JPH06323835A - Screw hole measuring apparatus - Google Patents

Screw hole measuring apparatus

Info

Publication number
JPH06323835A
JPH06323835A JP5263745A JP26374593A JPH06323835A JP H06323835 A JPH06323835 A JP H06323835A JP 5263745 A JP5263745 A JP 5263745A JP 26374593 A JP26374593 A JP 26374593A JP H06323835 A JPH06323835 A JP H06323835A
Authority
JP
Japan
Prior art keywords
screw
screw hole
hole
measuring
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5263745A
Other languages
Japanese (ja)
Other versions
JP2929913B2 (en
Inventor
Hiroshi Takahashi
啓 高橋
Chiya Kohama
千弥 小濱
Hidehiro Manabe
秀弘 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP26374593A priority Critical patent/JP2929913B2/en
Publication of JPH06323835A publication Critical patent/JPH06323835A/en
Application granted granted Critical
Publication of JP2929913B2 publication Critical patent/JP2929913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)

Abstract

PURPOSE:To allow quantitative measurement of the radial dimension of screw hole, the effective depth of screw, and the hole position by turning the air blow-out port of a screw measuring rod one revolution while advancing/ retracting the measuring rod along the spiral screw thread and determining the variation in the distance between the air blow-out port and the screw thread. CONSTITUTION:A controller 11 receives a signal from a personal computor 10 to actuate a three-dimensional shifting mechanism 6 which inserts a screw measuring rod 5 into a screw hole 4 with no interference of a screw thread 4a. An air blow-out port 5a is then turned one revolution while advancing or retracting along the spiral screw thread 4a and the distance between the blow- out port 5a and the screw thread 4a is determined based on the output from a pressure/voltage converter 9. The direction of shortest or longest distance is then determined and the central position of the screw hole 4 is measured 10 followed by the measurement of the inner diameter (d) of the screw 4, the diameter D at the root of thread, and the effective screw depth L based on the variation in the distance between the blow-out port 5a and the screw thread 4a detected by the measuring rod 5 during movement thereof. This constitution allows quantitative measurement while reducing the manpower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ワークのねじ孔の、
径方向寸法、有効ねじ深さおよび孔位置を自動計測する
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw hole of a work,
The present invention relates to a device for automatically measuring a radial dimension, an effective screw depth and a hole position.

【0002】[0002]

【従来の技術】上述の如き計測を行う場合は従来、ねじ
孔のねじ径と有効ねじ深さとについては、図11(a)に
示す如き通常の検査用限界ねじゲージ1の通りゲージと
止まりゲージとをねじ孔内に手作業で交互にねじ込んで
みて、通りゲージが所定の有効ねじ深さまでねじ込める
一方で止まりゲージがねじ込めなければ公差範囲内であ
ると計測し、孔位置については、図11(b)に示すよう
に、ねじ孔内に手作業でねじ込んだねじゲージ2の軸部
を汎用の三次元測定機のプローブ3で触ってその軸部の
位置を求めることにより計測する、という方法で行って
いた。
2. Description of the Related Art Conventionally, in the case of performing the above-mentioned measurement, the thread diameter and the effective thread depth of a screw hole are the same as those of a normal inspection limit thread gauge 1 as shown in FIG. By alternately screwing and into the screw holes by hand, if the passing gauge can be screwed up to the specified effective thread depth while the stop gauge is not screwing in, it is measured that it is within the tolerance range. As shown in FIG. 11 (b), it is said that the shaft portion of the screw gauge 2 manually screwed into the screw hole is touched by the probe 3 of the general-purpose coordinate measuring machine to obtain the position of the shaft portion. Was going by the way.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、かかる
従来のねじ孔の計測方法では、ねじ径と有効ねじ深さと
の計測については、限界ねじゲージ1を用い、人間の感
覚に依存して行うので、定量的な計測が不可能であると
ともに計測に工数が嵩むという問題があり、また孔位置
の計測については、三次元測定機にワークをセットしな
いと計測できないので、ライン上で計測することが実質
的に不可能であるとともに計測にこれも工数が嵩むとい
う問題があった。
However, in such a conventional method for measuring a screw hole, since the limit screw gauge 1 is used to measure the screw diameter and the effective screw depth, it depends on the human sense. There is a problem that quantitative measurement is not possible and the number of man-hours for measuring increases, and it is not possible to measure the hole position without setting the work on the coordinate measuring machine, so it is essential to measure on the line. However, there is a problem that the number of man-hours for measuring is also increased.

【0004】ところで近年、計測対象物へ向けてエア吹
出口から加圧エアを吹きつけて、その加圧エアの背圧の
変化状態を計測することにより、その対象物とエア吹出
口の間の距離を計測する、エアマイクロメータが知られ
ており、これを用いれば、対象物との間の距離を非接触
で定量的に計測することができる。
By the way, in recent years, pressurized air is blown from an air outlet toward an object to be measured, and a change state of the back pressure of the pressurized air is measured to measure the difference between the object and the air outlet. An air micrometer that measures a distance is known, and if this is used, the distance to an object can be quantitatively measured without contact.

【0005】[0005]

【課題を解決するための手段】この発明は、上述したエ
アマイクロメータの原理を利用して従来の計測方法の課
題を有利に解決した装置を提供することを目的とするも
のであり、この発明の第1のねじ孔計測装置は、被計測
ねじ孔内に挿入され、エア吹出口から前記ねじ孔内のね
じ山へ向けて加圧エアを吹出すねじ測定子と、前記ねじ
測定子を前記ねじ孔内に挿入してそのねじ孔内で回転お
よび進退移動させるねじ測定子移動手段と、前記エア吹
出口へ供給される加圧エアの背圧の変化に基づき、前記
エア吹出口と前記ねじ山との間の距離に対応する信号を
出力する距離計測手段と、前記ねじ測定子が前記ねじ孔
内で前記エア吹出口を前記ねじ山の螺旋に沿わせて移動
させるように進退方向へ移動しつつ一回転する間に求ま
った前記距離の変化に基づき、その距離が最短もしくは
最長になる向きを調べ、その向きおよびそれと反対の向
きでの前記距離から前記ねじ孔の中心位置を計測する中
心位置計測手段と、前記ねじ測定子が前記ねじ孔内で進
退方向へ移動する間に求まった前記距離の変化に基づ
き、前記ねじ孔の内径と、谷径と、有効ねじ深さとを計
測するねじ寸法計測手段と、を具えてなるものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an apparatus which advantageously solves the problems of the conventional measuring method by utilizing the principle of the air micrometer described above. The first screw hole measuring device of No. 1 is a screw measuring element which is inserted into a measured screw hole and blows pressurized air from an air outlet toward a screw thread in the screw hole, and the screw measuring element. A screw gauge moving means that is inserted into a screw hole to rotate and move back and forth within the screw hole, and the air outlet and the screw based on a change in back pressure of pressurized air supplied to the air outlet. Distance measuring means for outputting a signal corresponding to the distance to the crest, and the screw measuring element moves in the advancing / retracting direction so as to move the air outlet along the spiral of the screw thread in the screw hole. Change of the distance obtained during one rotation while Based on the above, the direction in which the distance is the shortest or the longest is examined, and the center position measuring means for measuring the center position of the screw hole from the distance and the direction in the opposite direction, and the screw measuring element is the screw hole. And a screw dimension measuring means for measuring an inner diameter, a root diameter, and an effective screw depth of the screw hole based on a change in the distance obtained while moving in the forward and backward directions.

【0006】またこの発明の第2のねじ孔計測装置は、
被計測ねじ孔内に挿入され、エア吹出口から前記ねじ孔
内のねじ山へ向けて加圧エアを吹出すねじ測定子と、前
記ねじ測定子を前記ねじ孔内に挿入してそのねじ孔内で
回転および進退移動させるねじ測定子移動手段と、前記
ねじ測定子と前記ねじ孔内のねじ山とが接触したことを
検知する接触検知手段と、前記エア吹出口へ供給される
加圧エアの背圧の変化に基づき、前記エア吹出口と前記
ねじ山との間の距離に対応する信号を出力する距離計測
手段と、前記ねじ孔の周方向の複数位置で前記ねじ山に
接触した際の前記ねじ測定子の位置に基づき、前記ねじ
孔の中心位置を計測する中心位置計測手段と、前記ねじ
測定子が前記ねじ孔内で進退方向へ移動する間に求まっ
た前記距離の変化に基づき、前記ねじ孔の径方向寸法
と、有効ねじ深さとを計測するねじ寸法計測手段と、を
具えてなるものである。
The second screw hole measuring device of the present invention is
A screw gauge that is inserted into the measured screw hole and blows pressurized air from the air outlet toward the screw thread in the screw hole, and the screw gauge is inserted into the screw hole and the screw hole A screw gauge moving means for rotating and advancing and retracting inside, a contact detecting means for detecting contact between the screw gauge and a screw thread in the screw hole, and pressurized air supplied to the air outlet. Based on the change in the back pressure of the, when the distance measuring means for outputting a signal corresponding to the distance between the air outlet and the screw thread, and when contacting the screw thread at a plurality of positions in the circumferential direction of the screw hole. Based on the position of the screw measuring element, based on the change of the distance obtained while moving the center position measuring means for measuring the central position of the screw hole and the screw measuring element in the screw hole in the advancing and retracting direction. , The radial dimension of the screw hole and the effective thread depth A screw size measurement means for measuring is made comprises a.

【0007】[0007]

【作用】かかる第1の装置にあっては、ねじ測定子移動
手段がねじ測定子を、先ず被計測ねじ孔に概略整列する
位置に移動させた後、前記ねじ孔内に挿入して、そのね
じ孔内で回転および進退移動させ、そのねじ孔内での回
転および進退移動の間、前記ねじ測定子が、エア吹出口
からそのねじ孔内のねじ山へ向けて加圧エアを吹出し、
これにより、距離計測手段が、前記エア吹出口へ供給さ
れる加圧エアの背圧の変化に基づきそのエア吹出口と前
記ねじ山との間の距離に対応する信号を出力し、中心位
置計測手段が、ねじ測定子が前記ねじ孔内で前記エア吹
出口を前記ねじ山の螺旋に沿わせて移動させるように進
退方向へ移動しつつ一回転する間に求まった前記距離の
変化に基づき、その距離が最短もしくは最長になる向き
を調べて、その向きおよびそれと反対の向きでの前記距
離から前記ねじ孔の中心位置を計測し、そしてねじ寸法
計測手段が、ねじ測定子が前記ねじ孔内で進退方向へ移
動する間に求まった前記距離の変化に基づき、前記ねじ
孔の内径と、谷径と、有効ねじ深さとを計測する。
In the first device, the screw gauge moving means first moves the screw gauge to a position substantially aligned with the screw hole to be measured, and then inserts the screw gauge into the screw hole. Rotating and advancing / retreating in the screw hole, and during the rotation and advancing / retreating movement in the screw hole, the screw gauge blows pressurized air from the air outlet toward the screw thread in the screw hole,
As a result, the distance measuring means outputs a signal corresponding to the distance between the air outlet and the screw thread based on the change in the back pressure of the pressurized air supplied to the air outlet, and measures the center position. Means, based on the change in the distance obtained during one rotation while the screw probe moves in the advancing and retracting direction so as to move the air outlet along the spiral of the screw thread in the screw hole, The direction in which the distance is the shortest or the longest is examined, and the center position of the screw hole is measured from the distance in that direction and the direction opposite thereto, and the screw dimension measuring means causes the screw gauge to measure the inside of the screw hole. The inner diameter, the root diameter, and the effective screw depth of the screw hole are measured based on the change in the distance obtained while moving in the advancing / retreating direction.

