

【数5】 [Equation 5]

【0034】そしてこの場合においては、図2に示すよ
うに、第1のハーフミラープリズム14の反射面14a
に入射する光の光路L1 を進む光で、x軸方向に振動す
る成分1aの強度をA1 、y軸方向に振動する成分1b
の強度をB1 、第1のハーフミラープリズム14の反射
面14bを反射して光路L2 を進む光で、x軸方向に振
動する成分2aの強度をA2 、z軸方向に振動する成分
2bの強度をB2 、第2のハーフミラープリズム15の
反射面15bを反射して光路L3 を進む光で、y軸方向
に振動する成分12bの強度をA3 、z軸方向に振動す
る成分12bの強度をB3 とすると、 A1 = A2 =γA3 B1 =γB2 =γB3 であり、したがって被測定透明膜20からの反射光が検
光子16に達するまでの偏光比は、 (A1 /B1 )=(A3 /B3 ) となり、偏光比に変化がなく、正確な計測を行なうこと
ができる。
In this case, as shown in FIG. 2, the reflecting surface 14a of the first half mirror prism 14 is shown.
Of the component 1a that vibrates in the x-axis direction and has the intensity of A1 and the component 1b that vibrates in the y-axis direction.
Is B1, the intensity of component 2a that vibrates in the x-axis direction is A2, and the intensity of component 2b that vibrates in the z-axis direction is light that is reflected by the reflecting surface 14b of the first half mirror prism 14 and travels along the optical path L2. Is B2, the intensity of the component 12b that vibrates in the y-axis direction is A3, and the intensity of the component 12b that vibrates in the z-axis direction is B3, which is the light reflected on the reflecting surface 15b of the second half mirror prism 15 and traveling along the optical path L3. Then, A1 = A2 = γA3 B1 = γB2 = γB3, and therefore the polarization ratio until the reflected light from the transparent film 20 to be measured reaches the analyzer 16 is (A1 / B1) = (A3 / B3). Therefore, there is no change in the polarization ratio, and accurate measurement can be performed.

【0035】そしてこのような位相差の測定において
は、被測定透明膜20に入射した光が、この透明膜20
を透過するだけで、基板21を何ら透過せず、このため
検光子16を介して光検出器17で検出される光は、透
明膜20を透過した光だけであり、このため検出した光
の強度の変化に基づいて算出される位相差は、基板21
の位相差を含まない透明膜20だけの位相差となり、し
たがって透明膜20の位相差を高精度に測定することが
できる。
In the measurement of such a phase difference, the light incident on the transparent film 20 to be measured is transferred to the transparent film 20.
But not through the substrate 21, and the light detected by the photodetector 17 through the analyzer 16 is only the light that has passed through the transparent film 20. The phase difference calculated based on the change in intensity is
The phase difference of only the transparent film 20 does not include the phase difference of 1. Therefore, the phase difference of the transparent film 20 can be measured with high accuracy.

【0036】また、この位相差測定方法においては、透
明膜20に入射した光が、その透明膜20を透過してそ
の基板21の反射面21aで反射され、再び透明膜20
を透過して出射するため、光検出器17で検出される光
は、透明膜20を2度透過した光となり、したがって検
出した光の強度が透明膜20の位相差の2倍の比率で変
化し、このため例えば単分子膜からなる配向膜のよう
な、位相差が小さい透明膜20であってもその位相差の
測定が可能となる。
In this phase difference measuring method, light incident on the transparent film 20 passes through the transparent film 20, is reflected by the reflecting surface 21a of the substrate 21, and is again transparent film 20.
Therefore, the light detected by the photodetector 17 becomes light that has passed through the transparent film 20 twice, and thus the intensity of the detected light changes at a rate of twice the phase difference of the transparent film 20. However, for this reason, even if the transparent film 20 having a small phase difference, such as an alignment film made of a monomolecular film, the phase difference can be measured.

【0037】ただ、この位相差測定方法では、透明膜2
0を2度透過した光を光検出器17で検出するため、検
出した光の強度の変化に基づいて算出される位相差の値
は、透明膜20の位相差の2倍であり、この算出値の1
/2が透明膜20の真の位相差である。
However, in this phase difference measuring method, the transparent film 2
Since the light detector 17 detects light that has transmitted 0 twice, the value of the phase difference calculated based on the change in the intensity of the detected light is twice the phase difference of the transparent film 20. Value 1
/ 2 is the true phase difference of the transparent film 20.

