JPH063268A - Infrared absorption spectroscopic method for interstitial oxygen or substituted carbon concentration of silicon wafer - Google Patents

Infrared absorption spectroscopic method for interstitial oxygen or substituted carbon concentration of silicon wafer

Info

Publication number
JPH063268A
JPH063268A JP18745692A JP18745692A JPH063268A JP H063268 A JPH063268 A JP H063268A JP 18745692 A JP18745692 A JP 18745692A JP 18745692 A JP18745692 A JP 18745692A JP H063268 A JPH063268 A JP H063268A
Authority
JP
Japan
Prior art keywords
oxygen
wafer
substituted carbon
interstitial oxygen
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18745692A
Other languages
Japanese (ja)
Inventor
Hiroshi Shirai
宏 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP18745692A priority Critical patent/JPH063268A/en
Publication of JPH063268A publication Critical patent/JPH063268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To provide an infrared absorbing spectroscopic method for interstitial oxygen or substituted carbon concentration of silicon wafer capable of more precisely determining oxygen concentration value. CONSTITUTION:An infrared absorbing spectroscopic method for interstitial oxygen or substituted carbon concentration of silicon wafer comprises the step of spline-interpolating the base line of absorption peak on the basis of the base line near the localized vibration absorption peak of oxygen or substituted carbon on the difference absorbance spectrum of a measuring wafer to a standard wafer; the step of determining the vibration absorbing coefficient of the oxygen or substituted carbon according to incident infrared ray spectroscopic method of parallel polarization angle by using the peak height from the base line of the spline interpolation to the localized vibration absorbing peak of the oxygen or substituted carbon; and the step of converting the vibration absorbing coefficient to interstitial oxygen concentration or substituted carbon concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコンウエハ、特に
CZ法により製造されたシリコンウエハの格子間酸素又
は置換型炭素濃度の赤外吸収分光方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared absorption spectroscopy method for measuring the concentration of interstitial oxygen or substitutional carbon in a silicon wafer, particularly a silicon wafer manufactured by the CZ method.

【0002】[0002]

【従来の技術】従来、シリコンウエハの格子間酸素又は
置換型炭素濃度の赤外吸収分光法(以下の説明では便宜
上格子間酸素濃度を例にとる)としては、測定ウエハの
赤外光透過特性および基準ウエハ(酸素を含まないFZ
ウエハ)の赤外光透過特性を測定して測定ウエハの格子
間酸素濃度を求めることが提案されていた(特願平2−
204316号)。
2. Description of the Related Art Conventionally, as an infrared absorption spectroscopy method of interstitial oxygen or substitutional carbon concentration of a silicon wafer (in the following description, interstitial oxygen concentration is taken as an example), an infrared light transmission characteristic of a measurement wafer is used. And a reference wafer (oxygen-free FZ
It has been proposed that the interstitial oxygen concentration of the measurement wafer be obtained by measuring the infrared light transmission characteristics of the wafer.
204316).

【0003】本発明者は、この種のシリコンウエハの格
子間酸素濃度測定方法として、測定ウエハの赤外光透過
特性及び基準ウエハの赤外光透過特性を測定してウエハ
の格子間酸素濃度を求めることを提案した。また、本発
明者は、さらに、測定ウエハと基準ウエハが互いに異な
る厚みを有するとき、測定ウエハの格子間酸素濃度を算
出するに当たって厚さ補正をすることを提案した(特願
平4−75561号)。すなわち、本発明者は、入射平
行偏光強度を測定する第1工程と、基準ウエハに対し平
行偏光をブリュースター角で入射せしめることにより基
準ウエハの光透過特性を測定する第2工程と、測定ウエ
ハに対し平行偏光をブリュースター角で入射せしめるこ
とにより測定ウエハの光透過特性を測定する第3工程
と、第1工程によって測定された入射平行偏光強度と第
2工程によって測定された基準ウエハの光透過特性と第
3工程によって測定された測定ウエハの光透過特性とか
ら測定ウエハの格子間酸素濃度を算出する第4工程を含
むシリコンウエハ格子間酸素濃度測定方法を提案した。
As a method of measuring the interstitial oxygen concentration of a silicon wafer of this type, the present inventor measures the infrared light transmission characteristics of a measurement wafer and the infrared light transmission characteristic of a reference wafer to determine the interstitial oxygen concentration of the wafer. Suggested to seek. Further, the present inventor further proposed that when the measurement wafer and the reference wafer have different thicknesses, the thickness is corrected in calculating the interstitial oxygen concentration of the measurement wafer (Japanese Patent Application No. 4-75561). ). That is, the inventor has a first step of measuring the incident parallel polarized light intensity, a second step of measuring the light transmission characteristic of the reference wafer by making parallel polarized light incident on the reference wafer at Brewster's angle, and a measurement wafer. To the third step of measuring the light transmission characteristics of the measurement wafer by making parallel polarized light incident at Brewster's angle, the incident parallel polarization intensity measured in the first step, and the light of the reference wafer measured in the second step. A silicon wafer interstitial oxygen concentration measuring method including a fourth step of calculating the interstitial oxygen concentration of the measurement wafer from the transmission characteristic and the light transmission characteristic of the measurement wafer measured in the third step was proposed.