【0008】従って、この第1の装置によれば、ワーク
のねじ孔の、径方向寸法、有効ねじ深さおよび孔位置
を、エア吹出口と前記ねじ山との間の距離の変化に基づ
き自動計測することができるので、それらの計測を全て
定量的に行うことができるとともに、その計測に要する
工数を削減することができる。またこの装置によれば、
三次元測定機を用いずに計測ができるので、ライン上で
の計測を行うことができるとともに、計測時のワークの
セットに要する工数を削減することができる。
Therefore, according to this first device, the radial dimension, effective screw depth and hole position of the screw hole of the workpiece are automatically determined based on the change in the distance between the air outlet and the screw thread. Since the measurement can be performed, all the measurement can be quantitatively performed, and the man-hour required for the measurement can be reduced. According to this device,
Since the measurement can be performed without using a three-dimensional measuring machine, it is possible to perform the measurement on the line and reduce the man-hour required for setting the work at the time of measurement.

【0009】また、上記第2の装置にあっては、ねじ測
定子移動手段がねじ測定子を、先ず被計測ねじ孔に概略
整列する位置に移動させた後、前記ねじ孔内に挿入し
て、そのねじ孔内でねじ孔の軸線に対し直角な方向へ、
接触検知手段がねじ測定子とねじ孔内のねじ山との接触
を検知するまで移動させて、そのねじ孔の周方向の複数
位置でねじ山にねじ測定子を接触させ、その接触した際
の前記ねじ測定子の位置に基づき、中心位置計測手段
が、ねじ孔の中心位置を計測し、次いで、ねじ測定子移
動手段がねじ測定子を、そのねじ孔内で回転および進退
移動させ、そのねじ孔内での回転および進退移動の間、
前記ねじ測定子が、エア吹出口からそのねじ孔内のねじ
山へ向けて加圧エアを吹出し、これにより、距離計測手
段が、前記エア吹出口へ供給される加圧エアの背圧の変
化に基づきそのエア吹出口と前記ねじ山との間の距離に
対応する信号を出力し、そしてねじ寸法計測手段が、ね
じ測定子が前記ねじ孔内で進退方向へ移動する間に求ま
った前記距離の変化に基づき、前記ねじ孔の径方向寸法
と、有効ねじ深さとを計測する。
In the second device, the screw gauge moving means first moves the screw gauge to a position approximately aligned with the screw hole to be measured, and then inserts the screw gauge into the screw hole. , In the screw hole in the direction perpendicular to the axis of the screw hole,
Move until the contact detection means detects contact between the thread measuring element and the screw thread in the screw hole, and bring the thread measuring element into contact with the screw thread at a plurality of positions in the circumferential direction of the screw hole. Based on the position of the screw probe, the center position measuring means measures the center position of the screw hole, and then the screw probe moving means rotates and moves the screw probe in the screw hole to move the screw. During rotation and reciprocation in the hole,
The screw gauge blows pressurized air from the air outlet toward the threads in the screw hole, whereby the distance measuring means changes the back pressure of the pressurized air supplied to the air outlet. A signal corresponding to the distance between the air outlet and the screw thread, and the screw dimension measuring means obtains the distance while the screw probe moves in the screw hole in the advancing / retreating direction. The radial dimension of the screw hole and the effective screw depth are measured based on the change of

【0010】従って、この第2の装置によっても、ワー
クのねじ孔の径方向寸法、有効ねじ深さおよび孔位置
を、ねじ山と接触したねじ測定子の位置および、エア吹
出口と前記ねじ山との間の距離の変化に基づき自動計測
することができるので、それらの計測を全て定量的に行
うことができるとともに、その計測に要する工数を削減
することができ、また、三次元測定機を用いずに計測が
できるので、ライン上での計測を行うことができるとと
もに、計測時のワークのセットに要する工数を削減する
ことができる。
Therefore, also with this second device, the radial dimension of the screw hole of the workpiece, the effective screw depth, and the hole position are determined by the position of the thread contact point in contact with the screw thread, the air outlet, and the screw thread. Since automatic measurement can be performed based on the change in the distance between and, all of these measurements can be performed quantitatively, and the man-hours required for the measurement can be reduced. Since the measurement can be performed without using it, it is possible to perform the measurement on the line and reduce the man-hour required for setting the work at the time of measurement.

【0011】[0011]

【実施例】以下に、この発明の実施例を図面に基づき詳
細に説明する。図1は、この発明の第1のねじ孔計測装
置の一実施例を示す構成図であり、この実施例の装置
は、ワークのねじ孔4の各種寸法と孔位置とを計測する
ためのものであって、エア吹出口5aを側面に持つねじ測
定子5と、そのねじ測定子5を三次元方向へ任意の位置
に移動させ得るとともにその中心線Cd 周りに任意の角
度に回転させ得る、ねじ測定子移動手段としての、例え
ば通常のNC工作機械の工具移動機構からなる三次元移
動機構6と、工場のエアライン等の加圧エア供給源7か
ら供給される加圧エアを適当に調整してねじ測定子5の
エア吹出口5aへ供給する加圧エア調整回路8と、その加
圧エア調整回路8とエア吹出口5aとの間に介挿され、エ
ア吹出口5aへ供給される加圧エアの背圧の変化を電圧の
変化に変換して出力する、距離計測手段としての圧力−
電圧変換器9と、圧力−電圧変換器9の出力電圧をデジ
タル値に変換してその値に基づきねじ孔の各種寸法計測
を行う、中心位置計測手段およびねじ寸法計測手段とし
ての通常のパーソナルコンピュータ(いわゆるパソコ
ン)10と、そのパーソナルコンピュータ10からの信号に
基づき上記三次元移動機構6の作動を数値制御する、例
えば上記NC工作機械の、通常のマイクロコンピュータ
を持つコントローラ11と、を具えてなる。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of a first screw hole measuring device of the present invention. The device of this embodiment is for measuring various sizes and hole positions of a screw hole 4 of a work. In addition, it is possible to move the screw measuring element 5 having the air outlet 5a on the side surface, and to move the screw measuring element 5 to an arbitrary position in the three-dimensional direction, and to rotate the screw measuring element 5 at an arbitrary angle around the center line C d. , A three-dimensional moving mechanism 6 which is, for example, a tool moving mechanism of a normal NC machine tool, and a pressurized air supplied from a pressurized air supply source 7 such as an air line of a factory The pressurized air adjusting circuit 8 which is adjusted and supplied to the air outlet 5a of the screw gauge 5, is inserted between the pressurized air adjusting circuit 8 and the air outlet 5a, and is supplied to the air outlet 5a. Distance measuring means that converts the change in back pressure of pressurized air into a change in voltage and outputs the voltage. Pressure as
A voltage converter 9 and an ordinary personal computer as a center position measuring means and a screw dimension measuring means for converting the output voltage of the pressure-voltage converter 9 into a digital value and measuring various dimensions of the screw hole based on the value. It comprises a (so-called personal computer) 10 and a controller 11 for numerically controlling the operation of the three-dimensional moving mechanism 6 based on a signal from the personal computer 10, for example, a controller 11 of the NC machine tool having a normal microcomputer. .

【0012】ここで、上記加圧エア調整回路8は例え
ば、図2に示すように、開閉弁8aと、サブミクロンエア
フィルタ8bと、オイルミストセパレータ8cと、レギュレ
ータ8dと、減圧弁8eとを直列に繋ぐことにて構成するこ
とができ、また上記圧力−電圧変換器9は例えば、これ
も図2に示すように、供給された加圧エアを分岐させる
二回路9a, 9bを、通常の差圧検出部9cの感圧ダイアフラ
ムの両側に、それぞれ絞り弁9dを介して接続し、それら
のうちの一方の回路9aを、絞り弁9eを介して大気中へ開
放するとともに、他方の回路9bを、ねじ測定子5のエア
吹出口5aに接続する加圧エア供給路とし、さらに、上記
感圧ダイアフラムの変位による静電容量の変化やブリッ
ジを構成する抵抗の抵抗値の変化等を増幅して電圧変化
として出力する図示しない増幅器を設けることにて構成
することができる。なお、ねじ測定子5は回転するの
で、ねじ測定子5のエア吹出口5aと上記回路9bとの間
は、ねじ測定子5の回転を許容しつつエア回路を接続す
る、図示しない通常のロータリー式カプラによって接続
されている。
Here, the pressurized air adjusting circuit 8 includes, for example, an opening / closing valve 8a, a submicron air filter 8b, an oil mist separator 8c, a regulator 8d, and a pressure reducing valve 8e as shown in FIG. The pressure-voltage converter 9 can be configured by connecting in series, and for example, as shown in FIG. 2 as well, the pressure-voltage converter 9 has two circuits 9a and 9b for branching the supplied pressurized air, which are generally used. Both sides of the pressure-sensitive diaphragm of the differential pressure detector 9c are respectively connected via a throttle valve 9d, and one of these circuits 9a is opened to the atmosphere via the throttle valve 9e, while the other circuit 9b is opened. Is a pressurized air supply path connected to the air outlet 5a of the screw probe 5, and further amplifies the change in capacitance due to the displacement of the pressure-sensitive diaphragm and the change in resistance value of the resistance constituting the bridge. Amplification (not shown) It can be configured by providing a container. Since the screw gauge 5 rotates, an air circuit is connected between the air outlet 5a of the screw gauge 5 and the circuit 9b while permitting rotation of the screw gauge 5, and a normal rotary not shown. Connected by a formula coupler.

【0013】かかる装置を用いて、ワークの、一つある
いは複数のねじ孔4の計測を行うに際しては、パーソナ
ルコンピュータ10にあらかじめ入力した、図3に示す手
順を実行する。すなわちここでは、ワークを所定位置に
位置させた後、先ず、ステップ21で、パーソナルコンピ
ュータ10からの信号によりコントローラ11で三次元移動
機構6を作動させて、ねじ測定子5を、ねじ孔4に対向
し、そのねじ孔4の中心線Ch とねじ測定子5の中心線
d とが概略一致する位置に移動させて、ねじ測定子5
を、ねじ孔4のねじ山4aと干渉させずにねじ孔4内へ挿
入し得るようにする。
When measuring one or a plurality of screw holes 4 of a work by using such an apparatus, the procedure shown in FIG. That is, here, after the work is positioned at the predetermined position, first, in step 21, the controller 11 operates the three-dimensional movement mechanism 6 in response to a signal from the personal computer 10 to move the screw contact point 5 into the screw hole 4. The screw measuring element 5 is moved to a position where the center line C h of the screw hole 4 and the center line C d of the screw measuring element 5 face each other and substantially coincide with each other.
Can be inserted into the screw hole 4 without interfering with the thread 4a of the screw hole 4.

【0014】ここで、上記ねじ孔4に対向する位置への
移動は、ワークの位置決め精度が充分高い場合には、あ
らかじめ与えたデータに基づき、ワークの位置決め位置
を基準として設計上でのねじ孔4の位置にねじ測定子5
を自動的に移動させるようにすれば良いが、ワークの位
置決め精度がそれほど高くない場合には、例えば、三次
元移動機構6を手動操作で作動させて、図1に示すワー
クの、ねじ測定子5よりも径が僅かに大きい基準孔12内
にねじ測定子5を嵌め合わせた後、その基準孔12の位置
を基準として設計上でのねじ孔4の位置にねじ測定子5
を自動的に移動させることにより行う。
Here, when the workpiece positioning accuracy is sufficiently high, the movement to the position facing the screw hole 4 is based on the data given in advance, and based on the workpiece positioning position, the screw hole in the design is set. Screw probe 5 at position 4
Can be automatically moved. However, when the positioning accuracy of the work is not so high, for example, the three-dimensional moving mechanism 6 is manually operated to operate the screw measuring element of the work shown in FIG. After fitting the screw measuring element 5 in the reference hole 12 having a diameter slightly larger than 5, the screw measuring element 5 is placed at the designed position of the screw hole 4 with the position of the reference hole 12 as a reference.
By automatically moving.

