JPH06323577A - Radiation cooling apparatus - Google Patents

Radiation cooling apparatus

Info

Publication number
JPH06323577A
JPH06323577A JP13517293A JP13517293A JPH06323577A JP H06323577 A JPH06323577 A JP H06323577A JP 13517293 A JP13517293 A JP 13517293A JP 13517293 A JP13517293 A JP 13517293A JP H06323577 A JPH06323577 A JP H06323577A
Authority
JP
Japan
Prior art keywords
radiant
cooling panel
panel
polyethylene film
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13517293A
Other languages
Japanese (ja)
Inventor
Toshiyuki Miyanaga
俊之 宮永
Toshiharu Onuma
敏治 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP13517293A priority Critical patent/JPH06323577A/en
Publication of JPH06323577A publication Critical patent/JPH06323577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

PURPOSE:To prevent dew condensation on a radiant cooling panel by arranging a polymer-based thin film, which allows favorable transmission of far infrared radiation of a particular wave length therethrough, in opposition to a radiant surface of a radiant cooling panel and forming a vacuum insulated layer between the thin film and the radiant surface of the panel. CONSTITUTION:After a blocked space in an insulated vessel 2 is made vacuous by means of a vacuum pump 6 at the start-up of operation of a cooling apparatus, a vacuum valve 12 is closed to form a vacuum insulated layer 7 so as to permit water to circulate between a thermostatic water tank 5 and a radiant cooling panel 1 for cooling of the radiant cooling panel 1. Far infrared radiation of a wave length of 8 to 10mum radiated from a person 22 in a room is transmitted through a polyethylene film 4 to be absorbed by water in the radiant cooling panel 1 of polyethylene, thereby giving a feeling of cooling to the person 22 due to radiant heat exchange. On the other hand, the vacuum insulated layer 7 between the radiant cooling panel 1 and the polyethylene film 4 prevents heat transfer from the polyethylene film 4 to the radiant cooling panel 1 through conduction and convection, so that a surface temperature of the polyethylene film 4 is kept at a temperature substantially equal to a room temperature and is prevented from becoming equal to or lower than a dew point to thereby eliminate dew condensation on the polyethylene film 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に住宅やオフィス等
で利用される冷房装置に関する。更に詳述すると、本発
明は、人体からの放射熱を吸収する放射冷房装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device mainly used in houses and offices. More specifically, the present invention relates to a radiation cooling device that absorbs radiation heat from a human body.

【従来の技術】[Prior art]

【0002】一般に冷房装置は、家庭用から業務用にい
たるまで対流式が主流である。対流式冷房は、空気を冷
却し、その冷気を室内に吹き出して冷房するものであ
る。ところが、この対流式冷房の場合、室内の空気の温
度を下げて冷房しようとするものであるから、吹き出す
冷気の温度は望まれる室温よりもはるかに低く、その冷
気に直接触れる場合の不快感は大きい。
In general, the air-conditioning system is mainly of the convection type from home use to business use. The convection type cooling cools air and blows the cold air into the room for cooling. However, in the case of this convection type cooling system, since the temperature of the air in the room is to be cooled, the temperature of the blown out cold air is much lower than the desired room temperature, and the discomfort when directly touching the cold air is large.

【0003】この対流式冷房に対して快適な冷房環境が
得られるとして注目されているのが、放射冷房である。
放射冷房は、建物の躯体を冷却し、天井や床等に人体か
らの放射熱を吸収させ、冷涼感を得ようとするものであ
る。この対流式冷房方式の場合、室内の温度分布が均一
で不快な速い気流が生じないため、快適な冷房空間が実
現できると期待されている。
Radiant cooling is drawing attention as a comfortable cooling environment for the convection type cooling.
The radiant cooling is to cool the building body of a building so that the ceiling or floor absorbs radiant heat from the human body to obtain a cool feeling. In the case of this convection type cooling system, it is expected that a comfortable cooling space can be realized because the temperature distribution in the room is uniform and an unpleasant fast airflow does not occur.