【0004】従来は、平行偏光ブリュースター角入射赤
外分光法により両面鏡面研磨ウエハや、片面鏡面研磨ウ
エハ、両面エッチングウエハ、機械研磨(ラップ)ウエ
ハ等の非両面鏡面研磨ウエハ中の酸素濃度を測定する場
合、基準ウエハに対する測定ウエハの差吸光度スペクト
ル上で酸素の局在振動吸収ピーク近傍のベースラインに
もとずいて吸収ピークのベースラインを直線補間し、そ
の直線補間のベースラインから酸素又は置換型炭素の局
在振動吸収ピークまでののピーク高さを吸光度として平
行偏光ブリュースター角入射赤外線分光法にしたがって
酸素の振動吸収係数を求め、その振動吸収係数を格子間
酸素濃度に変換する。
Conventionally, the oxygen concentration in a non-double-sided mirror-polished wafer such as a double-sided mirror-polished wafer, a single-sided mirror-polished wafer, a double-sided etched wafer, a mechanically-polished (lap) wafer, etc. has been measured by parallel polarization Brewster angle incident infrared spectroscopy. When measuring, the baseline of the absorption peak is linearly interpolated based on the baseline near the local vibration absorption peak of oxygen on the differential absorption spectrum of the measurement wafer with respect to the reference wafer, and oxygen or The vibration absorption coefficient of oxygen is obtained according to the parallel polarization Brewster angle incident infrared spectroscopy with the peak height up to the localized vibration absorption peak of the substitutional carbon as the absorbance, and the vibration absorption coefficient is converted to the interstitial oxygen concentration.

【0005】例えば、図1に示すように、基準ウエハに
対する測定ウエハの差吸光度スペクトル上で1106c
-1付近の格子間酸素の局在振動による吸収ピークのベ
ースラインを直線補間により求めている。
For example, as shown in FIG. 1, 1106c on the differential absorption spectrum of the measurement wafer with respect to the reference wafer.
The baseline of the absorption peak due to the localized vibration of interstitial oxygen around m −1 is obtained by linear interpolation.

【0006】[0006]

【発明が解決しようとする課題】平行偏光ブリュースタ
ー角入射赤外分光法によりとくに片面鏡面研磨ウエハ、
両面エッチングウエハ、機械研磨(ラップ)ウエハ等の
非両面鏡面研磨ウエハ中の酸素濃度を測定する時、直線
補間により求めると、ベースラインの湾曲が大きく、正
しくベースラインの補間ができず、正確な酸素濃度から
わずかにずれた酸素濃度値が求まる欠点がある。
By means of parallel polarization Brewster angle incidence infrared spectroscopy, especially single-sided mirror-polished wafers,
When measuring the oxygen concentration in non-double-sided mirror-polished wafers such as double-sided etched wafers and mechanically-polished (lapped) wafers, if linear interpolation is used, the baseline curvature will be large and correct baseline interpolation will not be possible. There is a drawback that the oxygen concentration value slightly deviated from the oxygen concentration can be obtained.

【0007】この発明の目的は、このような欠点を解消
して、より正確に酸素濃度値を求めることができる、シ
リコンウエハの格子間酸素又は置換型炭素濃度の赤外吸
収分光法を提供することである。
An object of the present invention is to provide an infrared absorption spectroscopy method of interstitial oxygen or substitutional carbon concentration of a silicon wafer, which can eliminate such drawbacks and more accurately determine the oxygen concentration value. That is.