【0015】ワークの位置決め精度がそれほど高くない
場合の、上記ねじ孔4に対向する位置へのねじ測定子5
の移動はまた、図4や図5に示す方法で行っても良く、
図4に示す方法では、ねじ測定子5の下端部に四方へむ
けて斜め下向きにエア吹出口5bをそれぞれ設け、ワーク
の位置決め位置を基準として設計上でのねじ孔4の位置
にねじ測定子5を自動的に移動させた後、それら四つの
エア吹出口5bへ供給する加圧エアの背圧の変化に基づく
電圧変化をエア回路の切換え等によって独立に計測しつ
つ、ねじ測定子5の位置を、それら四つのエア吹出口5b
に各々対応する四つの電圧値が互いに等しくなるように
修正する。この方法によれば、位置修正後は、四つのエ
ア吹出口5bの各々とねじ孔4の入口の面取り部4bとの間
の距離が等しくなるので、ねじ測定子5の中心線Cd
ねじ孔4の中心線Ch に比較的高い精度で一致し、それ
ゆえ、ねじ孔4内への挿入時に、ねじ測定子5とねじ山
4aとの干渉を確実に防止することができる。
When the positioning accuracy of the work is not so high, the screw measuring element 5 is located at a position facing the screw hole 4.
May also be carried out by the method shown in FIGS. 4 and 5,
According to the method shown in FIG. 4, air outlets 5b are provided at the lower end of the thread measuring element 5 in a diagonally downward direction toward all directions, and the thread measuring element is located at the position of the screw hole 4 on the basis of the positioning position of the workpiece. After automatically moving 5, the voltage change based on the change in the back pressure of the pressurized air supplied to the four air outlets 5b is independently measured by switching the air circuit, etc. Position the four air outlets 5b
Are corrected so that the four voltage values respectively corresponding to are equal to each other. According to this method, since the distance between each of the four air outlets 5b and the chamfered portion 4b at the inlet of the screw hole 4 becomes equal after the position correction, the center line C d of the screw contact point 5 becomes It coincides with the center line C h of the hole 4 with a relatively high degree of accuracy, and therefore, when the screw 4 is inserted into the screw hole 4,
Interference with 4a can be reliably prevented.

【0016】そして図5に示す方法では、ねじ測定子5
の下端部に下向きにエア吹出口5cを設け、ワークの位置
決め位置を基準として設計上でのねじ孔4の位置にねじ
測定子5を自動的に移動させた後、そのエア吹出口5cへ
供給する加圧エアの背圧の変化に基づく電圧変化を計測
しつつ、ねじ測定子5をその中心線Cd と直角な二方向
へ、図中矢印で示す如くねじ孔4を横切るように移動さ
せて、それらの二方向の各々につき電圧が最低になる位
置すなわちエア吹出口5cとワークとの距離が最大になる
ため加圧エアの背圧が最低になる位置を求め、それらの
位置を基に中心線Cd からのエア吹出口5cのオフセット
量を補正した位置を、前記各方向についてのねじ孔4の
中心線Ch の位置として、ねじ測定子5の中心線Cd
前記中心線Ch に一致するようにねじ測定子5の位置を
修正する。この方法によれば、実際に求めたねじ孔4の
中心線Ch の位置を用いてねじ測定子5の位置を修正す
るので、ねじ測定子5の中心線Cd がねじ孔4の中心線
h に比較的高い精度で一致し、それゆえこの方法で
も、ねじ孔4内への挿入時に、ねじ測定子5とねじ山4a
との干渉を確実に防止することができる。
Then, in the method shown in FIG.
An air outlet 5c is provided downward at the lower end of the, and the screw probe 5 is automatically moved to the position of the screw hole 4 in the design based on the positioning position of the work, and then supplied to the air outlet 5c. While measuring the voltage change based on the change in the back pressure of the pressurized air, the screw probe 5 is moved in two directions perpendicular to the center line C d thereof so as to cross the screw hole 4 as indicated by the arrow in the figure. Then, find the position where the voltage becomes the minimum in each of those two directions, that is, the position where the back pressure of the pressurized air becomes the minimum because the distance between the air outlet 5c and the workpiece becomes the maximum, and based on those positions. the corrected position offset amount of the air outlet 5c of the center line C d, wherein the position of the center line C h of the screw hole 4 for each direction, the center line C d is the center line C of the screw measuring element 5 Correct the position of the screw stylus 5 so as to match h . According to this method, the position of the screw gauge 5 is corrected by using the position of the center line C h of the screw hole 4 that is actually obtained, so that the center line C d of the screw gauge 5 is the center line of the screw hole 4. It matches C h with a relatively high degree of accuracy, and therefore even in this method, when the screw is inserted into the screw hole 4, the screw probe 5 and the screw thread 4a
Interference with can be reliably prevented.

【0017】上記の如くしてねじ孔4に対向する位置へ
ねじ測定子5を移動させた後、ここではステップ22で、
パーソナルコンピュータ10からの信号によりコントロー
ラ11で三次元移動機構6を作動させて、ねじ測定子5
を、図1に示す如く、ねじ孔4内に、その孔の入口に近
いがエア吹出口5cからの加圧エアが孔の外へ漏れない程
度の中間の深さまで挿入する。なお、ねじ孔4内に異物
がつまっていた場合に、上記挿入によってねじ測定子5
が損傷するのを防止するため、実際の装置では通常、図
6に示すように、ねじ測定子5を三次元移動機構6のホ
ルダ6aで、その内部に引っ込み得るように支持し、スプ
リングでねじ測定子5を常時進出附勢する構造が採られ
るが、その場合には、エア吹出口5aへの加圧エアの供給
口6bを、好ましくは図示の如く、ねじ測定子5が引っ込
むとそれによって閉止される位置に設ける。このように
すれば、上記挿入によりねじ孔4内の異物13に当接して
ねじ測定子5が引っ込むと、供給口6bの閉止により、ね
じ孔計測用の加圧エアの背圧が異常に上昇して電圧変化
も異常上昇を示すので、ねじ測定子5の異物13への当接
を、別途のセンサやスイッチで検出しなくても容易に知
ることができ、それゆえ、回転するねじ測定子5へセン
サやスイッチを別途設けることによる電気配線の煩雑化
を避けることができる。
After moving the screw head 5 to the position facing the screw hole 4 as described above, here, in step 22,
The controller 11 operates the three-dimensional movement mechanism 6 in response to a signal from the personal computer 10 to move the screw contact 5
As shown in FIG. 1, is inserted into the screw hole 4 to an intermediate depth close to the inlet of the hole, but to the extent that pressurized air from the air outlet 5c does not leak out of the hole. In addition, when the thread hole 4 is clogged with foreign matter, the above-mentioned insertion causes the screw probe 5 to move.
In order to prevent the damage of the screw, in the actual device, as shown in FIG. 6, the screw probe 5 is usually supported by the holder 6a of the three-dimensional moving mechanism 6 so as to be retractable therein, and is screwed by the spring. A structure is adopted in which the tracing stylus 5 is constantly urged to advance. In that case, when the screw tracing stylus 5 is retracted, preferably, as shown in the drawing, the compressed air supply port 6b to the air outlet 5a is retracted. Provide in a closed position. With this arrangement, when the screw probe 5 is retracted by coming into contact with the foreign matter 13 in the screw hole 4 by the above insertion, the back pressure of the pressurized air for screw hole measurement rises abnormally due to the closing of the supply port 6b. Since the voltage change also shows an abnormal rise, the contact of the screw measuring element 5 with the foreign matter 13 can be easily known without detecting with a separate sensor or switch, and therefore the rotating screw measuring element It is possible to avoid complication of electric wiring due to the additional provision of a sensor and a switch to 5.

【0018】ねじ測定子5をねじ孔4内の、入口に近い
中間深さまで挿入したら、ここでは次いでステップ23
で、パーソナルコンピュータ10からの信号によりコント
ローラ11で三次元移動機構6を作動させて、例えばNC
工作機械のリジッドタップ機能と同様のプログラムによ
り、ねじ測定子5を、図7(a)に示す如く、図中実線
で示す上記挿入位置から図中仮想線で示す位置までねじ
山4aの一ピッチ(P)分進入方向へ移動させつつその移
動に同期させて一回転させ、これによりエア吹出口5aを
ねじ山4aの螺旋に沿わせて1ピッチ分移動させ、その移
動の間に圧力−電圧変換器9が連続的に出力した、1ピ
ッチ分のねじ山4aの螺旋に沿うエア吹出口5aとねじ山4a
との間の距離の変化に対応する電圧の変化をパーソナル
コンピュータ10で調べて、その電圧が最大になるねじ測
定子5の向きを捜す。
When the screw gauge 5 is inserted into the screw hole 4 up to an intermediate depth close to the inlet, here, in step 23,
Then, the controller 11 operates the three-dimensional movement mechanism 6 in response to a signal from the personal computer 10, and, for example, NC
By a program similar to the rigid tap function of the machine tool, as shown in FIG. 7 (a), the thread measuring element 5 has one pitch of the screw thread 4a from the insertion position shown by the solid line in the figure to the position shown by the imaginary line in the figure. (P) While moving in the approach direction and rotating once in synchronism with the movement, the air outlet 5a is moved by one pitch along the spiral of the screw thread 4a, and pressure-voltage is applied during the movement. The air outlet 5a and the screw thread 4a along the spiral of the screw thread 4a for one pitch, which is continuously output by the converter 9.
The change of the voltage corresponding to the change of the distance between and is examined by the personal computer 10 to find the direction of the screw probe 5 where the voltage becomes maximum.

【0019】ここで、上記加圧エアの背圧は、エア吹出
口5aとねじ山4aとの間の距離が近くなればなるほど、エ
ア吹出口5aからの加圧エアの吹出し抵抗が増すため上昇
し、その背圧の上昇は、圧力−電圧変換器9の出力電圧
を大きくし、上記距離の変化と出力電圧の変化とは、概
ね線形の関係にあることが知られている。従って、上記
電圧が最大になるねじ測定子5の向きは、図7(b)に
示すように、エア吹出口5aとねじ山4aとの間の距離が最
短になる向きとなる。なお、上記出力電圧の値をパーソ
ナルコンピュータ10で、あらかじめ試験により求めた変
換表や変換式等を用いて距離に変換すれば、エア吹出口
5aとねじ山4aとの間の距離、ひいてはねじ山4aの、エア
吹出口5aが対向している部分の位置を求めることができ
る。
Here, the back pressure of the pressurized air increases as the distance between the air outlet 5a and the screw thread 4a becomes shorter, because the resistance of the pressurized air from the air outlet 5a increases. However, it is known that the increase in the back pressure increases the output voltage of the pressure-voltage converter 9, and the change in the distance and the change in the output voltage have a substantially linear relationship. Therefore, as shown in FIG. 7B, the direction of the threaded probe 5 where the above voltage is maximized is the direction in which the distance between the air outlet 5a and the screw thread 4a is the shortest. If the value of the output voltage is converted into a distance by the personal computer 10 using a conversion table, a conversion formula, or the like obtained in advance by a test, the air outlet can be obtained.
The distance between the thread 5a and the thread 4a, and thus the position of the thread 4a where the air outlet 5a faces can be determined.

【0020】次のステップ24では、パーソナルコンピュ
ータ10からの信号によりコントローラ11で三次元移動機
構6を作動させて、ねじ測定子5を、上記最短距離の向
きに向けてからその向きのままで、図8に示すように、
進入方向へねじ山4aの2〜3ピッチ(P)分移動させ、
その移動の間に圧力−電圧変換器9が連続的に出力し
た、図9に示す如き、エア吹出口5aとねじ山4aとの間の
距離の変化に対応する電圧の変化をパーソナルコンピュ
ータ10で調べて、その電圧変化中の極大値Mを平均した
値を距離に変換することによりねじ山4aの頂点位置を求
めるとともに、その電圧変化中の極小値mを平均した値
を距離に変換することによりねじ山4aの谷底位置を求
め、これにより、図7(b)に示すねじ山4aの周方向の
A点でのねじ山4aの頂点位置と谷底位置とを求める。
In the next step 24, the controller 11 operates the three-dimensional moving mechanism 6 in response to a signal from the personal computer 10 to direct the screw probe 5 toward the direction of the shortest distance, and then, in that direction, As shown in FIG.
Move the thread 4a in the approach direction by 2 to 3 pitches (P),
The personal computer 10 changes the voltage corresponding to the change in the distance between the air outlet 5a and the screw thread 4a, which is continuously output by the pressure-voltage converter 9 during the movement, as shown in FIG. Finding the peak position of the screw thread 4a by converting the average value of the maximum values M during the voltage change into a distance, and converting the average value of the minimum values m during the voltage change into a distance. The bottom position of the thread 4a is obtained by the above, and the apex position and the bottom position of the thread 4a at the point A in the circumferential direction of the thread 4a shown in FIG.