【0038】なお、前記実施例においては、第1および
第2の光学素子をそれぞれハーフミラープリズムとした
が、例えば第1の光学素子を通常のプリズム、第2の光
学素子を通常の平面鏡として実施することも可能であ
る。また本発明の位相差測定方法は、配向膜に限らず、
光学的異方性をもつ種々の透明膜の位相差の測定に適用
することができるものである。
Although the first and second optical elements are half mirror prisms in the above embodiment, for example, the first optical element is a normal prism and the second optical element is a normal plane mirror. It is also possible to do so. Further, the phase difference measuring method of the present invention is not limited to the alignment film,
It can be applied to the measurement of retardation of various transparent films having optical anisotropy.

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、反
射板からなる基板の反射面に被測定透明膜を形成し、レ
ーザからの光を偏光子と光弾性変調器と第1の光学素子
とを介して前記透明膜に入射させるとともに、この透明
膜を透過し前記基板の反射面で反射して再び前記透明膜
を介して出射する光を、前記第1の光学素子の反射面で
直角に反射させ、この反射した光を第2の光学素子の反
射面に入射させ、この入射した光を前記第2の光学素子
の反射面から、前記第1の光学素子の反射面に入射する
光路と、該反射面から出射する光路とを含む面に対して
直角の方向に反射させ、この反射させた光を検光子を介
して光検出器により検出し、この検出器が検出する光の
強度の変化に基づいて前記透明膜の位相差を算出するも
のであるから、透明膜の位相差を高精度に測定すること
ができ、しかも位相差の小さい透明膜であってもその位
相差を測定することができる利点がある。
As described above, according to the present invention, the transparent film to be measured is formed on the reflecting surface of the substrate composed of the reflecting plate, and the light from the laser is applied to the polarizer, the photoelastic modulator and the first optical element. The light incident on the transparent film through the element, transmitted through the transparent film, reflected by the reflective surface of the substrate, and emitted again through the transparent film is reflected by the reflective surface of the first optical element. The light is reflected at a right angle, the reflected light is incident on the reflection surface of the second optical element, and the incident light is incident on the reflection surface of the first optical element from the reflection surface of the second optical element. The reflected light is reflected in a direction at a right angle to the surface including the optical path and the optical path emitted from the reflecting surface, the reflected light is detected by a photodetector through an analyzer, and the light detected by the detector is detected. Since the phase difference of the transparent film is calculated based on the change in intensity, It can measure the phase difference film with high precision, yet can be advantageously be a small transparent film having a phase difference measuring the phase difference.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による位相差測定方法を示す
図。
FIG. 1 is a diagram showing a phase difference measuring method according to an embodiment of the present invention.

【図2】その位相差測定方法における第1のハーフミラ
ープリズムと第2のハーフミラープリズムとを反射する
光の作用を説明するための図。
FIG. 2 is a diagram for explaining the action of light reflected by a first half mirror prism and a second half mirror prism in the phase difference measuring method.

【図3】その位相差測定方法における第1のハーフミラ
ープリズムを反射する光の作用を説明するための図。
FIG. 3 is a diagram for explaining an action of light reflected by a first half mirror prism in the phase difference measuring method.

【図4】従来の位相差測定方法を示す図。FIG. 4 is a diagram showing a conventional phase difference measuring method.

【符号の説明】[Explanation of symbols]

11…レーザ 12…偏光子 13…光弾性変調器 14…第1のハーフミラープリズム 15…第2のハーフミラープリズム 16…検光子 17…光検出器 20…被透明膜 21…基板 11 ... Laser 12 ... Polarizer 13 ... Photoelastic modulator 14 ... First half-mirror prism 15 ... Second half-mirror prism 16 ... Analyzer 17 ... Photodetector 20 ... Transparent film 21 ... Substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光学的異方性をもつ透明膜の位相差を測定
する方法において、 反射板からなる基板の反射面に被測定透明膜を形成し、
レーザからの光を偏光子と光弾性変調器と第1の光学素
子とを介して前記透明膜に入射させるとともに、この透
明膜を透過し前記基板の反射面で反射して再び前記透明
膜を介して出射する光を、前記第1の光学素子の反射面
で直角に反射させ、この反射した光を第2の光学素子の
反射面に入射させ、この入射した光を前記第2の光学素
子の反射面から、前記第1の光学素子の反射面に入射す
る光路と、該反射面から出射する光路とを含む面に対し
て直角の方向に反射させ、この反射させた光を検光子を
介して光検出器により検出し、この検出器が検出する光
の強度の変化に基づいて前記透明膜の位相差を算出する
ことを特徴とする位相差測定方法。
1. A method for measuring a phase difference of a transparent film having optical anisotropy, wherein a transparent film to be measured is formed on a reflecting surface of a substrate composed of a reflecting plate,
The light from the laser is made incident on the transparent film through the polarizer, the photoelastic modulator, and the first optical element, and the light is transmitted through the transparent film and reflected by the reflection surface of the substrate to make the transparent film again. The light emitted via the first optical element is reflected at a right angle on the reflection surface of the first optical element, the reflected light is incident on the reflection surface of the second optical element, and the incident light is incident on the second optical element. From the reflection surface of the first optical element, the light is incident on the reflection surface of the first optical element and is reflected in a direction at a right angle to the surface including the light path emitted from the reflection surface, and the reflected light is analyzed by an analyzer. A phase difference measuring method, characterized in that the phase difference of the transparent film is calculated based on a change in the intensity of light detected by the photodetector through the photodetector.
JP15827492A 1992-06-17 1992-06-17 Phase difference measurement method Expired - Fee Related JP3331624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15827492A JP3331624B2 (en) 1992-06-17 1992-06-17 Phase difference measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15827492A JP3331624B2 (en) 1992-06-17 1992-06-17 Phase difference measurement method