【0008】[0008]

【課題を解決するための手段】この発明は、基準ウエハ
に対する測定ウエハの差吸光度スペクトル上で酸素又は
置換型炭素の局在振動吸収ピーク近傍のベースラインに
もとずいて吸収ピークのベースラインをスプライン補間
する工程と、スプライン補間のベースラインから酸素又
は置換型炭素の局在振動吸収ピークまでのピーク高さを
吸光度として平行偏光ブリュースター角入射赤外線分光
法にしたがって酸素又は置換型炭素の振動吸収係数を求
める工程と、振動吸収係数を格子間酸素濃度又は置換型
炭素濃度に変換する工程を含む、シリコンウエハの格子
間酸素又は置換型炭素濃度の赤外吸収分光法を要旨とし
ている。
According to the present invention, the baseline of the absorption peak is determined based on the baseline in the vicinity of the localized vibration absorption peak of oxygen or substitutional carbon on the differential absorption spectrum of the measurement wafer with respect to the reference wafer. Spline interpolation step and vibration absorption of oxygen or substitutional carbon according to parallel polarization Brewster angle incident infrared spectroscopy with the peak height from the baseline of spline interpolation to the localized vibrational absorption peak of oxygen or substitutional carbon as absorbance. The gist is infrared absorption spectroscopy of interstitial oxygen or substitutional carbon concentration of a silicon wafer, which includes a step of obtaining a coefficient and a step of converting a vibration absorption coefficient into an interstitial oxygen concentration or a substitutional carbon concentration.

【0009】[0009]

【実施例】平行偏光ブリュースター角入射赤外分光法で
シリコンウエハの格子間酸素濃度を測定する場合、酸素
に関係する赤外吸収バンドつまり波数1106cm-1
ンドの格子間酸素の局在振動ピーク近傍のベースライン
を用いる。ベースラインを推定する実際の手順の一例を
述べると、次のとおりである。
[Examples] When measuring the interstitial oxygen concentration of a silicon wafer by parallel polarization Brewster angle infrared spectroscopy, the localized vibration peak of interstitial oxygen in the infrared absorption band related to oxygen, that is, the wave number of 1106 cm -1 band Use a nearby baseline. An example of the actual procedure for estimating the baseline is as follows.

【0010】まず測定ウエハと両面鏡面研磨された基準
ウエハとの差吸光度スペクトル上で1106cm-1バン
ドの近傍のベースラインに基いて1106cm-1バンド
がない場合(すなわち酸素がない場合)のベースライン
をスプライン補間する。
First, the baseline in the case where there is no 1106 cm -1 band (that is, in the absence of oxygen) is based on the baseline in the vicinity of the 1106 cm -1 band on the difference absorbance spectrum between the measurement wafer and the double-sided mirror-polished reference wafer. Is spline-interpolated.

【0011】次にスプライン補間のベースラインから酸
素の局在振動吸収ピークまでのピーク高さを吸光度とし
て平行偏光ブリュースター角入射赤外線分光法に従って
酸素又は置換型炭素の振動吸収係数を求める。つまり、
測定ウエハと両面鏡面研磨された基準ウエハとの差吸光
度スペクトルからベースラインを差し引いて酸素の局在
振動に基づく吸光度のスペクトル(バンド)を求め、そ
こでのピーク高さを求め、これを吸光度Aとして次の式
1に代入して振動吸収係数Veを求める。
Next, the vibration absorption coefficient of oxygen or substitutional carbon is determined according to parallel polarization Brewster angle incidence infrared spectroscopy, using the peak height from the baseline of spline interpolation to the localized vibration absorption peak of oxygen as the absorbance. That is,
The baseline is subtracted from the difference absorbance spectrum between the measurement wafer and the double-sided mirror-polished reference wafer to obtain the absorbance spectrum (band) based on the local vibration of oxygen, and the peak height there is determined. The vibration absorption coefficient Ve is obtained by substituting in the following equation 1.