【0021】次のステップ25では、パーソナルコンピュ
ータ10からの信号によりコントローラ11で三次元移動機
構6を作動させて、ねじ測定子5を180 °回転させるこ
とにより、エア吹出口5aを上記と反対の向き、すなわち
エア吹出口5aとねじ山4aとの間の距離が最長になる向き
に向け、続くステップ26では、ステップ24と同様にし
て、ねじ山4aの頂点位置を求めるとともにねじ山4aの谷
底位置を求め、これにより、図7(b)に示す、ねじ山
4aの周方向の、A点から180 °回ったB点でのねじ山4a
の頂点位置と谷底位置とを求める。ここで、上記A点と
B点とは、ねじ孔4の直径方向に互いに対向する。そこ
で、続くステップ27では、パーソナルコンピュータ10で
演算して、上記A点およびB点でのねじ山4aの頂点位置
間の距離である、図1に示すねじ孔4の内径dを求める
とともに、上記A点およびB点でのねじ山4aの谷底位置
間の距離である、図1に示すねじ孔4の谷径Dを求め
る。
In the next step 25, the controller 11 operates the three-dimensional moving mechanism 6 in response to a signal from the personal computer 10 to rotate the screw measuring element 5 by 180 °, thereby causing the air outlet 5a to move in the opposite direction. Direction, that is, in the direction in which the distance between the air outlet 5a and the screw thread 4a is the longest, in the following step 26, the top position of the screw thread 4a is determined and the root of the screw thread 4a is obtained in the same manner as in step 24. The position is calculated, and the screw thread shown in FIG.
Thread 4a at point B, which is 180 ° rotated from point A, in the circumferential direction of 4a
Find the vertex position and the valley bottom position of. Here, the points A and B face each other in the diameter direction of the screw hole 4. Therefore, in the following step 27, the personal computer 10 calculates and calculates the inner diameter d of the screw hole 4 shown in FIG. 1 which is the distance between the apex positions of the screw threads 4a at the points A and B. The root diameter D of the screw hole 4 shown in FIG. 1, which is the distance between the root positions of the thread 4a at the points A and B, is obtained.

【0022】次のステップ28では、パーソナルコンピュ
ータ10からの信号によりコントローラ11で三次元移動機
構6を作動させて、ねじ測定子5を、図10に示すよう
に、例えば、有効ねじ深さの設計値Ld よりも2ピッチ
分深い位置へ進入させた後、その位置から、例えば上記
設計値Ld よりも1ピッチ分浅い位置まで後退方向へ移
動させ、その移動の間に圧力−電圧変換器9が連続的に
出力した、図9に示す如き、エア吹出口5aとねじ山4aと
の間の距離の変化に対応する電圧の変化をパーソナルコ
ンピュータ10で調べて、エア吹出口5aとねじ山4aの谷底
との間の距離が先に谷径Dを求める基礎とした距離に対
し寸法公差に基づく所定範囲内に入る、すなわち、ねじ
山4aの高さが所定高さを維持する、エア吹出口5aの最大
進入深さを求め、その最大進入深さを有効ねじ深さLと
する。
In the next step 28, the controller 11 operates the three-dimensional moving mechanism 6 in response to a signal from the personal computer 10 so that the screw gauge 5 is designed, for example, as shown in FIG. After advancing to a position deeper than the value L d by 2 pitches, it is moved backward from that position to, for example, a position shallower than the design value L d by 1 pitch, and the pressure-voltage converter is moved during the movement. 9 continuously output, as shown in FIG. 9, the personal computer 10 examines the change in voltage corresponding to the change in the distance between the air outlet 5a and the screw thread 4a. The distance between the root of 4a and the bottom of the root falls within a predetermined range based on the dimensional tolerance with respect to the distance used as the basis for obtaining the root diameter D first, that is, the height of the screw thread 4a maintains the predetermined height. Find the maximum approach depth of exit 5a The depth and effective thread depth L.

【0023】そして最後のステップ29では、上記A点お
よびB点でのねじ山4aの頂点位置間もしくは谷底位置間
の中点を求める。かかる中点が、ねじ孔4の中心線Ch
の位置、すなわちねじ孔4の孔位置となる。
In the final step 29, the midpoint between the apex positions or the valley bottom positions of the thread 4a at the points A and B is obtained. The midpoint is the center line C h of the screw hole 4.
Position, that is, the hole position of the screw hole 4.

【0024】従って、この実施例の装置によれば、ワー
クのねじ孔4の、内径d、谷径D、有効ねじ深さLおよ
び孔位置を、エア吹出口5aとねじ山4aとの間の距離の変
化に基づき自動計測することができるので、それらの計
測を全て定量的に行うことができるとともに、その計測
に要する工数を削減することができる。またこの装置に
よれば、三次元測定機を用いず通常のNC工作機械を利
用して計測ができるので、ワーク加工ライン上での計測
を行うことができるとともに、計測時のワークのセット
に要する工数を削減することができる。
Therefore, according to the apparatus of this embodiment, the inner diameter d, the root diameter D, the effective thread depth L and the hole position of the screw hole 4 of the work are set between the air outlet 5a and the screw thread 4a. Since automatic measurement can be performed based on a change in distance, it is possible to perform all of these measurements quantitatively and reduce the number of man-hours required for the measurement. Further, according to this apparatus, since it is possible to perform measurement using a normal NC machine tool without using a three-dimensional measuring machine, it is possible to perform measurement on a work processing line and to set a work at the time of measurement. The man-hour can be reduced.

【0025】図11は、この発明の第2のねじ孔計測装置
の一実施例を示す構成図であり、図中図1に示すと同様
の部分は、それと同一の符号にて示す。すなわちこの実
施例の装置も、ワークのねじ孔4の各種寸法と孔位置と
を計測するためのものであって、エア吹出口5aを側面に
持つねじ測定子5と、そのねじ測定子5を三次元方向へ
任意の位置に移動させ得るとともにその中心線Cd 周り
に任意の角度に回転させ得る、ねじ測定子移動手段とし
ての、例えば通常のNC工作機械の工具移動機構からな
る三次元移動機構6と、工場のエアライン等の加圧エア
供給源7から供給される加圧エアを適当に調整してねじ
測定子5のエア吹出口5aへ供給する加圧エア調整回路8
と、その加圧エア調整回路8とエア吹出口5aとの間に介
挿され、エア吹出口5aへ供給される加圧エアの背圧の変
化を電圧の変化に変換して出力する、距離計測手段とし
ての圧力−電圧変換器9と、圧力−電圧変換器9の出力
電圧をデジタル値に変換してその値に基づきねじ孔の各
種寸法計測を行う、中心位置計測手段およびねじ寸法計
測手段としての通常のパーソナルコンピュータ(パソコ
ン)10と、そのパーソナルコンピュータ10からの信号に
基づき上記三次元移動機構6の作動を数値制御する、例
えば上記NC工作機械の、通常のマイクロコンピュータ
を持つコントローラ11と、を具えるとともに、さらに上
記ねじ測定子5と三次元移動機構6との間に、ねじ測定
子5がねじ山4aに接触したことを検知する、接触検出手
段としてのプローブ装置14を具えてなる。
FIG. 11 is a block diagram showing an embodiment of the second screw hole measuring device of the present invention. In the figure, the same parts as those shown in FIG. 1 are designated by the same reference numerals. That is, the apparatus of this embodiment is also for measuring various dimensions and hole positions of the screw hole 4 of the work, and includes the screw probe 5 having the air outlet 5a on the side surface and the screw probe 5. Three-dimensional movement, which is, for example, a tool moving mechanism of a normal NC machine tool, as a screw gauge moving means that can be moved to any position in the three-dimensional direction and can be rotated about the center line C d thereof at any angle. Pressurized air adjusting circuit 8 for appropriately adjusting the pressurized air supplied from the mechanism 6 and the pressurized air supply source 7 such as the factory air line and supplying the air to the air outlet 5a of the screw probe 5.
The distance between the compressed air adjusting circuit 8 and the air outlet 5a, which converts the change in back pressure of the compressed air supplied to the air outlet 5a into a change in voltage and outputs it. A pressure-voltage converter 9 as a measuring means, and a center position measuring means and a screw dimension measuring means for converting the output voltage of the pressure-voltage converter 9 into a digital value and measuring various dimensions of the screw hole based on the value. An ordinary personal computer (personal computer) 10, and a controller 11 for numerically controlling the operation of the three-dimensional moving mechanism 6 based on a signal from the personal computer 10, for example, a controller 11 of the NC machine tool having an ordinary microcomputer. And a probe device as contact detecting means for detecting that the screw probe 5 is in contact with the screw thread 4a between the screw probe 5 and the three-dimensional moving mechanism 6. Become comprises a 14.

【0026】ここで上記プローブ装置14は、上記三次元
移動機構6に装着され、ねじ測定子5がねじ山4aに接触
して該装置14に対し相対的に平行移動あるいは傾動する
ことを許容するとともに、その接触がなくなればねじ測
定子5を該装置14に対し所定の原位置に復帰させるよう
に、既知の支持機構によって上記ねじ測定子5を弾性的
に支持し、そして、ねじ測定子5がねじ山4aに接触した
ことを、その支持機構の作動を検出する圧電素子等によ
り検知し、あるいはねじ測定子5とねじ山4aとの電気的
導通から検知して、パーソナルコンピュータ10にその旨
の信号を出力する。また、ねじ測定子5は回転するもの
の、その回転角は最大でも360 度であるので、ねじ測定
子5のエア吹出口5aと上記回路9bとの間は、ねじ測定子
5の360度の回転を許容しつつエア回路を接続する、適
当な長さの図示しないエア用ホースによって接続されて
いる。
Here, the probe device 14 is mounted on the three-dimensional moving mechanism 6 and allows the thread measuring element 5 to come into contact with the screw thread 4a and move in parallel or tilt relative to the device 14. At the same time, the screw measuring element 5 is elastically supported by a known supporting mechanism so as to return the screw measuring element 5 to a predetermined original position with respect to the device 14 when the contact is eliminated, and the screw measuring element 5 The contact with the screw thread 4a is detected by a piezoelectric element or the like that detects the operation of the support mechanism, or is detected from the electrical connection between the screw measuring element 5 and the screw thread 4a, and the personal computer 10 is notified accordingly. The signal of is output. Further, although the screw gauge 5 rotates, its rotation angle is 360 degrees at the maximum. Therefore, the screw gauge 5 rotates 360 degrees between the air outlet 5a of the screw gauge 5 and the circuit 9b. Is connected by an air hose (not shown) having an appropriate length for connecting the air circuit.

【0027】かかる装置を用いて、ワークの、一つある
いは複数のねじ孔4の計測を行うに際しては、パーソナ
ルコンピュータ10にあらかじめ入力した、図12に示す手
順を実行する。すなわちここでは、ワークを所定位置に
位置させた後、先ず、ステップ31で、例えばあらかじめ
与えたデータに基づくパーソナルコンピュータ10からの
信号により、コントローラ11で三次元移動機構6を作動
させて、ねじ測定子5を、ねじ孔4に対向し、そのねじ
孔4の中心線Ch とねじ測定子5の中心線Cdとが概略
一致する位置に移動させ、その位置から、図13(a)に
示すように、ねじ測定子5を前進させて、ねじ孔4内の
ねじ山4aと干渉させずにねじ孔4内へ、その入口から若
干入った位置まで挿入する。
When measuring one or a plurality of screw holes 4 of a work using such an apparatus, the procedure shown in FIG. That is, here, after the work is positioned at a predetermined position, first, in step 31, for example, a signal from the personal computer 10 based on previously given data is used to operate the three-dimensional moving mechanism 6 by the controller 11 to measure the screw. The child 5 is moved to a position facing the screw hole 4 and the center line C h of the screw hole 4 and the center line C d of the screw measuring element 5 are substantially aligned, and from that position, as shown in FIG. As shown, the screw probe 5 is moved forward and inserted into the screw hole 4 without interfering with the screw thread 4a in the screw hole 4 to a position slightly inserted from the inlet.

