JPH06325965A - Manufacture of multilayer magnetoresistance effect film - Google Patents

Manufacture of multilayer magnetoresistance effect film

Info

Publication number
JPH06325965A
JPH06325965A JP5115501A JP11550193A JPH06325965A JP H06325965 A JPH06325965 A JP H06325965A JP 5115501 A JP5115501 A JP 5115501A JP 11550193 A JP11550193 A JP 11550193A JP H06325965 A JPH06325965 A JP H06325965A
Authority
JP
Japan
Prior art keywords
magnetic field
film
multilayer
magnetic
hysteresis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5115501A
Other languages
Japanese (ja)
Inventor
Shuji Tanogami
修二 田ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5115501A priority Critical patent/JPH06325965A/en
Publication of JPH06325965A publication Critical patent/JPH06325965A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To provide a method for preparing multilayer magnetoresistance effect films with a large rate of magnetic reluctance change and a low hysteresis. CONSTITUTION:NiFe alloy and Cu of a specified thickness, respectively, are alternately deposited in a magnetic field by sputtering. The resultant film is annealed in a rotating magnetic field within a temperature range from 100 to 300 deg.C to obtain a magnetoresistance effect film. Or, NiFeCo alloy and Cu of a specified thickness, respectively, are alternately deposited in a magnetic field by sputtering. The resultant film is annealed in a rotating magnetic field within a temperature range from 100 deg.C to 300 deg.C to obtain a magnetoresistance effect film. Thus obtained multilayer magnetoresisance effect films have a large rate of magnetic reluctance change and a low hysteresis, and can improve the output characteristic of, for example, a magnetic head, more than conventional.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、材料の磁気抵抗効果を
利用する薄膜磁気ヘッドや磁気エンコーダ等に使用され
る磁気抵抗効果膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetoresistive effect film used in a thin film magnetic head, a magnetic encoder or the like which utilizes the magnetoresistive effect of a material.

【0002】[0002]

【従来の技術】これまで、磁気抵抗効果型素子(MR素
子)の材料として、磁気抵抗の変化率が2〜3%と比較
的大きく、磁場に対する抵抗変化率のヒステリシスが小
さいNiFe系の合金やNiFeCo系の合金が単独で使用されて
きた。
2. Description of the Related Art Heretofore, as a material for a magnetoresistive effect element (MR element), a NiFe alloy having a relatively large magnetoresistance change rate of 2 to 3% and a small hysteresis of the resistance change rate with respect to a magnetic field has been used. NiFeCo based alloys have been used alone.

【0003】近年、外部の微小磁界に反応するさらに大
きな磁気抵抗変化率を持つ材料の開発が望まれており、
様々な研究がなされている。たとえば、厚みが30ÅのFe
と90ÅのCrとを交互に分子線エピタキシーによって積層
した多層膜が開発されている(Phys.Rev.Lett.61(21)(19
88),2472:M.N.Baibich) 。しかし、この材料は低温での
磁気抵抗変化率が40%と非常に大きい一方で、飽和磁場
も20 kOeと大きいので実用化しにくいという問題がある
ため、飽和磁場の小さなNiFe/Cu、NiFeCo/Cu、CoFe/
Cu等の多層膜の材料開発が試みられている。
In recent years, it has been desired to develop a material having a larger magnetoresistance change rate that responds to an external minute magnetic field.
Various studies have been done. For example, Fe with a thickness of 30Å
Has been developed by alternating molecular beam epitaxy of 90 and 90ÅCr (Phys. Rev. Lett. 61 (21) (19)
88), 2472: MN Baibich). However, while this material has a very large magnetoresistance change rate at low temperature of 40%, it has a problem that it is difficult to put it into practical use because it has a large saturation magnetic field of 20 kOe. , CoFe /
Attempts have been made to develop materials for multilayer films such as Cu.