【0012】 A=Ve・d/cosSr 式1 ここで、Veは酸素の局在振動(波数1106cm-1にお
ける)の振動吸収係数 dは測定ウエハの厚み Srは測定ウエハ内の屈折角(16.3°) 最後に、振動吸収係数を格子間酸素濃度又は置換型炭素
濃度に変換する。すなわち、格子間酸素濃度[Oi]を
次の式2にしたがって求める。
A = Ve · d / cosSr Equation 1 Here, Ve is a vibration absorption coefficient of localized vibration of oxygen (at a wave number of 1106 cm −1 ) d is a thickness of a measurement wafer Sr is a refraction angle (16. 3 °) Finally, the vibration absorption coefficient is converted into the interstitial oxygen concentration or the substitutional carbon concentration. That is, the interstitial oxygen concentration [Oi] is calculated according to the following equation 2.

【0013】 [Oi]=K×Ve 式2 ここで、Kは換算係数。[Oi] = K × Ve Equation 2 Here, K is a conversion coefficient.

【0014】図示例 図1に示すように、基準ウエハに対する測定ウエハの差
吸光度スペクトル上で1106cm-1付近の格子間酸素
の局在振動による吸収ピークのベースラインをスプライ
ン補間により格子間酸素濃度又は置換型炭素濃度を求め
る。
Illustrative Example As shown in FIG. 1, the baseline of the absorption peak due to the localized oscillation of interstitial oxygen near 1106 cm −1 on the differential absorption spectrum of the measurement wafer with respect to the reference wafer is determined by spline interpolation to determine the interstitial oxygen concentration or Determine the substitutional carbon concentration.

【0015】図2を参照して具体的に説明する。直径5
インチ、両方位(100)のシリコンウエハ(表裏両面
を機械研磨(ラップ)したもの)について平行偏光ブリ
ュースター角入射法により測定ウエハと両面鏡面研磨の
基準ウエハとの差吸光度スペクトルを測定する。この差
吸光度スペクトル上で1106cm-1の酸素の局在振動
の吸収バンドの近傍の、矢印で示した3つの波数領域7
50〜960cm-1,波数領域1180〜1190cm
-1及び波数領域1300〜1460cm-1をベースライ
ンとして、1106cm-1の吸収がない場合(すなわち
酸素がない場合)のベースラインをスプライン補間す
る。
A specific description will be given with reference to FIG. Diameter 5
The differential absorption spectrum between the measurement wafer and the double-sided mirror-polished reference wafer is measured by a parallel polarization Brewster angle incidence method with respect to a silicon wafer of inch (100) both sides (both front and back surfaces are mechanically polished (lapped)). On this differential absorption spectrum, three wave number regions 7 shown by arrows near the absorption band of the localized vibration of oxygen at 1106 cm -1
50 to 960 cm -1 , wave number region 1180 to 1190 cm
−1 and the wave number region 1300 to 1460 cm −1 as a baseline, the baseline when there is no absorption at 1106 cm −1 (that is, when there is no oxygen) is spline-interpolated.

【0016】スプライン補間のベースラインから酸素の
局在振動吸収ピークまでのピーク高さを吸光度として平
行偏光ブリュースター角入射赤外線分光法にしたがって
酸素の振動吸収係数を求める。つまり、補間したベース
ラインからのピーク高さに基いて格子間酸素濃度を求め
る。換算係数は3.14×1017atoms/cm2 である。
The vibration absorption coefficient of oxygen is determined according to parallel polarization Brewster angle incident infrared spectroscopy with the peak height from the baseline of spline interpolation to the localized vibration absorption peak of oxygen as the absorbance. That is, the interstitial oxygen concentration is calculated based on the peak height from the interpolated baseline. The conversion coefficient is 3.14 × 10 17 atoms / cm 2 .

【0017】このような測定方法によって実際にシリコ
ンウエハを測定した結果、基準ウエハと同じインゴット
中で同一領域からサンプリングした同一[Oi]の両面
鏡面研磨基準ウエハの[Oi]が1.03×1018atom
s/cm3 であるのに対し、測定ウエハについて測定した
[Oi]は1.02×1018atoms/cm3 になり、両者の
測定値はほとんど一致した。
As a result of actually measuring the silicon wafer by such a measuring method, the [Oi] of the double-sided mirror-polished reference wafer of the same [Oi] sampled from the same region in the same ingot as the reference wafer is 1.03 × 10. 18 atom
In contrast to s / cm 3 , the [Oi] measured on the measurement wafer was 1.02 × 10 18 atoms / cm 3 , and both measured values were almost the same.