【0028】次いでここではステップ32で、パーソナル
コンピュータ10からの信号により、コントローラ11で三
次元移動機構6を作動させて、ねじ測定子5を、図13
(b)に示す如く、ねじ孔4内で、ねじ孔の中心位置を
特定し得る複数方向、すなわちここではそのねじ孔の軸
線に直角で、かつ互いに直角な四方向へ移動させ、その
それぞれの移動中、プローブ装置14からの信号の有無を
パーソナルコンピュータ10で監視して、ねじ測定子5が
ねじ山4aと接触したことを示す信号をプローブ装置14が
出力したら直ちにねじ測定子5の移動を停止させ、パー
ソナルコンピュータ10で、応答時間分の移動を補正した
ねじ測定子5のねじ山4aとの接触時の位置を上記四方向
についてそれぞれ求めて、それらの位置にあるねじ測定
子5の外周面が内接する円の中心位置を演算することに
より、ねじ孔4の中心位置を求め、それが所定公差内に
あるか否かを調べて、中心位置の合否判断を行う。
Then, in step 32, the controller 11 operates the three-dimensional moving mechanism 6 in response to a signal from the personal computer 10 to move the screw head 5 to the position shown in FIG.
As shown in (b), the screw hole 4 is moved in a plurality of directions in which the center position of the screw hole can be specified, that is, in the four directions perpendicular to the axis of the screw hole and at right angles to each other. During the movement, the presence or absence of a signal from the probe device 14 is monitored by the personal computer 10, and as soon as the probe device 14 outputs a signal indicating that the screw measuring element 5 has come into contact with the screw thread 4a, the movement of the screw measuring element 5 is stopped. The position of each of the screw gauges 5 which is stopped and corrected for the movement of the response time at the time of contact with the screw thread 4a is obtained in each of the above four directions, and the outer circumference of the screw gauges 5 at those positions is determined. By calculating the center position of the circle in which the surface is inscribed, the center position of the screw hole 4 is obtained, and it is checked whether or not the center position is within a predetermined tolerance to determine whether the center position is acceptable or not.

【0029】次いでここではステップ33で、パーソナル
コンピュータ10からの信号により、コントローラ11で三
次元移動機構6を作動させて、ねじ測定子5を、図14
(a)および(b)に示す如く、一旦上記ねじ孔中心位
置に移動させた後、続くステップ34で、パーソナルコン
ピュータ10からの信号により、コントローラ11で三次元
移動機構6を作動させて、ねじ測定子5を、図15(b)
に示す如く、そのエア吹出口5aが向いているエア吹出し
方向へ、当該ねじ孔4の内径に対応してそのエア吹出口
5aとねじ山4aとが所定距離まで接近するまで移動させ、
その移動中、ねじ測定子5の暴走を防止するため、エア
吹出口5aからエアを吹き出させておいて、パーソナルコ
ンピュータ10で、圧力−電圧変換器9がエア圧から変換
した電圧を監視する。
Then, in step 33, the controller 11 operates the three-dimensional moving mechanism 6 in response to a signal from the personal computer 10 to move the screw head 5 to the position shown in FIG.
As shown in (a) and (b), after once moving to the screw hole center position, in step 34, the controller 11 operates the three-dimensional moving mechanism 6 in response to a signal from the personal computer 10 to move the screw. Fig. 15 (b)
As shown in FIG. 5, the air outlet 5a is directed in the air outlet direction corresponding to the inner diameter of the screw hole 4.
Move until 5a and the screw thread 4a come close to a predetermined distance,
During the movement, in order to prevent the screw probe 5 from running out of control, air is blown from the air outlet 5a and the personal computer 10 monitors the voltage converted from the air pressure by the pressure-voltage converter 9.

【0030】そして、上記移動中、ねじ測定子5のエア
吹出口5aがねじ山4aに接近し過ぎてエア圧が許容値を越
えた場合には、ステップ35からステップ36へ進み、ねじ
測定子5の移動を停止させて、接近し過ぎの原因を調査
し、その原因を除去した後、ねじ測定子5を再びねじ孔
中心位置に戻しステップ34へ復帰する。これにより、例
えば測定するねじ孔内径の設定ミスにより実際のねじ孔
の内径が設定した内径よりも小さかった場合や、ねじ山
に異物が付着していたりした場合に、上記移動によって
過度に干渉が生じてねじ測定子5やねじ山4aが破壊され
たりするのを有効に防止することができる。なお、ねじ
孔内径のチェックのみであれば、上記ステップ32で求め
たねじ測定子5のねじ山4aとの接触時の位置からねじ孔
内径を求めて行うこともできる。
During the above movement, if the air outlet 5a of the thread measuring element 5 comes too close to the thread 4a and the air pressure exceeds the allowable value, the process proceeds from step 35 to step 36, and the thread measuring element is moved. After stopping the movement of 5 and investigating the cause of the excessive approach and removing the cause, the screw probe 5 is returned to the center position of the screw hole again and the process returns to step 34. With this, for example, when the inner diameter of the actual screw hole is smaller than the set inner diameter due to a mistake in setting the inner diameter of the screw hole to be measured, or when foreign matter is attached to the screw thread, the movement causes excessive interference. It is possible to effectively prevent the screw stylus 5 and the screw thread 4a from being broken. If only the screw hole inner diameter is checked, the screw hole inner diameter can be calculated from the position at the time of contact with the screw thread 4a of the screw measuring element 5 obtained in step 32.

【0031】この一方、上記移動中、エア圧が許容値を
越えなかった場合には、ステップ35からステップ37へ進
み、パーソナルコンピュータ10からの信号により、コン
トローラ11で三次元移動機構6を作動させて、ねじ測定
子5を、図15(a)中矢印で示す如く、タップ深さ方向
すなわち孔底方向へ移動させ、その移動中に、エア吹出
口5aからエアを吹き出させておいて、パーソナルコンピ
ュータ10で、圧力−電圧変換器9がエア圧から変換した
電圧を取り込み、その電圧の変化状態を記録する。これ
により一回目のねじ孔測定が行われ、次いでここではス
テップ38で、パーソナルコンピュータ10からの信号によ
り、コントローラ11で三次元移動機構6を作動させて、
ねじ測定子5を、上記ねじ孔中心位置に戻し、その位置
で中心線Cd 周りに180 度反転させる。
On the other hand, when the air pressure does not exceed the allowable value during the above movement, the process proceeds from step 35 to step 37, and the controller 11 operates the three-dimensional movement mechanism 6 by the signal from the personal computer 10. 15A, the screw probe 5 is moved in the tap depth direction, that is, the hole bottom direction, and air is blown out from the air outlet 5a during the movement, and In the computer 10, the pressure-voltage converter 9 takes in the voltage converted from the air pressure and records the change state of the voltage. As a result, the first screw hole measurement is performed, and then, in step 38, the controller 11 operates the three-dimensional moving mechanism 6 by a signal from the personal computer 10,
The screw probe 5 is returned to the center position of the screw hole, and at that position, it is inverted 180 degrees around the center line C d .

【0032】そしてその後は、図16(b)に示す如く、
上記ステップ34〜36と同様にしてねじ測定子5の暴走を
防止しつつねじ測定子5をエア吹出し方向へ、当該ねじ
孔4の内径に対応してそのエア吹出口5aとねじ山4aとが
所定距離まで接近するまで移動させ、次いでステップ42
で、上記ステップ37と同様にしてねじ測定子5を、図16
(a)中矢印で示す如く、ねじ孔入口方向へ移動させ、
その移動中に、エア吹出口5aからエアを吹き出させてお
いて、パーソナルコンピュータ10で、圧力−電圧変換器
9がエア圧から変換した電圧を取り込み、その電圧の変
化状態を記録する。これにより二回目のねじ孔測定が行
われ、次いでここでは、ステップ43で、パーソナルコン
ピュータ10からの信号により、コントローラ11で三次元
移動機構6を作動させて、ねじ測定子5をねじ孔4の外
へ移動させるとともに、上記二回のねじ孔測定で得た電
圧の変化状態のデータをパーソナルコンピュータ10で、
別途求めたねじ山とエア吹出口5aとの距離と電圧との関
係を示すグラフあるいは関係表と比較して、上記二回の
測定データの例えば平均値に基づき、そのねじ孔4の実
際の有効径および有効ねじ深さを求め、それらを設定値
と比較して、ねじ孔4の寸法の合否判定を行う。
After that, as shown in FIG. 16 (b),
In the same manner as in steps 34 to 36 described above, the screw probe 5 is prevented from running away while the screw probe 5 is moved in the air blowing direction so that the air outlet 5a and the screw thread 4a corresponding to the inner diameter of the screw hole 4 are formed. Move until approaching a predetermined distance, then step 42
Then, in the same manner as in step 37 above, set the screw probe 5 in FIG.
(A) As shown by the middle arrow, move it toward the screw hole inlet,
Air is blown out from the air outlet 5a during the movement, and the personal computer 10 takes in the voltage converted from the air pressure by the pressure-voltage converter 9 and records the change state of the voltage. As a result, the second screw hole measurement is performed, and then, in step 43, the controller 11 operates the three-dimensional movement mechanism 6 in response to the signal from the personal computer 10 to move the screw contact 5 to the screw hole 4 While moving to the outside, the data of the change state of the voltage obtained by the above-mentioned two screw hole measurements is personal computer 10,
Based on, for example, the average value of the above-mentioned two measurement data, the actual effectiveness of the screw hole 4 is compared with a graph or a relationship table showing the relationship between the distance between the screw thread and the air outlet 5a and the voltage. The diameter and the effective screw depth are obtained, and they are compared with the set value to judge whether the dimensions of the screw hole 4 are acceptable or not.

【0033】従って、この実施例の装置によっても、ワ
ークのねじ孔4の、有効径、有効ねじ深さおよび孔位置
を、エア吹出口5aとねじ山4aとの間の距離の変化に基づ
き自動計測することができることから、それらの計測を
全て定量的に行うことができるとともに、その計測に要
する工数を削減することができ、また、三次元測定機を
用いず通常のNC工作機械を利用して計測ができること
から、ワーク加工ライン上での計測を行うことができる
とともに、計測時のワークのセットに要する工数を削減
することができる。
Therefore, also by the device of this embodiment, the effective diameter, the effective screw depth and the hole position of the screw hole 4 of the workpiece are automatically determined based on the change in the distance between the air outlet 5a and the screw thread 4a. Since it is possible to measure, it is possible to perform all of these measurements quantitatively, reduce the number of man-hours required for the measurement, and use a normal NC machine tool without using a coordinate measuring machine. Since it is possible to perform measurement on the workpiece processing line, it is possible to reduce the number of man-hours required to set the workpiece at the time of measurement.

【0034】さらに図17は、多軸切削工具を持つ加工ヘ
ッドを複数取り付け得るNCタレットマシンを用いて複
数のタップ孔の同時計測を行い得るようにした、この発
明の第1の装置の他の実施例としての多軸タップ孔計測
装置を示しており、図中先に述べた実施例と同様の部分
はそれと同一の符号にて示す。
Further, FIG. 17 shows another embodiment of the first device of the present invention, which is capable of simultaneously measuring a plurality of tap holes using an NC turret machine capable of mounting a plurality of machining heads having a multi-axis cutting tool. The multi-axis tap hole measuring device is shown as an embodiment, and the same parts as those in the above-mentioned embodiment are designated by the same reference numerals.