【0004】大きな磁気抵抗変化率を持つ素子を製造す
る手段としては、磁性材料の層と非磁性材料の層とを交
互に積層する方法が知られている。例えば、 磁性材
料の層と、それとは保磁力の異なる磁性材料の層との間
に非磁性材料の層が挟まれているように積層すると、磁
性材料の保磁力の差により磁性層の間に見かけの反強磁
性結合が生じて、素子の磁気抵抗変化率が大きくなると
いう効果を利用する方法と、 同じ磁性材料の層どう
しの間に非磁性材料の層が挟まれるように積層して所定
膜厚範囲内におさめると、磁性層の間に反強磁性結合が
生じて素子の磁気抵抗変化率が大きくなるという効果を
利用する方法、とがある。
As a means for manufacturing an element having a large magnetoresistance change rate, a method is known in which magnetic material layers and nonmagnetic material layers are alternately laminated. For example, if a layer of nonmagnetic material is sandwiched between a layer of magnetic material and a layer of magnetic material having a different coercive force from each other, a difference in coercive force of the magnetic material causes a gap between the magnetic layers. A method that utilizes the effect that apparent antiferromagnetic coupling occurs to increase the magnetoresistance change rate of the element, and a method of stacking a nonmagnetic material layer between layers of the same magnetic material Within the thickness range, there is a method of utilizing the effect that antiferromagnetic coupling occurs between the magnetic layers to increase the magnetoresistance change rate of the element.

【0005】の素子は、2つの磁性材料のうちの小さ
い方の保磁力近傍の磁場となるときに磁気抵抗変化率の
ピークを持つので、大きなヒステリシスが存在して使用
しにくい。の素子は、磁性層としてNiFe系の合金を、
非磁性層としてCuをそれぞれ用いた多層膜の場合には、
磁気抵抗変化率が10数%で飽和磁場も100 Oe程度とする
ことができるようになった。ところが、この素子も磁性
体中の異方性分散などによりヒステリシスが大きいとい
う欠点がある。
Since the element of (1) has a peak of the magnetoresistance change rate when the magnetic field is near the coercive force of the smaller one of the two magnetic materials, it has a large hysteresis and is difficult to use. The element of NiFe-based alloy as the magnetic layer,
In the case of a multilayer film using Cu as the non-magnetic layer,
The rate of change in magnetic resistance is 10% or more and the saturation magnetic field can be set to about 100 Oe. However, this element also has a drawback that the hysteresis is large due to anisotropic dispersion in the magnetic material.

【0006】また、磁気抵抗効果素子は一般にはバイア
スを付加されて使用されるので、磁気抵抗変化率がその
最大値の半分となる位置における磁気抵抗変化率曲線の
形状が出力特性に影響を与える。従って、この位置にお
けるヒステリシスの小さな磁気抵抗効果素子の開発が望
まれている。
Further, since the magnetoresistive effect element is generally used with a bias applied, the shape of the magnetoresistive change rate curve at the position where the magnetoresistive change rate becomes half of its maximum value affects the output characteristics. . Therefore, development of a magnetoresistive effect element having a small hysteresis at this position is desired.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、ヒス
テリシスの小さなNiFe系合金薄膜とCu薄膜を交互に積層
した多層磁気抵抗効果膜およびNiFeCo系合金薄膜とCu薄
膜を交互に積層した多層磁気抵抗効果膜の製造方法を提
供することにある。以下、前者を「NiFe系合金/Cu多層
膜」、後者を「NiFeCo系合金/Cu多層膜」のように記載
することがある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a multilayer magnetoresistive film in which NiFe alloy thin films and Cu thin films having a small hysteresis are alternately laminated and a multilayer magnetic in which NiFeCo alloy thin films and Cu thin films are alternately laminated. It is to provide a method of manufacturing a resistance effect film. Hereinafter, the former may be described as “NiFe alloy / Cu multilayer film” and the latter as “NiFeCo alloy / Cu multilayer film”.