【0018】これに対し、直線補間では[Oi]は0.
983×1018atoms/cm3 となり、スタンダードである
両面鏡面研磨ウエハの[Oi]と一致しない。
On the other hand, in linear interpolation, [Oi] is 0.
It is 983 × 10 18 atoms / cm 3 , which does not match the standard [Oi] of the double-sided mirror-polished wafer.

【0019】また、[Oi]が異なる同じような測定ウ
エハ(ラップ上がり3枚)について同様の手続きにした
がって[Oi]を求めた。その結果、表1のような結果
を得た。
Further, [Oi] was obtained according to the same procedure for similar measurement wafers (three laps) having different [Oi]. As a result, the results shown in Table 1 were obtained.

【0020】 [表1] 両面鏡面研磨ウエハ 本発明(スプライン補間) 従来(直線補間) 0.280×1018 0.293×1018 0.245×1018 1.939×1018 0.947×1018 0.893×1018 0.732×1018 0.746×1018 0.704×1018 (単位 atoms/cm3 ) この表1の結果から本発明の有効性が確認できた。[Table 1] Double-sided mirror-polished wafer Present invention (spline interpolation) Conventional (linear interpolation) 0.280 × 10 18 0.293 × 10 18 0.245 × 10 18 1.939 × 10 18 0.947 × 10 18 0.893 × 10 18 0.732 × 10 18 0.746 × 10 18 0.704 × 10 18 (unit atoms / cm 3 ) From the results of Table 1, the effectiveness of the present invention was confirmed.

【0021】なお、本明細書でいうシリコンウエハは1
mm以下の厚みだけでなく1mm以上の厚みのものを含
む。
The silicon wafer referred to in this specification is 1
Not only those having a thickness of 1 mm or less but also those having a thickness of 1 mm or more are included.

【0022】変形例 本発明は、前述の実施例に限定されない。たとえば、本
発明は、測定ウエハ中の格子間酸素濃度と同様にして置
換型炭素濃度を測定する方法にも適用できる。その場
合、それぞれ、振動に起因した波数を1106cm-1の代
わりに607cm-1にし、変換係数Kを3.14×1017
個/cm2 の代わりに0.81×1017個/cm2 にする。
Modifications The present invention is not limited to the above-mentioned embodiments. For example, the present invention can be applied to a method of measuring the substitutional carbon concentration in the same manner as the interstitial oxygen concentration in the measurement wafer. In that case, the wave number caused by the vibration is set to 607 cm −1 instead of 1106 cm −1 , and the conversion coefficient K is 3.14 × 10 17
To 0.81 × 10 17 atoms / cm 2 instead of pieces / cm 2.

【0023】[0023]

【発明の効果】本発明によれば、平行偏光ブリュースタ
ー角入射赤外分光法においてベースラインが大きく湾曲
する場合でも高精度に測定ウエハ中の格子間酸素濃度又
は置換型炭素濃度を測定できるようになった。もちろん
ベースラインの直線補間で十分な場合でも本発明を適用
することができる。
According to the present invention, it is possible to measure the interstitial oxygen concentration or the substitutional carbon concentration in a measurement wafer with high accuracy even when the baseline is greatly curved in parallel polarization Brewster angle incidence infrared spectroscopy. Became. Of course, the present invention can be applied even when the linear interpolation of the baseline is sufficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】両面鏡面研磨の基準ウエハに対する両面機械研
磨(ラップ)された測定ウエハの差吸光度スペクトルに
ついて従来方法の直線補間の例と本発明方法のスプライ
ン補間の例を示す説明図。
FIG. 1 is an explanatory view showing an example of linear interpolation of a conventional method and an example of spline interpolation of a method of the present invention regarding a difference absorbance spectrum of a measurement wafer that has been mechanically polished (lapped) on both sides with respect to a reference wafer for double-sided mirror polishing.