【0035】この装置の基幹部となるNCタレットマシ
ンは、タレットヘッド49と、タレットヘッド割り出し駆
動ユニット50と、フィードユニット51とを具えてなり、
ここで、タレットヘッド49は、最大四つの加工ヘッドを
取り付け可能なヘッド取り付け面を有し、割り出し回動
されて、図17では左方の、加工のための所定割り出し位
置にそれらの加工ヘッドの一つを位置させるとともに、
その割り出し位置に位置させた加工ヘッドに装着された
複数本の工具を同時に回転駆動し、またタレットヘッド
割り出し駆動ユニット50は、そのタレットヘッド49を上
記の如く割り出し回動させ、そしてフィードユニット51
は、そのタレットヘッド割り出し駆動ユニット50をタレ
ットヘッド49と共に互いに直角なX,Y,Z軸の方向へ
移動させて、上記所定割り出し位置に位置した加工ヘッ
ドの工具の位置決めと切削送りとを行う。
The NC turret machine, which is the main part of this apparatus, comprises a turret head 49, a turret head indexing drive unit 50, and a feed unit 51.
Here, the turret head 49 has a head mounting surface to which a maximum of four processing heads can be mounted, and is indexed and rotated so that the machining heads are moved to predetermined indexing positions for processing on the left side in FIG. With one positioned,
A plurality of tools mounted on the machining head located at the indexing position are simultaneously driven to rotate, and the turret head indexing drive unit 50 causes the turret head 49 to index and rotate as described above, and the feed unit 51.
Moves the turret head indexing drive unit 50 together with the turret head 49 in the directions of the X, Y and Z axes which are perpendicular to each other, and positions the tool of the machining head located at the predetermined indexing position and performs cutting feed.

【0036】この実施例では、かかるNCタレットマシ
ンを用いて、複数のタップ孔の同時加工と、それらの孔
内の洗浄およびエアブローと、それらのタップ孔の検査
とを同一の工程で行うため、上記タレットヘッド49のヘ
ッド取り付け面に、ドリルヘッド52と、タップヘッド53
と、洗浄・エアブローヘッド54との三種類の加工ヘッド
が取り付けられるとともに、それらの加工ヘッドと同様
の回転伝達構造を持つ測定ヘッド55が取り付けられてい
る。
In this embodiment, since the NC turret machine is used to perform simultaneous processing of a plurality of tap holes, cleaning and air blowing of the holes, and inspection of the tap holes in the same step, On the head mounting surface of the turret head 49, a drill head 52 and a tap head 53
And a cleaning / air blow head 54, three types of processing heads are attached, and a measurement head 55 having a rotation transmission structure similar to those processing heads is attached.

【0037】図18は、上記測定ヘッド55の内部構造を示
すとともにこの実施例の装置の制御系を示す説明図であ
り、測定ヘッド55のヘッド本体は、フロントカバー56、
センターケース57およびリヤケース58にて構成されてい
て、複数本のスピンドル59と一本の被駆動軸60とを回転
自在に支持しており、それらのスピンドル59は被駆動軸
60に、歯車伝動機構61を介して駆動結合し、その被駆動
軸60は、測定ヘッド55が上記所定割り出し位置に位置す
ると、主軸カップリング62を介し、タレットヘッド49内
の主軸駆動モータ63によって回転駆動される主軸64に駆
動結合される。なお、その主軸駆動モータ63は、パーソ
ナルコンピュータ10に接続されたコントローラ11によっ
てその作動を制御され、コントローラ11は、上記フィー
ドユニット51のX軸モータ、Y軸モータおよびZ軸モー
タの作動も制御する。
FIG. 18 is an explanatory view showing the internal structure of the measuring head 55 and the control system of the apparatus of this embodiment. The head body of the measuring head 55 has a front cover 56,
It is composed of a center case 57 and a rear case 58, and rotatably supports a plurality of spindles 59 and a driven shaft 60. The spindles 59 are driven shafts.
60, the driving shaft 60 is drivingly coupled via a gear transmission mechanism 61, and when the measuring head 55 is located at the predetermined indexing position, the driven shaft 60 is driven by a spindle driving motor 63 in a turret head 49 via a spindle coupling 62. It is drivingly connected to a main shaft 64 which is rotationally driven. The operation of the spindle drive motor 63 is controlled by the controller 11 connected to the personal computer 10, and the controller 11 also controls the operations of the X-axis motor, the Y-axis motor and the Z-axis motor of the feed unit 51. .

【0038】上記各スピンドル59内には、ロッド65が進
退移動可能に、かつスピンドル59と一体的に回転するよ
うに収容されており、各ロッド65は、スプリング66によ
り前進方向へ常時付勢されるとともに、キャップ67によ
りつスピンドル59内からの抜け出しを防止され、さらに
その内部に先端まで至るエア通路が形成されている。そ
してそのロッド65の先端部には、図19に示すように、エ
ア吹出口5aを先端部に横向きに持つねじ測定子5が装着
されており、各ねじ測定子5へスピンドル59内のロッド
65を介し計測用の加圧エアを個別に供給するため測定ヘ
ッド55のセンターケース57内には、ロータリージョイン
ト(ロータリー式カプラ)機構68が形成され、そのロー
タリージョイント機構68への加圧エア調整回路8からの
加圧エアの供給は、カップリング装置69を介して行うこ
とができる。
A rod 65 is housed in each spindle 59 such that the rod 65 can move forward and backward and rotate integrally with the spindle 59. Each rod 65 is constantly urged by a spring 66 in the forward direction. At the same time, the cap 67 prevents the spindle 59 from slipping out, and an air passage leading to the tip is formed therein. As shown in FIG. 19, the tip end of the rod 65 is provided with a screw gauge 5 having an air outlet 5a in the lateral direction at the tip, and the rod inside the spindle 59 is attached to each screw gauge 5.
A rotary joint (rotary coupler) mechanism 68 is formed in the center case 57 of the measuring head 55 for individually supplying pressurized air for measurement via 65, and the pressurized air is adjusted to the rotary joint mechanism 68. The supply of the pressurized air from the circuit 8 can be performed via the coupling device 69.

【0039】このカップリング装置69は、図20および図
21に示すように、各加工ヘッド52〜54および測定ヘッド
55の側面にそれぞれ固定されたカップリングマニホール
ド70と、タレットヘッド割り出し駆動ユニット50に進退
移動可能に設けられてシリンダ71により進退駆動される
ニップルマニホールド72とを具え、そのニップルマニホ
ールド72は前進時に、上記所定割り出し位置に位置した
いずれかのヘッド52〜55のカップリングマニホールド70
に嵌合することができ、ここで、各カップリングマニホ
ールド70には、それに対応するヘッドで必要とする流
体、すなわちドリルヘッド52およびタップヘッド53では
冷却用切削油およびエアカーテン用エア、洗浄・エアブ
ローヘッド54では洗浄用切削油およびエアブロー用エ
ア、そして測定ヘッド55では計測用加圧エアの供給のた
めのポートだけが設けられ、一方、ニップルマニホール
ド72には、それに嵌合した各ヘッド52〜55へそれぞれの
流体を供給するために、エアカーテンポート72a, 切削
油ポート72b, エアブローポート72c および計測用加圧
エアポート72d がそれぞれ設けられており、それらのポ
ート72a 〜72d は、ホース73を介して上記加圧エア調整
回路8や図示しない切削油供給源等に接続されている。
This coupling device 69 is shown in FIG. 20 and FIG.
As shown in 21, each machining head 52-54 and measuring head
55 includes a coupling manifold 70 fixed to each side surface of the 55, and a nipple manifold 72 that is provided in the turret head indexing drive unit 50 so as to be able to move forward and backward and is driven forward and backward by a cylinder 71. The coupling manifold 70 of one of the heads 52 to 55 located at the predetermined indexing position
Where each coupling manifold 70 has a fluid required by the corresponding head, namely, the cooling fluid for the drill head 52 and the tap head 53, the cooling oil and the air curtain air, the cleaning / The air blow head 54 is provided with only ports for supplying cleaning oil and air blow air for cleaning, and the measuring head 55 is provided with a port for supplying pressurized air for measurement, while the nipple manifold 72 is provided with each of the heads 52 to 52 fitted to it. An air curtain port 72a, a cutting oil port 72b, an air blow port 72c and a measurement pressurizing air port 72d are provided to supply the respective fluids to the 55, and these ports 72a to 72d are connected via a hose 73. Is connected to the pressurized air adjusting circuit 8 and a cutting oil supply source (not shown).

【0040】かかる装置によれば、前記第1の装置の先
に記した実施例についての図3に示すフローチャーと同
様の手順によって、図19に示すように、水平方向へ延在
するタップ孔4の中心位置、径方向寸法および有効ねじ
深さの計測を、複数のタップ孔4について同時に行い得
て、それらのタップ孔の計測時間を、一本づつ計測する
場合に比べて大幅に削減することができ、またタップ孔
の加工・エア洗浄と検査とを同一の工程で行うことがで
きるので、加工ステーション毎の品質管理を行い得て、
月産10,000台程度の多量生産ラインにおいて特に有効な
生産システムを構築することができる。
According to such an apparatus, as shown in FIG. 19, a tap hole extending in the horizontal direction is obtained by the same procedure as that of the flow chart shown in FIG. 3 of the above-described embodiment of the first apparatus. The center position, the radial dimension, and the effective screw depth of 4 can be measured simultaneously for a plurality of tap holes 4, and the measurement time of these tap holes is greatly reduced compared to the case of measuring one by one. Moreover, since the tap hole processing, air cleaning and inspection can be performed in the same process, it is possible to perform quality control for each processing station,
It is possible to build a particularly effective production system on a high-volume production line with a monthly production of about 10,000 units.

【0041】なお、上記ロッド65をスピンドル59内に進
退移動可能に収容するとともにスプリング66で常時付勢
したのは、計測するタップ孔に破損した切削工具や切粉
等の異物が詰まっていたり、タップ孔の加工位置に大幅
なズレが生じていたりする加工不良があって、送り移動
中のねじ測定子5がそれらの異物や孔の周辺部に当接し
た場合に、ねじ測定子5が後退し得るようにするためで
あり、これによりねじ測定子5は、上記の如き加工不良
から保護されている。そしてここではさらに、それらの
加工不良を検出するため、各ロッド65の後端部に検出用
ドック74が設けられるとともに、測定ヘッド55のヘッド
本体に、各ねじ測定子5の後退によるロッド65ひいては
検出用ドック74の後退を検出するセンサ75が固定されて
おり、それらのセンサ75が出力する後退信号は、無接点
式多点電送器76を介して上記パーソナルコンピュータ10
に入力される。従ってこの装置によれば、切削工具の破
損や切粉等によるタップ孔の詰まり、大幅な孔位置のズ
レ等の加工不良を、それらからねじ測定子5を保護しつ
つ、自動的に検出することもできる。
The rod 65 is housed in the spindle 59 so as to be movable back and forth and is constantly urged by the spring 66 because the tap hole to be measured is clogged with a broken cutting tool or foreign matter such as cutting chips. When there is a processing defect such as a large deviation in the processing position of the tap hole, and the screw probe 5 in the feed movement comes into contact with those foreign matter and the peripheral portion of the hole, the screw probe 5 retracts. Therefore, the screw probe 5 is protected from the above-mentioned processing defects. Further, here, in order to detect these machining defects, a detection dock 74 is provided at the rear end portion of each rod 65, and the head main body of the measuring head 55 is provided with the rod 65 and thus the rod 65 due to the retreat of each screw gauge 5. Sensors 75 that detect the backward movement of the detection dock 74 are fixed, and the backward signals output by the sensors 75 are sent to the personal computer 10 via the contactless multipoint transmitter 76.
Entered in. Therefore, according to this device, it is possible to automatically detect a machining defect such as a breakage of a cutting tool, a clogging of a tap hole due to cutting chips, or a large deviation in hole position while protecting the screw probe 5 from them. You can also

【0042】図22は、生産設備の検査工程に適用した、
この発明の第1および第2の装置の応用例を示すもので
あり、ここではねじ測定子5が、後述するコンタリング
送りを行い得るNCマシン81に、前記第1の装置に対応
して直接的に、あるいは前記第2の装置に対応してワー
クとの接触を検知し得るようなセンサを介して装着され
て、図23(a)に示す鋳造粗材の孔内の鋳物巣や割れや
異物、同図(b)に示すスプラインやセレーションやス
ナップリング溝等の孔形状、同図(c)に示すベアリン
グのローラやボールの欠品、同図(d)に示すバルブシ
ートやベアリングアウタレースの着座不良、同図(e)
に示す交差孔のバリ等の検査に用いられる。
FIG. 22 is applied to the inspection process of the production equipment,
1 shows an application example of the first and second devices of the present invention, in which a screw head 5 is directly connected to an NC machine 81, which can perform contouring feed described later, corresponding to the first device. Of the casting rough material shown in FIG. 23 (a) by being mounted by a sensor capable of detecting contact with the workpiece corresponding to the second device. Foreign matter, hole shapes such as splines, serrations, and snap ring grooves shown in FIG. 2 (b), missing parts of bearing rollers and balls shown in FIG. 2 (c), valve seats and bearing outer races shown in FIG. 2 (d). Seating failure, same figure (e)
It is used for inspection of burrs and the like in the cross holes shown in.