【0008】[0008]

【課題を解決するための手段】磁気抵抗効果(MR)膜
は、外からの磁場を受けると磁気的結合が弱い外側の層
から磁区が反転するので、その磁区に異方性分散がある
場合にはヒステリシスを生じてしまう。多層のMR膜で
は、磁性体層どうしを反強磁性的に結合させることによ
って大きな磁気抵抗変化率を得ることができるが、各層
のヒステリシスが加算されるので、膜としては大きなヒ
ステリシスを持つことになる。
In a magnetoresistive (MR) film, when a magnetic field from the outside is applied, the magnetic domain is reversed from the outer layer where the magnetic coupling is weak. Therefore, when the magnetic domain has anisotropic dispersion. Causes hysteresis. In a multi-layer MR film, a large magnetoresistance change rate can be obtained by coupling magnetic layers antiferromagnetically, but since the hysteresis of each layer is added, the film has a large hysteresis. Become.

【0009】本発明者らは、成膜の工程を磁場の中で行
って、多層膜に一軸異方性を付与した後、回転磁場中で
焼鈍を行えば、異方性分散が小さくなり、ヒステリシス
を小さくすることができることを見出した。すなわち、
本発明の要旨は次の (1)および(2) の多層MR膜の製造
方法にある。
The inventors of the present invention performed the film formation step in a magnetic field to impart uniaxial anisotropy to the multilayer film, and then annealed it in a rotating magnetic field to reduce the anisotropic dispersion. It was found that the hysteresis can be reduced. That is,
The gist of the present invention resides in the following methods (1) and (2) of manufacturing a multilayer MR film.

【0010】(1) 磁場中でNiFe系の合金とCuとをそれぞ
れが所定の厚みになるようにスパッタリング法を用いて
交互に成膜した後、回転磁場中、100 ℃〜300 ℃の温度
域で焼鈍を施す磁気抵抗効果膜の製造方法。
(1) NiFe-based alloy and Cu are alternately deposited in a magnetic field by a sputtering method so that each of them has a predetermined thickness, and then a temperature range of 100 ° C to 300 ° C in a rotating magnetic field. A method of manufacturing a magnetoresistive effect film which is annealed.

【0011】(2) 磁場中でNiFeCo系の合金とCuとをそれ
ぞれが所定の厚みになるようにスパッタリング法を用い
て交互に成膜した後、回転磁場中、100 ℃〜300 ℃の温
度域で焼鈍を施す磁気抵抗効果膜の製造方法。
(2) After alternately depositing NiFeCo alloy and Cu so as to have a predetermined thickness in a magnetic field using a sputtering method, in a rotating magnetic field, a temperature range of 100 ° C. to 300 ° C. A method of manufacturing a magnetoresistive effect film which is annealed.

【0012】本発明において、NiFe系の合金とは、例え
ばパーマロイ(登録商標)のようなNiとFeとの2元系の
合金を意味し、NiFeCo系の合金とはNi80Co15Feに代表さ
れるNi、FeおよびCoの3元系の合金を意味する。
In the present invention, the NiFe-based alloy means a binary alloy of Ni and Fe such as Permalloy (registered trademark), and the NiFeCo-based alloy is represented by Ni 80 Co 15 Fe. Means a ternary alloy of Ni, Fe and Co.

【0013】[0013]

【作用】本発明方法における多層膜の成膜には、イオン
ビーム・スパッタリング法、RFスパッタリング法など
に代表されるスパッタリング法を用いる。スパッタリン
グ法によれば成膜を均一に行うことができる。この成膜
の工程は、すでに述べたように多層膜の磁性体に一軸異
方性を付与するために磁場中で行う。多層膜の磁性体が
一軸異方性を有すると、膜厚方向の異方性が小さくな
る。従って、後の焼鈍によって面内方向の異方性分散を
小さくすればヒステリシスを小さくすることができる。
The multilayer film in the method of the present invention is formed by using a sputtering method represented by an ion beam sputtering method, an RF sputtering method and the like. The sputtering method allows uniform film formation. This film forming process is performed in a magnetic field in order to impart uniaxial anisotropy to the magnetic material of the multilayer film, as described above. When the magnetic substance of the multilayer film has uniaxial anisotropy, the anisotropy in the film thickness direction becomes small. Therefore, the hysteresis can be reduced by reducing the anisotropic dispersion in the in-plane direction by the subsequent annealing.