【図2】両面鏡面研磨の基準ウエハに対する両面機械研
磨(ラップ)された測定ウエハの差吸光度スペクトルに
ついて従来方法の直線補間の例と本発明方法のスプライ
ン補間の例を示すグラフ。吸光度はTを透過率とすると
log10-1×100で示してある。スプライン補間の
ベースラインは見易くするために、実際のものよりも大
きく曲げて誇張して示してある。 ◆
FIG. 2 is a graph showing an example of linear interpolation of a conventional method and an example of spline interpolation of the method of the present invention with respect to a differential absorbance spectrum of a measurement wafer that has been mechanically polished (lapped) on both sides with respect to a reference wafer for double-sided mirror polishing. The absorbance is represented by log 10 T -1 × 100, where T is the transmittance. The baseline of the spline interpolation is exaggerated and bent more than the actual one for the sake of clarity. ◆

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 次の諸工程を含む、シリコンウエハの格
子間酸素又は置換型炭素濃度の赤外吸収分光法。 (a)基準ウエハに対する測定ウエハの差吸光度スペク
トル上で酸素又は置換型炭素の局在振動吸収ピーク近傍
のベースラインにもとずいて吸収ピークのベースライン
をスプライン補間する工程と、 (b)スプライン補間のベースラインから酸素又は置換
型炭素の局在振動吸収ピークまでのピーク高さを吸光度
として平行偏光ブリュースター角入射赤外線分光法にし
たがって酸素又は置換型炭素の振動吸収係数を求める工
程と、 (c)振動吸収係数を格子間酸素濃度又は置換型炭素濃
度に変換する工程。
1. Infrared absorption spectroscopy of interstitial oxygen or substitutional carbon concentration of a silicon wafer, including the following steps. (A) a step of spline-interpolating the baseline of the absorption peak based on the baseline near the localized vibration absorption peak of oxygen or substitutional carbon on the differential absorption spectrum of the measurement wafer with respect to the reference wafer; and (b) the spline. A step of obtaining a vibrational absorption coefficient of oxygen or substitutional carbon according to parallel polarization Brewster angle incidence infrared spectroscopy, using a peak height from a baseline of interpolation to a localized vibrational absorption peak of oxygen or substitutional carbon as absorbance, c) A step of converting the vibration absorption coefficient into an interstitial oxygen concentration or a substitutional carbon concentration.
JP18745692A 1992-06-23 1992-06-23 Infrared absorption spectroscopic method for interstitial oxygen or substituted carbon concentration of silicon wafer Pending JPH063268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18745692A JPH063268A (en) 1992-06-23 1992-06-23 Infrared absorption spectroscopic method for interstitial oxygen or substituted carbon concentration of silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18745692A JPH063268A (en) 1992-06-23 1992-06-23 Infrared absorption spectroscopic method for interstitial oxygen or substituted carbon concentration of silicon wafer

Publications (1)

Publication Number Publication Date
JPH063268A true JPH063268A (en) 1994-01-11

Family

ID=16206398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18745692A Pending JPH063268A (en) 1992-06-23 1992-06-23 Infrared absorption spectroscopic method for interstitial oxygen or substituted carbon concentration of silicon wafer

Country Status (1)