【0043】具体的には、NCマシン81の所定位置に検
査対象ワーク82が位置決め固定された後、図22中に仮想
線で示すとともに図24に示すように、ねじ測定子5が移
動されてその検査対象ワーク82の孔82a 内に挿入され、
その孔82a 内でねじ測定子5がコンタリング送りされ
る。すなわちねじ測定子5は、図24中実線の矢印で示す
如く、それ自身の中心線Cd 周りに自転すると同時に、
図24中破線の矢印で示す如く、孔82a の中心線Ch 周り
に公転しつつ前方へ進んで、そのエア吹出口5aをあたか
もねじ山をなぞらせるように常に孔82a の内壁面に対向
させつつ好ましくは1〜2mm程度のピッチで螺旋状に移
動させる。かかる方法によれば、ねじ測定子5で、孔82
a の内側を隈なく走査することができるので、例えばそ
こに巣や割れや異物等があれば、それらを図25に示すよ
うに計測用加圧エアの背圧の変化として自動的に検出す
ることができ、しかもそれら巣や割れや異物等の大きさ
も検出することができ、また上述したスプラインやセレ
ーション、スナップリング溝等の孔形状、ベアリングの
ローラやボールの欠品、バルブシートやベアリングアウ
タレースの着座不良、交差孔のバリ等も、自動的にかつ
容易に検出することができる。
Specifically, after the workpiece 82 to be inspected is positioned and fixed at a predetermined position of the NC machine 81, the screw gauge 5 is moved as shown in phantom in FIG. 22 and as shown in FIG. It is inserted into the hole 82a of the inspection target work 82,
The screw probe 5 is contour-fed in the hole 82a. That is, the screw probe 5 rotates about its own center line C d at the same time as shown by the solid arrow in FIG.
As indicated by arrows in broken line in FIG. 24, proceed forward while revolving the center line C h around the hole 82a, facing the air-blowing outlet 5a though the inner wall surface of the always-hole 82a so as to traced threads While moving, it is preferably moved spirally at a pitch of about 1 to 2 mm. According to this method, the screw probe 5 has holes 82.
Since it is possible to scan the inside of a thoroughly, for example, if there are nests, cracks, foreign matter, etc., they are automatically detected as changes in the back pressure of the pressurized air for measurement as shown in Fig. 25. In addition, it is possible to detect the size of such burrows, cracks, foreign substances, etc., and also the above-mentioned hole shapes such as splines, serrations, snap ring grooves, missing parts of bearing rollers and balls, valve seats and bearing outer parts. Bad seating in races, burrs in cross holes, etc. can be automatically and easily detected.

【0044】なお、好ましくはエア吹出口5aの内径を1
〜2mmとし、孔82a の内壁面とエア吹出口5aとの隙間を
0.1 〜0.2mm とし、加圧エアの圧力を0.2 〜0.5kg/cm2
とすれば、巣や割れや異物等を10μ程度の高い感度で検
出することができる。
The inner diameter of the air outlet 5a is preferably 1
~ 2 mm, and the gap between the inner wall surface of the hole 82a and the air outlet 5a
0.1 to 0.2 mm and pressurizing air pressure 0.2 to 0.5 kg / cm 2
Then, a nest, a crack, a foreign matter, or the like can be detected with high sensitivity of about 10 μ.

【0045】以上、図示例に基づき説明したが、この発
明は上述の例に限定されるものでなく、例えば、図3中
のステップ23で、最小電圧を示す向きすなわち距離が最
長になる向きを捜しても良く、またステップ29での孔位
置を求める処理を、ステップ26までの手順でねじ山4aの
周方向に互いに対向するA点およびB点でのねじ山4aの
頂点位置もしくは谷底位置が求まった後、ステップ27や
ステップ28よりも先に行っても良い。そして、上記図示
例ではねじ測定子をその中心線が垂直方向または水平方
向へ延在する姿勢に配置して上向きのまたは横向きのね
じ孔の計測を行っているが、ねじ測定子をその中心線が
斜め方向に延在する姿勢に配置して、斜め向きのねじ孔
の計測を行っても良い。
Although the present invention has been described above based on the illustrated example, the present invention is not limited to the above example. For example, in step 23 in FIG. The process of obtaining the hole position in step 29 may be performed by the steps up to step 26 in which the apex position or the valley bottom position of the screw thread 4a at the points A and B facing each other in the circumferential direction of the screw thread 4a. After obtaining, you may go ahead of step 27 and step 28. In the illustrated example, the screw gauge is arranged in a posture in which the center line extends in the vertical direction or the horizontal direction to measure the upward or sideways screw hole. May be arranged in a posture that extends in an oblique direction, and the measurement of the screw holes in an oblique direction may be performed.

【0046】[0046]

【発明の効果】かくしてこの発明のねじ孔計測装置によ
れば、ワークのねじ孔の径方向寸法、有効ねじ深さおよ
び孔位置を、エア吹出口と前記ねじ山との間の距離の変
化に基づき、あるいはそれと、ねじ山と接触したねじ測
定子の位置とに基づき、自動計測することができるの
で、それらの計測を全て定量的に行い得るとともにその
計測に要する工数を削減することができる。また、この
装置によれば、三次元測定機を用いずに計測ができるの
で、ライン上での計測を行い得るとともに計測時のワー
クのセットに要する工数を削減することができる。
As described above, according to the screw hole measuring device of the present invention, the radial dimension of the screw hole of the workpiece, the effective screw depth and the hole position are adjusted to the change in the distance between the air outlet and the screw thread. Since it is possible to perform automatic measurement on the basis of this, or on the basis of this, and the position of the screw probe contacting the thread, it is possible to perform all of these measurements quantitatively and reduce the man-hours required for the measurement. Further, according to this apparatus, since the measurement can be performed without using the coordinate measuring machine, it is possible to perform the measurement on the line and reduce the man-hour required for setting the work at the time of measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1のねじ孔計測装置の一実施例を
示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a first screw hole measuring device of the present invention.

【図2】上記実施例の装置で用いる加圧エア調整回路と
圧力−電圧変換回路との具体的構成を例示する構成図で
ある。
FIG. 2 is a configuration diagram illustrating a specific configuration of a pressurized air adjustment circuit and a pressure-voltage conversion circuit used in the device of the above embodiment.

【図3】上記実施例の装置によるねじ孔計測の手順を示
すフローチャートである。
FIG. 3 is a flowchart showing a procedure for measuring a screw hole by the apparatus of the above-described embodiment.

【図4】上記実施例の装置でねじ測定子をねじ孔に対向
する位置に移動させる方法の一例を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of a method of moving the screw gauge to a position facing a screw hole in the apparatus of the above-described embodiment.

【図5】上記実施例の装置でねじ測定子をねじ孔に対向
する位置に移動させる方法の他の一例を示す説明図であ
る。
FIG. 5 is an explanatory view showing another example of the method of moving the screw gauge to the position facing the screw hole in the apparatus of the above-mentioned embodiment.

【図6】上記実施例の装置でねじ測定子をねじ孔に挿入
する際の異物検出方法の一例を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of a foreign matter detecting method when the screw probe is inserted into the screw hole in the apparatus of the above-described embodiment.

【図7】(a)は、上記実施例の装置によりねじ測定子
をねじ孔内で進入させつつ一回転させる方法を示す説明
図であり、(b)は、その間に求まった距離に基づきそ
の距離が最短になる向きおよびねじ孔位置を調べる方法
を示す説明図である。
FIG. 7 (a) is an explanatory view showing a method of rotating the screw stylus in the screw hole for one rotation by the apparatus of the above-described embodiment, and FIG. 7 (b) shows the method based on the distance obtained during the rotation. It is explanatory drawing which shows the method of checking the direction and screw hole position where distance becomes the shortest.

【図8】上記実施例の装置によりねじ山の頂点と谷底の
位置を求める方法を示す説明図である。
FIG. 8 is an explanatory diagram showing a method for obtaining the positions of the apex and the root of a screw thread by the apparatus of the above-described embodiment.

【図9】上記実施例の装置によりねじ測定子をねじ孔内
の入口から孔底付近まで進入させた場合に圧力−電圧変
換器が出力する電圧の変化状態を示す特性図である。
FIG. 9 is a characteristic diagram showing a change state of the voltage output from the pressure-voltage converter when the screw probe is made to enter from the inlet of the screw hole to the vicinity of the hole bottom by the device of the above-described embodiment.

【図10】上記実施例の装置によりねじ孔の有効ねじ深
さを求める方法を示す説明図である。
FIG. 10 is an explanatory diagram showing a method for obtaining an effective screw depth of a screw hole by the device of the above embodiment.

【図11】この発明の第2のねじ孔計測装置の一実施例
を示す構成図である。
FIG. 11 is a configuration diagram showing an embodiment of a second screw hole measuring device of the present invention.

【図12】上記実施例の装置によるねじ孔計測の手順を
示すフローチャートである。
FIG. 12 is a flowchart showing a procedure for measuring a screw hole by the apparatus of the above-described embodiment.

【図13】(a),(b)は、上記実施例の装置による
ねじ孔の中心位置の計測方法を示す断面図および正面図
である。
13 (a) and 13 (b) are a sectional view and a front view showing a method for measuring the center position of a screw hole by the device of the above-described embodiment.

【図14】(a),(b)は、上記実施例の装置の、ね
じ孔寸法の計測開始状態を示す断面図および正面図であ
る。
14 (a) and 14 (b) are a cross-sectional view and a front view showing a measurement start state of a screw hole dimension of the apparatus of the above-described embodiment.

【図15】(a),(b)は、上記実施例の装置の、ね
じ孔寸法の一回目の計測中の状態を示す断面図および正
面図である。
15 (a) and 15 (b) are a cross-sectional view and a front view showing the state of the device of the above-described embodiment during the first measurement of the screw hole size.

【図16】(a),(b)は、上記実施例の装置の、ね
じ孔寸法の二回目の計測中の状態を示す断面図および正
面図である。
16 (a) and 16 (b) are a cross-sectional view and a front view showing the state of the device of the above-described embodiment during the second measurement of the screw hole size.

【図17】上記第1のねじ孔計測装置の他の実施例とし
ての多軸タップ孔計測装置を示す側面図である。
FIG. 17 is a side view showing a multi-axis tap hole measuring device as another embodiment of the first screw hole measuring device.

【図18】上記実施例の装置の測定ヘッドの内部構造を
示すとともにその装置の制御系を示す説明図である。
FIG. 18 is an explanatory view showing the internal structure of the measuring head of the device of the above-mentioned embodiment and showing the control system of the device.

【図19】上記実施例の装置のスピンドル先端部および
ロッド先端部の構造を示す断面図である。
FIG. 19 is a sectional view showing a structure of a spindle tip portion and a rod tip portion of the apparatus of the above embodiment.

【図20】上記実施例の装置の測定ヘッドおよびタレッ
トヘッド割り出し駆動ユニットの部分を示す正面図であ
る。
FIG. 20 is a front view showing a portion of a measuring head and a turret head indexing drive unit of the apparatus of the above-mentioned embodiment.