【0014】磁場の大きさは、成膜後の困難軸方向の磁
気異方性より大きければ良い。NiFe系合金およびNiFeCo
系合金のそれは10(Oe)未満であるので、与える磁場の大
きさは10(Oe)以上あれば良く、膜厚が薄くなることによ
る異方性の増大を考慮しても50(Oe)程度もあれば十分で
ある。磁場を与えるには、永久磁石で試料を両側から挟
み込むというような方法が採用できる。
The magnitude of the magnetic field may be larger than the magnetic anisotropy in the hard axis direction after film formation. NiFe alloys and NiFeCo
Since it is less than 10 (Oe) for the system alloys, the magnitude of the applied magnetic field should be 10 (Oe) or more, and even considering the increase in anisotropy due to thin film thickness, it is about 50 (Oe). There is enough. To apply a magnetic field, a method of sandwiching the sample from both sides with a permanent magnet can be adopted.

【0015】以下、必要に応じて、NiFe系合金としてNi
80Fe20(添字は原子%を表す、以下同じ)を、NiFeCo系
合金としてNi80Co15Fe5 を例にあげて説明する。
In the following, if necessary, NiFe alloy is used as Ni.
80 Fe 20 (subscripts represent atomic%; the same applies hereinafter) will be described by taking Ni 80 Co 15 Fe 5 as an example of the NiFeCo alloy.

【0016】多層膜における磁気抵抗効果とは、異方性
による磁気抵抗効果と多層構造であることによって生じ
る磁気抵抗効果の合計を意味し、これは各層の材料や膜
厚によって影響を受ける。
The magnetoresistive effect in the multilayer film means the sum of the magnetoresistive effect due to the anisotropy and the magnetoresistive effect caused by the multilayer structure, which is influenced by the material and film thickness of each layer.

【0017】Ni80Fe20/Cu多層膜の場合、それぞれの層
の厚みが15Åと10Åの時に磁気抵抗変化率の第1ピーク
を持ち、15Åと20Åの時に第2ピークを持つ。同じく、
Ni80Co15Fe5/Cu多層膜の場合には、15Åと19Åの時に磁
気抵抗変化率の第1ピークを持ち、15Åと22Åの時に第
2ピークを持つ。
In the case of the Ni 80 Fe 20 / Cu multilayer film, the first peak of the magnetoresistance change rate is present when the thickness of each layer is 15Å and 10Å, and the second peak is exhibited when the thickness is 15Å and 20Å. Similarly,
In the case of the Ni 80 Co 15 Fe 5 / Cu multilayer film, the first peak of the magnetoresistance change rate is at 15Å and 19Å, and the second peak is at 15Å and 22Å.

【0018】第1ピークとなる膜厚を組み合わせた多層
膜は磁気抵抗変化率が大きく、この点では好ましいが、
磁気抵抗効果が飽和する磁場も大きくなり実用化は難し
い。
The multilayer film in which the film thicknesses of the first peak are combined has a large magnetoresistance change rate, which is preferable in this respect.
The magnetic field at which the magnetoresistive effect is saturated also becomes large, making it difficult to put into practical use.