Country Link
JP (1) JPH063268A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682245A1 (en) * 1994-05-11 1995-11-15 Secomam S.A. Method and device for the analysis of the composition of a liquid, using a spectrophotometer with multiple detection layers
US6384415B1 (en) 2000-06-20 2002-05-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method of evaluating quality of silicon wafer and method of reclaiming the water
US6810553B1 (en) 1998-05-29 2004-11-02 Kao Corporation Disposable brush
JP2006120901A (en) * 2004-10-22 2006-05-11 Sumco Corp Hydrogen ion implant dose measuring method of silicon semiconductor substrate, and substrate for standard sample
JP2010500546A (en) * 2006-08-11 2010-01-07 バイオクアンタ Method for assaying nucleic acid by fluorescence
JP2021519974A (en) * 2018-03-29 2021-08-12 ライカ マイクロシステムズ シーエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツングLeica Microsystems CMS GmbH Devices and methods that use baseline estimation and semi-secondary minimization for deblurring of signal data
US11754497B2 (en) 2018-12-17 2023-09-12 Globalwafers Japan Co., Ltd. Method for measuring extremely low oxygen concentration in silicon wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606833A (en) * 1983-06-24 1985-01-14 Shimadzu Corp Spectrophotometer
JPH03111739A (en) * 1989-09-26 1991-05-13 Nippon Steel Corp Method for determing quantity of concentration of oxygen in solid solution in silicon crystal by infrared ray absorbing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606833A (en) * 1983-06-24 1985-01-14 Shimadzu Corp Spectrophotometer
JPH03111739A (en) * 1989-09-26 1991-05-13 Nippon Steel Corp Method for determing quantity of concentration of oxygen in solid solution in silicon crystal by infrared ray absorbing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682245A1 (en) * 1994-05-11 1995-11-15 Secomam S.A. Method and device for the analysis of the composition of a liquid, using a spectrophotometer with multiple detection layers
FR2719903A1 (en) * 1994-05-11 1995-11-17 Secomam Sa Method and device for analyzing the composition of a liquid using a spectrophotometer with multiple detection ranges.
US6810553B1 (en) 1998-05-29 2004-11-02 Kao Corporation Disposable brush
US6384415B1 (en) 2000-06-20 2002-05-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method of evaluating quality of silicon wafer and method of reclaiming the water
JP2006120901A (en) * 2004-10-22 2006-05-11 Sumco Corp Hydrogen ion implant dose measuring method of silicon semiconductor substrate, and substrate for standard sample
JP2010500546A (en) * 2006-08-11 2010-01-07 バイオクアンタ Method for assaying nucleic acid by fluorescence
JP2021519974A (en) * 2018-03-29 2021-08-12 ライカ マイクロシステムズ シーエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツングLeica Microsystems CMS GmbH Devices and methods that use baseline estimation and semi-secondary minimization for deblurring of signal data
US11854166B2 (en) 2018-03-29 2023-12-26 Leica Microsystems Cms Gmbh Apparatus and method using baseline estimation and half-quadratic minimization for the deblurring of signal data
US11754497B2 (en) 2018-12-17 2023-09-12 Globalwafers Japan Co., Ltd. Method for measuring extremely low oxygen concentration in silicon wafer
DE112019006252B4 (en) 2018-12-17 2024-11-07 Globalwafers Japan Co., Ltd. Method for measuring an extremely low oxygen concentration in a silicon wafer

Similar Documents

Publication Publication Date Title
JP5345785B2 (en) Spectral absorption measurement method and spectral absorption measurement apparatus
US5102231A (en) Semiconductor wafer temperature measurement system and method
US20020173084A1 (en) Method of measuring thickness of a semiconductor layer and method of manufacturing a semiconductor substrate
US4590574A (en) Method for determining oxygen and carbon in silicon semiconductor wafer having rough surface
JPH063268A (en) Infrared absorption spectroscopic method for interstitial oxygen or substituted carbon concentration of silicon wafer
JPS62197743A (en) Infrared absorption measuring apparatus
Scholl et al. Broadband precision wavelength meter based on a stepping Fabry–Pérot interferometer
JP3046724B2 (en) Wafer thickness measurement method
JPH0721405B2 (en) Fourier transform method Infrared film thickness measurement method
Di Leon et al. Infrared absorption by gas mixtures in the 300–850 K temperature range I—4.3 μm and 2.7 μm CO2 spectra
JPS5571934A (en) Method of evaluating impurity doping amount in semiconductor
JP2909680B2 (en) Method for measuring interstitial oxygen or substitutional carbon concentration in silicon wafer
JP6210462B2 (en) Diamond ATR artifact correction
Summonte A Quasi-exact inverteble equation for absorption coefficient from reflectance and transmittance measurements
JPH03111739A (en) Method for determing quantity of concentration of oxygen in solid solution in silicon crystal by infrared ray absorbing method
JP3178607B2 (en) Method for measuring substitutional carbon concentration of pulled silicon wafer
Nemanich et al. Raman-brillouin light scattering determination of the structural correlation range in ges2 glass
JP2807724B2 (en) Method and apparatus for evaluating semiconductor surface
JPH04106947A (en) Interlattice oxygen concentration measurement of pulled-up silicon wafer
JPS6344106A (en) Film thickness measuring method
JP2897932B2 (en) Method for measuring interstitial oxygen concentration of pulled silicon wafer
JPH05312721A (en) Measuring method of concentration of interstitial oxygen in single-crystal silicon through oxygen precipitation
Blanc et al. Far infrared optical absorption of amorphous GeO2
US20060164095A1 (en) Method for determining the voltage sensitivity of the distance between the mirrors of a fabry-perot interferometer
JPH06283589A (en) Temperature measuring method of substrate surface, semiconductor film forming method using the same and its equipment