Publications (2)

Publication Number Publication Date
JPH063269A true JPH063269A (en) 1994-01-11
JP3331624B2 JP3331624B2 (en) 2002-10-07

Family

ID=15668026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15827492A Expired - Fee Related JP3331624B2 (en) 1992-06-17 1992-06-17 Phase difference measurement method

Country Status (1)

Country Link
JP (1) JP3331624B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021098A1 (en) * 1995-12-05 1997-06-12 Hoechst Industry Limited Optical fuel vapor detector utilizing thin polymer film and fuel leak monitor system
CN111948176A (en) * 2019-05-15 2020-11-17 住友化学株式会社 Method for inspecting optical film and method for manufacturing optical film
CZ308688B6 (en) * 2019-12-18 2021-02-24 Ústav Přístrojové Techniky Av Čr, V.V.I. Interferometric signal detection system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230030346A (en) 2021-08-25 2023-03-06 삼성전자주식회사 Polarization Measuring Device and method for fabricating semiconductor device using thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021098A1 (en) * 1995-12-05 1997-06-12 Hoechst Industry Limited Optical fuel vapor detector utilizing thin polymer film and fuel leak monitor system
CN111948176A (en) * 2019-05-15 2020-11-17 住友化学株式会社 Method for inspecting optical film and method for manufacturing optical film
CN111948176B (en) * 2019-05-15 2024-03-26 住友化学株式会社 Inspection method for optical film and manufacturing method for optical film
CZ308688B6 (en) * 2019-12-18 2021-02-24 Ústav Přístrojové Techniky Av Čr, V.V.I. Interferometric signal detection system

Also Published As

Publication number Publication date
JP3331624B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
US8325347B2 (en) Integrated optical sensor
JP2002277387A (en) Instrument and method for measuring angle of rotation
EP0165722A2 (en) Film thickness measuring apparatus
US6563593B2 (en) Dynamic angle measuring interferometer
US6628389B1 (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
JP3331624B2 (en) Phase difference measurement method
JP2004226404A (en) Device for measuring residual stress of optical fiber
US20060139639A1 (en) Apparatus and method for measuring phase retardation
TWI405959B (en) Method and apparatus for measuring physical parameters of an anisotropic material by phase-sensitive heterodyne interferometry
JP2600461B2 (en) Torque measurement method
JPH0283428A (en) Automatic double refraction measuring apparatus
JP2001074649A (en) Method for measuring angle of optical rotation, and method for inspecting urine
JP3855080B2 (en) Optical characteristic measuring method for liquid crystal element and optical characteristic measuring system for liquid crystal element
JP4455126B2 (en) Optical sensor and optical sensor assembly method
Hsieh et al. Measurement of small angle based on a (1 0 0) silicon wafer and heterodyne interferometer
JP2004279380A (en) Angle of rotation measuring instrument
JP2592254B2 (en) Measuring device for displacement and displacement speed
JPH09119821A (en) Method and device for measuring parallax of incident angle of ray
JP2760830B2 (en) Optical measuring device for displacement
JPH055656A (en) Measurement of phase difference
JPS58151509A (en) Optical measuring method of surface roughness
JP2759115B2 (en) Measurement device for third-order nonlinear optical characteristics
JPH03235006A (en) Method and apparatus for measuring progressive linearity of moving body
JPH01161124A (en) Light wavelength measuring method
JP2863273B2 (en) Displacement measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20070726

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090726

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090726

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110726

LAPS Cancellation because of no payment of annual fees