【0019】従って、第2ピークとなる膜厚を組み合わ
せた多層膜になるように成膜するのが良い。第2ピーク
となる膜厚を組み合わせた多層膜は、第1ピークとなる
膜厚を組み合わせた多層膜より磁気抵抗変化率は大きく
ないが、飽和する磁場が小さくなり実用化が容易であ
る。
Therefore, it is preferable to form the film so as to form a multi-layer film in which the film thicknesses of the second peaks are combined. The multilayer film in which the film thickness of the second peak is combined has a smaller magnetoresistance change rate than the multilayer film in which the film thickness of the first peak is combined, but the magnetic field that saturates is small and is easy to put into practical use.

【0020】このようにして作製した多層膜には面内方
向の異方性分散が残っているので、ヒステリシスが大き
くなり実用化の妨げになる。そこで、面内方向の異方性
を低減させるために回転磁場中で焼鈍を行う。回転磁場
をかけるのは、試料の膜面に平行な面内で磁場を回転さ
せるか、または、静磁場中で試料を回転させる方法によ
る。
Since the anisotropic dispersion in the in-plane direction remains in the multilayer film thus manufactured, the hysteresis becomes large, which hinders its practical application. Therefore, in order to reduce the anisotropy in the in-plane direction, annealing is performed in a rotating magnetic field. The rotating magnetic field is applied by a method of rotating the magnetic field in a plane parallel to the film surface of the sample or rotating the sample in a static magnetic field.

【0021】焼鈍は、再結晶温度以下の温度で、かつ元
素が拡散しないように 300℃以下で行う。一方、 100℃
未満での焼鈍では磁性体中の転位等が除去されないので
焼鈍する意味がない。焼鈍時間は特に限定されないが、
100 ℃で焼鈍する場合には30分程度が必要であり、60分
程度で焼鈍の効果は飽和する。過度に長時間の焼鈍を行
うと、元素の拡散が生じて特性の悪化を招く。300 ℃で
焼鈍を行う場合には10〜30分程度が適当である。
The annealing is carried out at a temperature below the recrystallization temperature and below 300 ° C. so that the elements do not diffuse. On the other hand, 100 ℃
Annealing at less than 10% does not remove the dislocations and the like in the magnetic material, so there is no point in annealing. The annealing time is not particularly limited,
It takes about 30 minutes to anneal at 100 ° C, and the effect of annealing is saturated in about 60 minutes. If the annealing is performed for an excessively long time, diffusion of elements occurs and the characteristics are deteriorated. When annealing at 300 ° C, about 10 to 30 minutes is appropriate.

【0022】この焼鈍中にかける回転磁場は、多層膜の
異方性磁場、つまり飽和磁場を超える強さであれば磁化
ベクトルが回転できるので、100 (Oe)もあれば十分であ
る。
The rotating magnetic field applied during this annealing can rotate the magnetization vector if the strength exceeds the anisotropic magnetic field of the multilayer film, that is, the saturation magnetic field, so 100 (Oe) is sufficient.

【0023】以下、本発明方法を実施例に基づいて具体
的に説明する。
Hereinafter, the method of the present invention will be specifically described based on Examples.

【0024】[0024]

【実施例1】100 (Oe)の磁場中で、イオンビームスパッ
タリング装置を用いてガラス基板上にNi80Fe20の層 (厚
み15Å) とCuの層 (厚み20Å) とを交互にそれぞれ15層
ずつ積層した。ターゲットにはNi80Fe20とCuを用い、成
膜の条件は、背圧 5×10-7TorrでAr圧力 1×10-4Torr、
ビーム電圧1000V、電流100mAとした。成膜速度は両金
属とも2Å/秒であった。比較のために、無磁場中で行
った以外は同じ条件で多層膜を作製した。
Example 1 In a magnetic field of 100 (Oe), a Ni 80 Fe 20 layer (thickness 15 Å) and a Cu layer (thickness 20 Å) were alternately formed on a glass substrate by using an ion beam sputtering device to form 15 layers each. They were stacked one by one. Ni 80 Fe 20 and Cu were used as the target, and the film formation conditions were a back pressure of 5 × 10 -7 Torr and an Ar pressure of 1 × 10 -4 Torr.
The beam voltage was 1000 V and the current was 100 mA. The deposition rate was 2Å / sec for both metals. For comparison, a multi-layer film was prepared under the same conditions except that it was performed in the absence of a magnetic field.