【図21】上記実施例の装置のカップリング装置のニッ
プルマニホールド側を示す、図20の矢印A方向から見た
矢視図である。
21 is a view seen from the direction of arrow A in FIG. 20, showing the nipple manifold side of the coupling device of the device of the above embodiment.

【図22】生産設備の検査工程に適用した上記第1およ
び第2の装置の応用例を示す説明図である。
FIG. 22 is an explanatory diagram showing an application example of the first and second devices applied to the inspection process of the production facility.

【図23】(a)〜(e)は、上記応用例の適用対象を
示す説明図である。
23 (a) to 23 (e) are explanatory views showing an application target of the application example.

【図24】(a),(b)は、上記応用例における検査
対象ワークの孔内の検査方法を示す説明図である。
24 (a) and 24 (b) are explanatory views showing a method of inspecting the inside of a hole of a workpiece to be inspected in the application example.

【図25】上記応用例における検査結果を示す説明図で
ある。
FIG. 25 is an explanatory diagram showing inspection results in the above application example.

【図26】(a)は、従来のねじ孔計測方法のうち、ね
じ径と有効ねじ深さとの計測に用いる限界ねじゲージを
示す平面図であり、(b)は、従来のねじ孔計測方法の
うち、孔位置を計測する方法を示す説明図である。
26A is a plan view showing a limit screw gauge used for measuring a screw diameter and an effective screw depth in a conventional screw hole measuring method, and FIG. 26B is a conventional screw hole measuring method. 3 is an explanatory diagram showing a method of measuring a hole position.

【符号の説明】[Explanation of symbols]

4 ねじ孔 4a ねじ山 5 ねじ測定子 5a エア吹出口 6 三次元移動機構 9 圧力−電圧変換器 10 パーソナルコンピュータ 11 コントローラ 14 プローブ装置 4 Screw hole 4a Thread 5 Thread gauge 5a Air outlet 6 Three-dimensional movement mechanism 9 Pressure-voltage converter 10 Personal computer 11 Controller 14 Probe device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被計測ねじ孔(4)内に挿入され、エア
吹出口(5a)から前記ねじ孔内のねじ山(4a)へ向けて
加圧エアを吹出すねじ測定子(5)と、 前記ねじ測定子を前記ねじ孔内に挿入してそのねじ孔内
で回転および進退移動させるねじ測定子移動手段(6)
と、 前記エア吹出口へ供給される加圧エアの背圧の変化に基
づき、前記エア吹出口と前記ねじ山との間の距離に対応
する信号を出力する距離計測手段(9)と、 前記ねじ測定子が前記ねじ孔内で前記エア吹出口を前記
ねじ山の螺旋に沿わせて移動させるように進退方向へ移
動しつつ一回転する間に求まった前記距離の変化に基づ
き、その距離が最短もしくは最長になる向きを調べ、そ
の向きおよびそれと反対の向きでの前記距離から前記ね
じ孔の中心位置を計測する中心位置計測手段(10)と、 前記ねじ測定子が前記ねじ孔内で進退方向へ移動する間
に求まった前記距離の変化に基づき、前記ねじ孔の内径
と、谷径と、有効ねじ深さとを計測するねじ寸法計測手
段(10)と、 を具えてなる、ねじ孔計測装置。
1. A screw gauge (5) which is inserted into a measured screw hole (4) and blows pressurized air from an air outlet (5a) toward a screw thread (4a) in the screw hole. , A screw gauge moving means (6) for inserting the screw gauge into the screw hole, and rotating and advancing and retracting the screw gauge in the screw hole.
And distance measuring means (9) for outputting a signal corresponding to the distance between the air outlet and the screw thread, based on a change in the back pressure of the pressurized air supplied to the air outlet. Based on the change in the distance obtained during one rotation while the screw head moves in the advancing / retreating direction so as to move the air outlet along the spiral of the screw thread in the screw hole, the distance is A center position measuring means (10) for measuring the shortest or longest direction, and measuring the center position of the screw hole from the distance in the direction and the opposite direction, and the screw probe moving forward and backward in the screw hole. Screw hole measuring means (10) for measuring the inner diameter, the root diameter, and the effective screw depth of the screw hole based on the change in the distance obtained while moving in the direction. apparatus.
【請求項2】 被計測ねじ孔(4)内に挿入され、エア
吹出口(5a)から前記ねじ孔内のねじ山(4a)へ向けて
加圧エアを吹出すねじ測定子(5)と、 前記ねじ測定子を前記ねじ孔内に挿入してそのねじ孔内
で回転および進退移動させるねじ測定子移動手段(6)
と、 前記ねじ測定子と前記ねじ孔内のねじ山とが接触したこ
とを検知する接触検知手段(14)と、 前記エア吹出口へ供給される加圧エアの背圧の変化に基
づき、前記エア吹出口と前記ねじ山との間の距離に対応
する信号を出力する距離計測手段(9)と、 前記ねじ孔の周方向の複数位置で前記ねじ山に接触した
際の前記ねじ測定子の位置に基づき、前記ねじ孔の中心
位置を計測する中心位置計測手段(10)と、 前記ねじ測定子が前記ねじ孔内で進退方向へ移動する間
に求まった前記距離の変化に基づき、前記ねじ孔の径方
向寸法と、有効ねじ深さとを計測するねじ寸法計測手段
(10)と、 を具えてなる、ねじ孔計測装置。
2. A screw gauge (5) which is inserted into a measured screw hole (4) and blows pressurized air from an air outlet (5a) toward a screw thread (4a) in the screw hole. , A screw gauge moving means (6) for inserting the screw gauge into the screw hole, and rotating and advancing and retracting the screw gauge in the screw hole.
A contact detection means (14) for detecting contact between the screw probe and the screw thread in the screw hole, and based on a change in back pressure of the pressurized air supplied to the air outlet, Distance measuring means (9) for outputting a signal corresponding to the distance between the air outlet and the screw thread, and the screw measuring element when contacting the screw thread at a plurality of positions in the circumferential direction of the screw hole. A center position measuring means (10) for measuring the center position of the screw hole based on the position, and the screw based on the change in the distance obtained while the screw probe moves in the screw hole in the advancing and retracting direction. A screw hole measuring device comprising: a screw dimension measuring means (10) for measuring a radial dimension of a hole and an effective screw depth.
JP26374593A 1993-03-17 1993-10-21 Screw hole measuring device Expired - Fee Related JP2929913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26374593A JP2929913B2 (en) 1993-03-17 1993-10-21 Screw hole measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5710193 1993-03-17
JP5-57101 1993-03-17
JP26374593A JP2929913B2 (en) 1993-03-17 1993-10-21 Screw hole measuring device

Publications (2)

Publication Number Publication Date
JPH06323835A true JPH06323835A (en) 1994-11-25
JP2929913B2 JP2929913B2 (en) 1999-08-03

Family

ID=26398124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26374593A Expired - Fee Related JP2929913B2 (en) 1993-03-17 1993-10-21 Screw hole measuring device

Country Status (1)

Country Link
JP (1) JP2929913B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060467A (en) * 2008-09-04 2010-03-18 Tokushin Denki Kogyo Kk Circularity measuring device
JP2010060468A (en) * 2008-09-04 2010-03-18 Tokushin Denki Kogyo Kk Minor diameter measuring device
KR101371888B1 (en) * 2013-07-08 2014-03-10 김수권 Tab inspection apparatus
CN106032977A (en) * 2016-04-13 2016-10-19 河北工业大学 Gaseous medium laser Doppler type internal thread detector
CN108177025A (en) * 2018-02-09 2018-06-19 盐城工学院 Shell part plane hole system's processing blind hole depth on-line checking and automatic cleaning integrating device and its detection and method for cleaning
JP6443871B1 (en) * 2018-03-28 2018-12-26 日本空圧システム株式会社 Gap adjustment type nozzle valve and position detection device using gap adjustment type nozzle valve
KR102028866B1 (en) * 2019-06-17 2019-10-04 한전케이피에스 주식회사 Image acquisition apparatus for inspecting screw thread of stud hole
CN112577379A (en) * 2020-12-07 2021-03-30 西安航天动力测控技术研究所 Electric auxiliary screwing device of thread gauge
KR20210073922A (en) * 2019-12-11 2021-06-21 일륭기공(주) Thread bore measuring device
DE102007062679B4 (en) 2007-12-24 2022-08-11 Stotz Feinmesstechnik Gmbh Device for measuring bores
CN116659592A (en) * 2023-07-31 2023-08-29 江苏华强模具科技有限公司 Oil filler support measuring device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007062679B4 (en) 2007-12-24 2022-08-11 Stotz Feinmesstechnik Gmbh Device for measuring bores
JP2010060468A (en) * 2008-09-04 2010-03-18 Tokushin Denki Kogyo Kk Minor diameter measuring device
JP2010060467A (en) * 2008-09-04 2010-03-18 Tokushin Denki Kogyo Kk Circularity measuring device
KR101371888B1 (en) * 2013-07-08 2014-03-10 김수권 Tab inspection apparatus
CN106032977A (en) * 2016-04-13 2016-10-19 河北工业大学 Gaseous medium laser Doppler type internal thread detector
CN108177025A (en) * 2018-02-09 2018-06-19 盐城工学院 Shell part plane hole system's processing blind hole depth on-line checking and automatic cleaning integrating device and its detection and method for cleaning
JP6443871B1 (en) * 2018-03-28 2018-12-26 日本空圧システム株式会社 Gap adjustment type nozzle valve and position detection device using gap adjustment type nozzle valve
JP2019171516A (en) * 2018-03-28 2019-10-10 日本空圧システム株式会社 Gap adjustment type nozzle valve and position detector using gap adjustment type nozzle valve
KR102028866B1 (en) * 2019-06-17 2019-10-04 한전케이피에스 주식회사 Image acquisition apparatus for inspecting screw thread of stud hole
KR20210073922A (en) * 2019-12-11 2021-06-21 일륭기공(주) Thread bore measuring device
CN112577379A (en) * 2020-12-07 2021-03-30 西安航天动力测控技术研究所 Electric auxiliary screwing device of thread gauge
CN116659592A (en) * 2023-07-31 2023-08-29 江苏华强模具科技有限公司 Oil filler support measuring device
CN116659592B (en) * 2023-07-31 2023-10-20 江苏华强模具科技有限公司 Oil filler support measuring device

Also Published As

Publication number Publication date
JP2929913B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3302013B2 (en) Multifunctional measuring device
US7765708B2 (en) Method for measuring an object
CN102528561B (en) On-line automatic detection device for detecting wear condition of rotary cutter in the whole processing cycle
JPH06323835A (en) Screw hole measuring apparatus
JP2005313239A (en) Numerical control machine tool
CN108007310A (en) A kind of cylinder sleeve of engine automatic measuring equipment
JP5023919B2 (en) Machine Tools
JP5039666B2 (en) Surface roughness measuring method, surface roughness measuring apparatus and processing apparatus
US20150220077A1 (en) Method and device for measuring a tool received in a workpiece processing machine
JP2001141444A (en) Method and instrument for measuring shape of v-groove
US6225771B1 (en) Probe chord error compensation
JP2903826B2 (en) Internal thread measuring device
JPH06265334A (en) Apparatus and method for inspecting crankshaft
JP2001264048A (en) Method and device for measuring shape of v-groove
US6810600B1 (en) Apparatus and method for monitoring alignment of a CNC machine spindle trunnion axis A
US20230046784A1 (en) Method for working a workpiece with two toothings, positioning device for determining a reference rotational angle position of the workpiece and power tool with such a positioning device
JP2005221280A (en) Work measuring device
KR101805730B1 (en) Pitch circle measuring apparatus of workpiece
JP3604473B2 (en) Machine Tools
TWI757168B (en) Head measurement system for machining machine
CN214792838U (en) Micrometer for measuring caliber of taper hole
KR100332837B1 (en) Detection apparatus for tapped surface by resistance measuring method
JPH0466286B2 (en)
CN117760291A (en) Device and method for measuring minor diameter of deep and long internal thread
Hong Self-learning system for knowledge-based diagnoses of drill condition in fully automatic manufacturing system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees