JPH06324009A - Heavy metal analysis method - Google Patents

Heavy metal analysis method

Info

Publication number
JPH06324009A
JPH06324009A JP5114457A JP11445793A JPH06324009A JP H06324009 A JPH06324009 A JP H06324009A JP 5114457 A JP5114457 A JP 5114457A JP 11445793 A JP11445793 A JP 11445793A JP H06324009 A JPH06324009 A JP H06324009A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
ray
rays
heavy metal
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5114457A
Other languages
Japanese (ja)
Inventor
Kohei Sugihara
康平 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5114457A priority Critical patent/JPH06324009A/en
Publication of JPH06324009A publication Critical patent/JPH06324009A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simultaneously analyze the heavy metal contained near and inside the surface of a semiconductor substrate. CONSTITUTION:A slit 16 is provided at a rotary plate 14. The width of a slit 16 is determined by the time while X rays 13 are applied to a semiconductor substrate 11. The rotary plate 14 is rotated by controlling a motor 15. An X-ray detector 17 is positioned at the upper part of the semiconductor substrate 11. A semiconductor detector, for example, one where lithium is diffused on silicon, is generally used for the X-ray detector 17. A micro wave generation part 18 and a micro wave detector 19 are installed on the upper part of the substrate. The X rays 13 applied from an X-ray generation part 12 enter the semiconductor substrate 11 at a small angle of theta below 0.1 degrees.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は重金属分析方法に関する
ものである。
FIELD OF THE INVENTION The present invention relates to a heavy metal analysis method.

【0002】[0002]

【従来の技術】重金属分析方法の1つである全反射蛍光
X線分析法は、半導体素子の製造工程で発生する、意図
せぬ重金属を低減し、そしてデバイス特性や素子の製造
歩留まりを向上させるため、半導体基板表面近傍の重金
属元素の種類を特定し、表面濃度を定量的に得るために
用いられている。
2. Description of the Related Art A total reflection fluorescent X-ray analysis method, which is one of heavy metal analysis methods, reduces unintended heavy metals generated in a semiconductor device manufacturing process, and improves device characteristics and device manufacturing yield. Therefore, it is used to identify the type of heavy metal element near the surface of the semiconductor substrate and quantitatively obtain the surface concentration.

【0003】全反射蛍光X線分析の測定方法を説明する
ための概念図を図4に示す。X線発生部1から発生した
X線2が、半導体基板3の表面に非常に浅い入射角度θ
で照射される。通常、このX線2はタングステンやモリ
ブデンまたは銅からの特性X線が用いられる。入射角度
θは、半導体基板3としてシリコン、X線2として波長
約0.13nmのX線(W−Lβ1線)を用いたとき、
0.05〜0.15度程度に設定する。半導体基板3に入
射したX線2は、大気(または真空)と半導体基板3の
屈折率の違いにより、半導体基板3の表面で全反射を起
こし、入射したX線2のほとんどが半導体基板3の外へ
出ていく。このとき半導体基板3の表面近傍に存在する
重金属からは、X線2を受けて蛍光X線4が発生する。
蛍光X線4は半導体基板3の上部に設置してあるX線検
出器5に入射する。蛍光X線4は重金属の種類に特有の
エネルギー値を持っており、X線検出器5で蛍光X線4
のエネルギー値を測定することで、重金属元素の種類を
特定することができる。さらに蛍光X線4の検出強度か
ら重金属元素の表面近傍の濃度を求めることができる。
FIG. 4 shows a conceptual diagram for explaining a measuring method of total reflection X-ray fluorescence analysis. The X-ray 2 generated from the X-ray generator 1 is incident on the surface of the semiconductor substrate 3 at a very shallow incident angle θ.
Is illuminated by. Normally, the X-ray 2 is a characteristic X-ray made of tungsten, molybdenum or copper. When the incident angle θ is silicon as the semiconductor substrate 3 and X-rays having a wavelength of about 0.13 nm (W-Lβ1 rays) are used as the X-rays 2,
Set to about 0.05 to 0.15 degrees. The X-rays 2 incident on the semiconductor substrate 3 are totally reflected on the surface of the semiconductor substrate 3 due to the difference in refractive index between the atmosphere (or vacuum) and the semiconductor substrate 3, and most of the incident X-rays 2 are incident on the semiconductor substrate 3. Go out. At this time, the heavy metal existing in the vicinity of the surface of the semiconductor substrate 3 receives the X-rays 2 and the fluorescent X-rays 4 are generated.
The fluorescent X-rays 4 are incident on the X-ray detector 5 installed on the semiconductor substrate 3. The fluorescent X-ray 4 has an energy value peculiar to the type of heavy metal, and the fluorescent X-ray 4 is detected by the X-ray detector 5.
The type of heavy metal element can be specified by measuring the energy value of. Further, the concentration of the heavy metal element near the surface can be obtained from the detection intensity of the fluorescent X-ray 4.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような方法では、半導体基板3に照射されるX線2は、
非常に浅い入射角度θで半導体基板3に入射するため、
半導体基板3の表面から数nm〜数十nmの深さまでし
か入射しない。したがって半導体基板3の表面から数n
m〜数十nmの深さに含まれる重金属に対しては、その
元素の種類と濃度を求めることができるが、それ以上の
深さに含まれる重金属の濃度を得ることができなかっ
た。
However, in the method as described above, the X-rays 2 applied to the semiconductor substrate 3 are
Since the light is incident on the semiconductor substrate 3 at an extremely shallow incident angle θ,
The light is incident only from the surface of the semiconductor substrate 3 to a depth of several nm to several tens of nm. Therefore, several n from the surface of the semiconductor substrate 3
For heavy metals contained in a depth of m to several tens of nm, the type and concentration of the element can be determined, but the concentration of heavy metals contained in a depth larger than that could not be obtained.

【0005】本発明は上記問題点に鑑み、半導体基板3
の表面近傍の重金属だけでなく、同時に半導体基板3の
内部に含まれる重金属の濃度を定量的に得ることのでき
る重金属分析方法である。
In view of the above problems, the present invention is a semiconductor substrate 3
Is a heavy metal analysis method which can quantitatively obtain not only the heavy metal in the vicinity of the surface but also the concentration of the heavy metal contained inside the semiconductor substrate 3 at the same time.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明の重金属分析方法は、半導体基板に断続的
にX線を照射し、前記半導体基板中の重金属から発生す
る蛍光X線と、前記半導体基板で発生した電子を測定
し、前記電子の密度の時間変化より前記重金属の濃度を
測定する。
In order to solve the above problems, the heavy metal analysis method of the present invention is a fluorescent X-ray generated from a heavy metal in the semiconductor substrate by intermittently irradiating the semiconductor substrate with X-rays. Then, the electrons generated in the semiconductor substrate are measured, and the concentration of the heavy metal is measured from the time change of the density of the electrons.

【0007】また、前記X線の、一回の照射時間が前記
電子のライフタイムより短く、かつ前記X線の未照射時
間が前記電子のライフタイムより長くする。
Further, the irradiation time of the X-rays once is shorter than the lifetime of the electrons, and the non-irradiation time of the X-rays is longer than the lifetime of the electrons.

【0008】[0008]

【作用】半導体基板上の一箇所にX線を断続的に照射
し、重金属から発生する蛍光X線を検出することによっ
て、蛍光X線のエネルギー値と強度から半導体基板の表
面近傍の重金属元素の種類と濃度を得ることができる。
さらに半導体基板に発生した電子密度の時間変化をモニ
タすることによって、電子のライフタイムを求めること
ができ、半導体基板内部の重金属濃度を知ることができ
る。
The X-ray is intermittently irradiated to one place on the semiconductor substrate and the fluorescent X-ray generated from the heavy metal is detected to detect the heavy metal element near the surface of the semiconductor substrate from the energy value and intensity of the fluorescent X-ray. The type and concentration can be obtained.
Further, by monitoring the time change of the electron density generated in the semiconductor substrate, the lifetime of the electron can be obtained, and the heavy metal concentration inside the semiconductor substrate can be known.

【0009】[0009]

【実施例】以下、本発明の実施例について、図1、図2
を参照して説明する。
EXAMPLES Examples of the present invention will be described below with reference to FIGS.
Will be described with reference to.

【0010】表面が鏡面に研磨されている半導体基板1
1の測定箇所に対して、X線発生部12からのX線13
を断続的に照射する。X線は半導体基板11の表面に対
して非常に浅い角度(0度から0.5度)で入射させ
る。そして、X線13の照射光路の途中に回転板14を
配置しておき、これを回転させることでX線の照射を断
続させる。
A semiconductor substrate 1 having a mirror-polished surface
The X-ray 13 from the X-ray generator 12 is applied to the measurement point 1
Irradiate intermittently. The X-rays are incident on the surface of the semiconductor substrate 11 at a very shallow angle (0 degrees to 0.5 degrees). Then, the rotary plate 14 is arranged in the middle of the irradiation optical path of the X-rays 13 and is rotated to interrupt the X-ray irradiation.

【0011】この回転板14の形状を図2に示す。回転
板14にはスリット16が設けてある。スリット16の
幅は、X線13が半導体基板11に照射される時間によ
って決定される。回転板14の回転はモータ15を制御
することで行っている。X線検出器17は半導体基板1
1の上部に位置している。X線検出器17には、半導体
検出器、たとえば、シリコンにリチウムを拡散させたも
のを用いるのが一般的である。18はマイクロ波発生部
である。19はマイクロ波検出器である。
The shape of the rotary plate 14 is shown in FIG. The rotary plate 14 is provided with slits 16. The width of the slit 16 is determined by the time for which the X-ray 13 is applied to the semiconductor substrate 11. The rotation of the rotary plate 14 is performed by controlling the motor 15. The X-ray detector 17 is the semiconductor substrate 1.
Located at the top of 1. As the X-ray detector 17, it is general to use a semiconductor detector, for example, one in which lithium is diffused in silicon. Reference numeral 18 is a microwave generator. Reference numeral 19 is a microwave detector.

【0012】まず、X線発生部12から照射されたX線
13は、半導体基板11に対して0.1度以下の浅い角
度θで入射する。
First, the X-rays 13 emitted from the X-ray generator 12 are incident on the semiconductor substrate 11 at a shallow angle θ of 0.1 degrees or less.

【0013】回転板14の中心点は、モータ15に取り
付けられており、モータ15に駆動されて回転する。回
転板14が回転して、スリット16がX線13の照射光
路と交差したときにのみX線13が半導体基板11に照
射され、それ以外のときにはX線13は回転板14によ
って遮断され、半導体基板11には照射されない。X線
13が断続的に半導体基板11に照射されると、半導体
基板11の表面近傍では、X線13が照射されている間
だけ電子が励起される。励起された電子は、伝導電子と
なって半導体基板11の内部に拡散し、正孔と再結合す
ることで消滅する。このときの電子の寿命はライフタイ
ムと呼ばれている。半導体基板11の内部に重金属が存
在すると、生成された電子は重金属に捕らえられて、ラ
イフタイムが短くなる。
The center point of the rotary plate 14 is attached to the motor 15 and is driven by the motor 15 to rotate. The semiconductor substrate 11 is irradiated with the X-rays 13 only when the rotating plate 14 rotates and the slits 16 intersect the irradiation optical path of the X-rays 13, and otherwise the X-rays 13 are blocked by the rotating plate 14, The substrate 11 is not irradiated. When the semiconductor substrate 11 is intermittently irradiated with the X-rays 13, electrons are excited near the surface of the semiconductor substrate 11 only while the X-rays 13 are being irradiated. The excited electrons become conduction electrons, diffuse inside the semiconductor substrate 11, and recombine with holes to disappear. The life of the electron at this time is called a lifetime. If a heavy metal is present inside the semiconductor substrate 11, the generated electrons are captured by the heavy metal and the lifetime is shortened.

【0014】マイクロ波は、測定の間、つねにマイクロ
波照射部18から半導体基板11に対して垂直に近い角
度、垂直に対して、誤差10度以内で照射されている。
半導体基板11に照射されたマイクロ波は、X線13に
よって生成された電子によって反射され、その反射強度
は電子の密度に比例する。反射したマイクロ波の強度
は、マイクロ波検出器19によって測定される。
During the measurement, the microwave is always emitted from the microwave irradiating section 18 to the semiconductor substrate 11 at an angle close to a vertical angle, with an error of 10 degrees or less with respect to the vertical angle.
The microwave applied to the semiconductor substrate 11 is reflected by the electrons generated by the X-rays 13, and the reflection intensity is proportional to the electron density. The intensity of the reflected microwave is measured by the microwave detector 19.

【0015】反射マイクロ波強度の時間変化を図3に示
す。すなわち、反射マイクロ波強度を測定することによ
って、半導体基板11内部の電子密度の時間変化を求め
ることができ、電子のライフタイムが求められる。ライ
フタイムは、半導体基板11で反射したマイクロ波の強
度が最大値に比べて1/eの強度になるまでの時間、ま
たは1/eの強度から1/e2の強度になるまでの時間
である(eは自然対数の底)。ライフタイムは、半導体
基板11の内部に含まれる重金属濃度が高くなるととも
に減少するので、ライフタイムが求まれば、半導体基板
11の内部に含まれる重金属濃度を算出することができ
る。
FIG. 3 shows the change over time of the reflected microwave intensity. That is, by measuring the reflected microwave intensity, the time change of the electron density inside the semiconductor substrate 11 can be obtained, and the electron lifetime is obtained. The lifetime is the time until the intensity of the microwave reflected by the semiconductor substrate 11 becomes 1 / e of the maximum value, or the time from the intensity of 1 / e to the intensity of 1 / e 2. Yes (e is the base of the natural logarithm). Since the lifetime decreases as the concentration of heavy metals contained in the semiconductor substrate 11 increases, the concentration of heavy metals contained in the semiconductor substrate 11 can be calculated if the lifetime is obtained.

【0016】このように、X線13によって励起された
電子が、正孔と再結合して基底状態に戻るまでの間にラ
イフタイムを測定する。しかし、ライフタイム測定中に
再び半導体基板11にX線13が入射したり、X線13
の一回の照射時間が長かったりすると、電子が正孔と再
結合している間に再び半導体基板11から電子が励起さ
れてしまい、電子密度の時間変化を得ることができない
ので、ライフタイム測定中には半導体基板11にX線1
3が入射しないように回転板14によってそれを遮断す
る必要がある。X線13を遮断する時間はライフタイム
より十分長い時間に設定し、X線13の一回の照射時間
はライフタイムに比べて十分短くする必要がある。この
ようにX線13を遮断する時間が決まれば、回転板14
の回転数が決定される。また、半導体基板11にX線1
3を照射する時間は、回転板14に設けられたスリット
16の幅で決まる。
In this way, the lifetime of the electrons excited by the X-rays 13 is measured until the electrons are recombined with the holes and returned to the ground state. However, the X-rays 13 may enter the semiconductor substrate 11 again during the lifetime measurement,
If the irradiation time for one time is long, the electrons are excited from the semiconductor substrate 11 again while the electrons are recombined with the holes, and the time change of the electron density cannot be obtained. X-ray 1 on the semiconductor substrate 11
It is necessary to block it by the rotating plate 14 so that 3 does not enter. It is necessary to set the time for shutting off the X-rays 13 to a time that is sufficiently longer than the lifetime, and to make the irradiation time for each X-ray 13 once shorter than the lifetime. If the time to shut off the X-ray 13 is determined in this way, the rotating plate 14
The rotation speed of is determined. In addition, X-ray 1 is applied to the semiconductor substrate 11.
The time for irradiating 3 is determined by the width of the slit 16 provided in the rotary plate 14.

【0017】次に半導体基板11にX線13を断続的に
照射する必要性について述べる。全反射蛍光X線分析で
は、重金属から発生した蛍光X線を検出するため、測定
時間が短いと蛍光X線強度の統計的な変動が大きくなっ
てしまう。通常、数百〜数千秒の測定時間が必要であ
る。電子のライフタイムを測定するためにX線13を回
転板14で遮断すると、その間は半導体基板11表面の
重金属から蛍光X線が発生しない。したがって、蛍光X
線強度の統計的変動を小さくするためには、半導体基板
11表面にX線13を断続的に照射し、重金属から蛍光
X線の発生する時間を長くすることが必要である。
Next, the necessity of intermittently irradiating the semiconductor substrate 11 with X-rays 13 will be described. In the total reflection fluorescent X-ray analysis, fluorescent X-rays generated from heavy metals are detected, so if the measurement time is short, the statistical fluctuation of the fluorescent X-ray intensity becomes large. Usually, a measurement time of hundreds to thousands of seconds is required. When the X-ray 13 is blocked by the rotating plate 14 to measure the electron lifetime, the fluorescent X-rays are not generated from the heavy metal on the surface of the semiconductor substrate 11 during that time. Therefore, the fluorescence X
In order to reduce the statistical fluctuation of the line intensity, it is necessary to intermittently irradiate the surface of the semiconductor substrate 11 with the X-rays 13 and prolong the time for generating the fluorescent X-rays from the heavy metal.

【0018】通常の全反射蛍光X線分析では、半導体基
板11表面近傍の重金属だけしか元素の種類と表面濃度
を得ることができない。本実施例の方法を用いることに
より、半導体基板11表面近傍の重金属濃度だけでな
く、半導体基板11全体に含まれる重金属濃度を同時に
測定することができる。
In the usual total reflection X-ray fluorescence analysis, only the heavy metal near the surface of the semiconductor substrate 11 can obtain the type and surface concentration of the element. By using the method of this embodiment, not only the concentration of heavy metals in the vicinity of the surface of the semiconductor substrate 11 but also the concentration of heavy metals contained in the entire semiconductor substrate 11 can be measured at the same time.

【0019】[0019]

【発明の効果】本発明は、半導体基板にX線を断続的に
照射し、重金属から発生する蛍光X線と、X線照射によ
り発生した電子の、密度の時間変化をモニタすることに
より、半導体基板の表面近傍の重金属濃度だけでなく、
半導体基板全体に含まれる重金属濃度を同時に求めるこ
とができる。本発明の重金属分析方法を用いることによ
り、半導体素子の製造工程の清浄度を高めることがで
き、製造歩留まりを上げることができる。
Industrial Applicability According to the present invention, a semiconductor substrate is intermittently irradiated with X-rays, and a fluorescent X-ray generated from a heavy metal and an electron generated by the X-ray irradiation are monitored to change the density with time. Not only the heavy metal concentration near the surface of the substrate,
It is possible to simultaneously determine the concentration of heavy metals contained in the entire semiconductor substrate. By using the heavy metal analysis method of the present invention, the cleanliness of the semiconductor element manufacturing process can be increased and the manufacturing yield can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における重金属分析方法の概
略図
FIG. 1 is a schematic view of a heavy metal analysis method according to an embodiment of the present invention.

【図2】X線を断続的に遮断するための回転板の形状を
示す図
FIG. 2 is a view showing a shape of a rotary plate for intermittently blocking X-rays.

【図3】半導体基板に発生した伝導電子密度の時間変化
を示す図
FIG. 3 is a diagram showing a time change of conduction electron density generated in a semiconductor substrate.

【図4】全反射蛍光X線分析を説明するための概略図FIG. 4 is a schematic diagram for explaining total reflection X-ray fluorescence analysis.