【0025】このようにして作製した2種類の多層膜を
100(Oe)の回転磁場中で、それぞれ80℃、 100℃、 200
℃、 250℃、 300℃および 350℃で30分間焼鈍した。こ
れらの多層膜のMR曲線を4端子法で描き、ヒステリシ
スの大きさを測定した。
The two types of multilayer films produced in this way are
In a rotating magnetic field of 100 (Oe), 80 ℃, 100 ℃, 200 respectively
Annealed at ℃, 250 ℃, 300 ℃ and 350 ℃ for 30 minutes. The MR curves of these multilayer films were drawn by the 4-terminal method and the magnitude of hysteresis was measured.

【0026】ヒステリシスの大きさは、ピーク位置での
曲線のずれと、ピークの半分の高さにおける曲線のずれ
をそれぞれ測定し、表1に示した。
The magnitude of the hysteresis is shown in Table 1 by measuring the deviation of the curve at the peak position and the deviation of the curve at half the height of the peak.

【0027】図1は、1例として表1の試料No.3(本発
明例)のMR曲線を示したものである。ピーク位置での
ヒステリシスとは図中に(a) として示したずれの大きさ
であり、ピークの半分の高さの位置のヒステリシスとは
同じく(b) として示したずれの大きさである。
FIG. 1 shows, as an example, the MR curve of sample No. 3 (example of the present invention) in Table 1. The hysteresis at the peak position is the amount of deviation shown as (a) in the figure, and the hysteresis at the position of half the height of the peak is the amount of deviation shown as (b).

【0028】この実施例で用いた合金の場合、MR曲線
におけるピークの半分の高さとなる磁場の大きさは±40
(Oe)であった。表1の評価の基準は、ピーク位置でのヒ
ステリシスが2(Oe)以下、かつピークの半分の高さの位
置でのヒステリシスが1(Oe)以下の場合を○とし、それ
を超える場合を×とした。
In the case of the alloy used in this example, the magnitude of the magnetic field at which the height is half the peak of the MR curve is ± 40.
It was (Oe). The criteria for evaluation in Table 1 are ○ when the hysteresis at the peak position is 2 (Oe) or less, and when the hysteresis at the half height of the peak is 1 (Oe) or less, and when it exceeds that, × And

【0029】表1から分かるように、磁場中で成膜し、
かつ回転磁場中における焼鈍温度を100℃〜300 ℃とし
て作製した多層膜は他と比較してヒステリシスが著しく
小さい。なお、従来の製法によって得られる磁気抵抗効
果素子のヒステリシスは、試料No.8のそれと同程度であ
る。
As can be seen from Table 1, film formation in a magnetic field
In addition, the hysteresis of the multilayer film produced by setting the annealing temperature in the rotating magnetic field at 100 ℃ to 300 ℃ is remarkably smaller than the others. The hysteresis of the magnetoresistive effect element obtained by the conventional manufacturing method is about the same as that of sample No. 8.

【0030】[0030]

【実施例2】50(Oe)の磁場中で、RFスパッタリング装
置を用いてガラス基板上にNi80Co14Fe6 の層 (厚み15
Å) とCuの層 (厚み22Å) とを交互にそれぞれ30層ずつ
積層した。ターゲットには Ni80Co14Fe6とCuを用い、成
膜の条件は、背圧 5×10-7Torr、Ar圧力 1×10-4Torrで
出力を 500Wとした。成膜速度は Ni80Co14Fe6の成膜で
は 1.5Å/秒であり、Cuの成膜では 1.8Å/秒であっ
た。比較のために、無磁場中で行った以外は同じ条件で
多層膜を作製した。
Example 2 A layer of Ni 80 Co 14 Fe 6 (thickness: 15) was formed on a glass substrate using an RF sputtering device in a magnetic field of 50 (Oe).
Å) and Cu layers (thickness 22 Å) were alternately laminated in 30 layers. Ni 80 Co 14 Fe 6 and Cu were used as the target, and the film formation conditions were a back pressure of 5 × 10 −7 Torr, an Ar pressure of 1 × 10 −4 Torr, and an output of 500 W. The deposition rate was 1.5 Å / sec for Ni 80 Co 14 Fe 6 film formation and 1.8 Å / sec for Cu film formation. For comparison, a multi-layer film was prepared under the same conditions except that it was performed in a non-magnetic field.

【0031】このようにして作製した2種類の多層膜を
100(Oe)の回転磁場中で、それぞれ80℃、 100℃、 200
℃、 250℃、 300℃および 330℃で30分間焼鈍した。こ
れらの多層膜のMR曲線を4端子法で描き、ヒステリシ
スの大きさを実施例1の場合と同様にして測定し、表2
に示した。この場合も実施例1の場合と同様に評価し
た。
The two types of multilayer films thus produced are
In a rotating magnetic field of 100 (Oe), 80 ℃, 100 ℃, 200 respectively
Annealed at ℃, 250 ℃, 300 ℃ and 330 ℃ for 30 minutes. The MR curves of these multilayer films were drawn by the 4-terminal method, and the magnitude of hysteresis was measured in the same manner as in Example 1, and Table 2
It was shown to. Also in this case, evaluation was performed in the same manner as in Example 1.

【0032】この実施例で用いた合金の場合、MR曲線
におけるピークの半分の高さとなる磁場の大きさは±60
(Oe)であった。表2から分かるように、磁場中で成膜
し、かつ回転磁場中における焼鈍温度を 100℃〜300 ℃
として作製した多層膜は他と比較してヒステリシスが小
さい。この場合も従来の製法によって得られる磁気抵抗
効果素子のヒステリシスは、試料No.8のそれと同程度で
ある。
In the case of the alloy used in this example, the magnitude of the magnetic field which is half the height of the peak in the MR curve is ± 60.
It was (Oe). As can be seen from Table 2, the film is formed in a magnetic field and the annealing temperature in a rotating magnetic field is 100 ° C to 300 ° C.
The multilayer film manufactured as above has less hysteresis than the others. Also in this case, the hysteresis of the magnetoresistive effect element obtained by the conventional manufacturing method is about the same as that of sample No. 8.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】本発明の方法で製造した多層の磁気抵抗
効果膜は、磁気抵抗変化率が大きく、しかもヒステリシ
スが小さい。したがって、このようにして作製した多層
膜をバイアスをかけて使用する素子、例えば磁気ヘッド
に用いれば、MR曲線における磁気抵抗変化率が最大変
化率(ピーク)の半分である磁場でのMR曲線のヒステ
リシスを小さくすることができるのでその出力特性を向
上させることができる。
The multilayer magnetoresistive film produced by the method of the present invention has a large magnetoresistance change rate and a small hysteresis. Therefore, when the multilayer film manufactured in this manner is used in an element, for example, a magnetic head, to which a bias is applied, the magnetoresistance change rate of the MR curve in the magnetic field is half the maximum change rate (peak). Since the hysteresis can be reduced, the output characteristic can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で作製した1つの磁気抵抗効果膜のMR
曲線を例示する図である。
FIG. 1 is an MR of one magnetoresistive film produced in an example.
It is a figure which illustrates a curve.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】磁場中でNiFe系の合金とCuとをそれぞれが
所定の厚みになるようにスパッタリング法を用いて交互
に成膜した後、回転磁場中、100 ℃〜300 ℃の温度域で
焼鈍を施すことを特徴とする多層磁気抵抗効果膜の製造
方法。
1. NiFe-based alloy and Cu are alternately deposited in a magnetic field so as to have a predetermined thickness by a sputtering method, and then in a rotating magnetic field in a temperature range of 100 ° C. to 300 ° C. A method for manufacturing a multilayer magnetoresistive effect film, characterized by performing annealing.
【請求項2】磁場中でNiFeCo系の合金とCuとをそれぞれ
が所定の厚みになるようにスパッタリング法を用いて交
互に成膜した後、回転磁場中、100 ℃〜300 ℃の温度域
で焼鈍を施すことを特徴とする多層磁気抵抗効果膜の製
造方法。
2. NiFeCo alloy and Cu are alternately deposited in a magnetic field so as to have a predetermined thickness by a sputtering method, and then in a rotating magnetic field in a temperature range of 100 ° C. to 300 ° C. A method for manufacturing a multilayer magnetoresistive effect film, characterized by performing annealing.
JP5115501A 1993-05-18 1993-05-18 Manufacture of multilayer magnetoresistance effect film Pending JPH06325965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5115501A JPH06325965A (en) 1993-05-18 1993-05-18 Manufacture of multilayer magnetoresistance effect film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5115501A JPH06325965A (en) 1993-05-18 1993-05-18 Manufacture of multilayer magnetoresistance effect film

Publications (1)

Publication Number Publication Date
JPH06325965A true JPH06325965A (en) 1994-11-25

Family

ID=14664083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5115501A Pending JPH06325965A (en) 1993-05-18 1993-05-18 Manufacture of multilayer magnetoresistance effect film

Country Status (1)

Country Link
JP (1) JPH06325965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160637B4 (en) * 2001-05-28 2020-06-10 Mitsubishi Denki K.K. Vehicle-mounted magnetoresistance sensor element and manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160637B4 (en) * 2001-05-28 2020-06-10 Mitsubishi Denki K.K. Vehicle-mounted magnetoresistance sensor element and manufacturing method

Similar Documents

Publication Publication Date Title
US9577184B2 (en) TMR device with novel free layer structure
US8059374B2 (en) TMR device with novel free layer structure
US8456781B2 (en) TMR device with novel free layer structure
US6998150B2 (en) Method of adjusting CoFe free layer magnetostriction
US7602033B2 (en) Low resistance tunneling magnetoresistive sensor with composite inner pinned layer
JP3411626B2 (en) Magnetic multilayer film, magnetoresistive effect element, and method of manufacturing the same
JP3650344B2 (en) Spin valve
US6074707A (en) Method of producing magnetoresistive element
US9673385B1 (en) Seed layer for growth of <111> magnetic materials
JP3694440B2 (en) Method for manufacturing exchange coupling film, method for manufacturing magnetoresistive effect element using exchange coupling film, and method for manufacturing thin film magnetic head using magnetoresistance effect element
JP2924785B2 (en) Magnetoresistive element thin film and method of manufacturing the same
JPH10188235A (en) Magneto-resistive film and its production
JP3219329B2 (en) Magnetoresistance effect element
JPH11273033A (en) Magnetoresistance multi-layer film and thin film magnetic head provided with its multi-layer film
JP2830513B2 (en) Magnetoresistive material and method of manufacturing the same
JP2003008106A (en) Method of manufacturing magnetoresistive effect sensor and method of manufacturing thin film magnetic head
JPH04280483A (en) Magnetic resistant effect material and manufacture thereof
JPH06325965A (en) Manufacture of multilayer magnetoresistance effect film
JP3071781B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin-film magnetic head using the magnetoresistive element
JPH11329882A (en) Manufacture of exchange coupling film and magnetoresistive effect device
JPH0629589A (en) Magnetoresistance effect element
JP3021785B2 (en) Magnetoresistive material and method of manufacturing the same
JP3255901B2 (en) Method for producing exchange coupling membrane
JP3274440B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element
JPH10326920A (en) Magnetic resistance effect sensor and its manufacture