【符号の説明】[Explanation of symbols]

11 半導体基板 12 X線発生部 13 X線 14 回転板 15 モータ 16 スリット 17 X線検出器 18 マイクロ波発生部 19 マイクロ波検出器 11 semiconductor substrate 12 X-ray generator 13 X-ray 14 rotating plate 15 motor 16 slit 17 X-ray detector 18 microwave generator 19 microwave detector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基板に断続的にX線を照射し、前記
半導体基板中の重金属から発生する蛍光X線と、前記半
導体基板で発生した電子とを測定し、前記電子の密度の
時間変化より前記重金属の濃度を測定することを特徴と
する重金属分析方法。
1. A semiconductor substrate is intermittently irradiated with X-rays, fluorescent X-rays generated from a heavy metal in the semiconductor substrate and electrons generated in the semiconductor substrate are measured, and the time density of the electrons changes. A method for analyzing heavy metals, which comprises measuring the concentration of the heavy metals further.
【請求項2】前記X線の、一回の照射時間が前記電子の
ライフタイムより短く、かつ前記X線の未照射時間が前
記電子のライフタイムより長いことを特徴とする請求項
1記載の重金属分析方法。
2. The X-ray irradiation time of one time is shorter than the lifetime of the electron, and the non-irradiation time of the X-ray is longer than the lifetime of the electron. Heavy metal analysis method.
JP5114457A 1993-05-17 1993-05-17 Heavy metal analysis method Pending JPH06324009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5114457A JPH06324009A (en) 1993-05-17 1993-05-17 Heavy metal analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5114457A JPH06324009A (en) 1993-05-17 1993-05-17 Heavy metal analysis method

Publications (1)

Publication Number Publication Date
JPH06324009A true JPH06324009A (en) 1994-11-25

Family

ID=14638215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5114457A Pending JPH06324009A (en) 1993-05-17 1993-05-17 Heavy metal analysis method

Country Status (1)

Country Link
JP (1) JPH06324009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105919A (en) * 2018-06-08 2020-12-18 株式会社岛津制作所 Fluorescent X-ray analysis device and fluorescent X-ray analysis method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105919A (en) * 2018-06-08 2020-12-18 株式会社岛津制作所 Fluorescent X-ray analysis device and fluorescent X-ray analysis method
JPWO2019234935A1 (en) * 2018-06-08 2021-02-25 株式会社島津製作所 Fluorescent X-ray analyzer and fluorescent X-ray analysis method
US11391680B2 (en) 2018-06-08 2022-07-19 Shimadzu Corporation X-ray fluorescence analyzer and X-ray fluorescence analysis method
CN112105919B (en) * 2018-06-08 2023-08-22 株式会社岛津制作所 Fluorescent X-ray analysis device and fluorescent X-ray analysis method

Similar Documents

Publication Publication Date Title
US4636088A (en) Method and apparatus for evaluating surface conditions of a sample
US6810105B2 (en) Methods and apparatus for dishing and erosion characterization
EP0211590B1 (en) Method and apparatus for optically determining defects in a semiconductor material
JP2985826B2 (en) Position detecting apparatus and method
US5804981A (en) Method of detecting heavy metal impurities introduced into a silicon wafer during ion implantation
JPH03278442A (en) Method and device for evaluating surface condition of semiconductor substrate
JPH06324009A (en) Heavy metal analysis method
JP2008263200A (en) Method for monitoring and optimizing process in-situ, ex-situ and in-line and manufacturing method therefor
JP3661998B2 (en) Method and apparatus for evaluating semiconductor device using X-ray
JP2002286658A (en) Apparatus and method for measurement of x-ray reflectance
JP3643484B2 (en) Total reflection X-ray photoelectron spectrometer
KR0144376B1 (en) Etching byproduct monitoring method and its apparatus
JP2000097889A (en) Sample analyzing method and sample analyzer
JP2001144155A (en) Semiconductor analysis device and analysis method
JPH06283585A (en) Semiconductor evaluation equipment
JPS60100038A (en) Surface layer analysis with x-ray microanalyzer
JPH08274137A (en) Method for setting total reflection angle
JP2690572B2 (en) Surface condition evaluation method and apparatus
JP2005142359A (en) Method for evaluating life time of semiconductor wafer
JP2961843B2 (en) Evaluation method of etching damage
JPH02123656A (en) Ion implantation device
TW202411638A (en) Monitoring properties of x-ray beam during x-ray analysis
JPH11173988A (en) Evaluation method for crystal defect
JP2024036290A (en) Monitoring of X-ray beam properties during X-ray analysis
JPH0682636B2 (en) Dry etching method