【0004】しかし、この放射冷房では放射冷却パネル
面が約20゜C程度に保持されるため、湿度が高い場合
にはパネル面に結露が生じる問題がある。このため、現
在提案されている放射冷房システムでは、除湿器を室内
に設置する方式が主流である。また、これに付随して、
住宅の高断熱化や高気密化に関する技術開発が盛んに行
われている。
However, since the radiation cooling panel surface is maintained at about 20 ° C. in this radiation cooling, there is a problem that dew condensation occurs on the panel surface when the humidity is high. Therefore, in the radiant cooling system currently proposed, the method of installing the dehumidifier in the room is the mainstream. Also, accompanying this,
Technological developments related to high heat insulation and high airtightness of houses are being actively conducted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、大型の
除湿器や複数の除湿器を設置することは、コスト的にも
実際上困難であり、対流式と比較して省エネにならなか
ったり、却ってコスト高になってしまうことが憂慮され
る。また、除湿器から発生する熱の処理や、換気が頻繁
に実施できないことから室内の空気性状の劣化が問題に
なると予想される。更に、冷房空間が広い場合には除湿
器の設置場所によっては除湿効果を最大限に発揮できな
いなどの問題がある。これらの問題は放射冷房装置の普
及を妨げる原因ともなっている。
However, it is practically difficult to install a large dehumidifier or a plurality of dehumidifiers in terms of cost, and energy saving may not be achieved as compared with the convection type, or conversely the cost may be reduced. It is worried that it will become high. In addition, it is expected that deterioration of indoor air quality will become a problem because the heat generated from the dehumidifier and ventilation cannot be performed frequently. Further, when the cooling space is large, there is a problem that the dehumidifying effect cannot be maximized depending on the installation location of the dehumidifier. These problems also hinder the spread of radiant cooling systems.

【0006】本発明は、放射冷却パネル表面での結露を
防止できる放射冷房装置を提供することを目的とする。
It is an object of the present invention to provide a radiant cooling device capable of preventing dew condensation on the surface of the radiant cooling panel.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
め、本発明は、放射冷却パネルを備えた放射冷房装置に
おいて、放射冷却パネルの放射面に対向して波長8μm
から10μm前後の遠赤外線を良好に透過する高分子系
薄膜を配置し、高分子系薄膜と放射冷却パネルの放射面
との間に真空断熱層を形成するようにしている。
In order to achieve such an object, the present invention provides a radiant cooling apparatus having a radiant cooling panel, which has a wavelength of 8 μm facing the radiant surface of the radiant cooling panel.
A polymer thin film which transmits far infrared rays of about 10 μm to 10 μm is arranged, and a vacuum heat insulating layer is formed between the polymer thin film and the radiation surface of the radiation cooling panel.

【0008】[0008]

【作用】したがって、外気に触れる高分子系薄膜の表面
温度は、放射冷却パネルと高分子系薄膜との間の真空断
熱層によって、室温とほぼ等しくなり露点温度以下にな
らない。一方、真空断熱であるから放射冷却パネルと高
分子系薄膜との間における伝導及び対流による熱移動は
阻止されるが、放射による熱移動は阻止されない。そし
て、高分子系薄膜は、人体から放射される遠赤外線の主
要な波長である8μm〜10μmの遠赤外線を良好に透
過させることから、人体から放射される遠赤外線が高分
子系薄膜を透過して放射冷却パネルに移動して放射熱交
換を行う。
Therefore, the surface temperature of the polymer thin film exposed to the outside air becomes almost equal to room temperature and does not fall below the dew point temperature due to the vacuum heat insulating layer between the radiation cooling panel and the polymer thin film. On the other hand, since it is vacuum heat insulating, heat transfer due to conduction and convection between the radiation cooling panel and the polymer thin film is blocked, but heat transfer due to radiation is not blocked. The polymer thin film satisfactorily transmits far infrared rays of 8 μm to 10 μm, which is the main wavelength of far infrared rays emitted from the human body, so that far infrared rays emitted from the human body pass through the polymer thin film. And move to the radiant cooling panel for radiant heat exchange.

【0009】[0009]

【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0010】図1に本発明の放射冷房装置の一実施例を
示す。尚、この放射冷房装置は、例えば90cm四方程
度の大きさであり、部屋の広さに応じて複数個組み合わ
せて天井面に設置して利用するようにしたものである。
FIG. 1 shows an embodiment of the radiation cooling apparatus of the present invention. The radiant cooling apparatus has a size of, for example, 90 cm square, and a plurality of such radiant cooling apparatuses are combined and installed on the ceiling surface according to the size of the room.

【0011】放射冷房装置は、水または他の冷却媒体を
内部に循環させることにより、あるいは電気的効果によ
り冷却可能な放射冷却パネル1と、この放射冷却パネル
1を囲み放射冷却パネル1の背面および側面からの熱侵
入を防ぐ断熱容器2と、放射冷却パネル1の正面の放射
面3に対向して配置されて、波長8μm〜10μm前後
の遠赤外線を良好に透過する性質を持つ高分子系薄膜4
と、放射冷却パネル1と接続された恒温水槽5と、断熱
容器2の凹部8内に接続された真空ポンプ6と、この真
空ポンプ6によって放射冷却パネル1と高分子系薄膜4
との間に少なくとも形成される真空断熱層7とから構成
されている。
The radiant cooling apparatus includes a radiant cooling panel 1 which can be cooled by circulating water or another cooling medium inside or by an electric effect, a radiant cooling panel 1 surrounding the radiant cooling panel 1, and a back surface of the radiant cooling panel 1. A heat-insulating container 2 that prevents heat from entering from the side and a polymer thin film that is arranged so as to face the radiation surface 3 in front of the radiation cooling panel 1 and has a property of favorably transmitting far infrared rays having a wavelength of about 8 μm to 10 μm. Four
A constant temperature water tank 5 connected to the radiation cooling panel 1, a vacuum pump 6 connected to the recess 8 of the heat insulating container 2, and the radiation cooling panel 1 and the polymer thin film 4 by the vacuum pump 6.
And a vacuum heat insulating layer 7 which is formed at least between and.

【0012】断熱材料からなる断熱容器2の下面側には
放射冷却パネル1を収容する凹部8が形成され、この凹
部8の中に高断熱性材料からなるホルダー9を介して放
射冷却パネル1が固定され支持されている。したがっ
て、断熱容器2の外部から断熱容器2を介して伝導によ
り放射冷却パネル1に熱が流れ込むことを十分防止でき
る。
A concave portion 8 for accommodating the radiation cooling panel 1 is formed on the lower surface side of the heat insulating container 2 made of a heat insulating material, and the radiation cooling panel 1 is provided in the concave portion 8 via a holder 9 made of a highly heat insulating material. It is fixed and supported. Therefore, it is possible to sufficiently prevent heat from flowing into the radiation cooling panel 1 from outside the heat insulating container 2 through the heat insulating container 2 by conduction.

【0013】放射冷却パネル1は恒温水槽5から供給さ
れる水で冷却される構造とされ、8μm〜10μm程度
の遠赤外線を良好に透過させる高分子例えばポリエチレ
ンにより形成されている。また、断熱容器2の凹部8の
開口部分には放射冷却パネル1の放射面3と対向して、
8μm〜10μm程度の遠赤外線を良好に透過させる高
分子系薄膜4が張られている。高分子系薄膜4としては
例えばポリエチレンの使用が好ましい。ポリエチレンは
人体から放射される主要な波長8μmから10μmの遠
赤外線を透過するので、人体から放射された遠赤外線は
ポリエチレン膜4および放射冷却パネル1の壁を通過し
て放射冷却パネル1の中の水に直接吸収される成分が多
くなり、人体と放射冷却パネル1との間の放射熱交換の
効率が良好となると考えられる。なお、放射冷却パネル
1を構成する素材および断熱容器2に張られる高分子系
薄膜4はポリエチレンに特に限定されず、人体から放射
される波長8μmから10μmの遠赤外線の透過を許容
する性質を有する高分子材料であれば使用可能である。
The radiation cooling panel 1 is structured to be cooled by water supplied from the constant temperature water tank 5, and is made of a polymer such as polyethylene which allows far infrared rays of about 8 μm to 10 μm to be well transmitted. Further, in the opening portion of the concave portion 8 of the heat insulating container 2, facing the radiation surface 3 of the radiation cooling panel 1,
A polymer thin film 4 is provided that allows far infrared rays of about 8 μm to 10 μm to pass therethrough. Polyethylene, for example, is preferably used as the polymer thin film 4. Since polyethylene transmits far-infrared rays having a main wavelength of 8 μm to 10 μm emitted from the human body, the far-infrared rays emitted from the human body pass through the polyethylene film 4 and the wall of the radiant cooling panel 1 and are contained in the radiant cooling panel 1. It is considered that the components directly absorbed by water increase and the efficiency of radiant heat exchange between the human body and the radiant cooling panel 1 becomes good. The material constituting the radiation cooling panel 1 and the polymer thin film 4 stretched over the heat insulating container 2 are not particularly limited to polyethylene, and have a property of permitting transmission of far infrared rays having a wavelength of 8 μm to 10 μm emitted from the human body. Any polymer material can be used.

【0014】断熱容器2の凹部8とポリエチレン膜4と
により形成された閉塞空間はシール枠10により密封さ
れ、外気がその中に侵入することが防止されている。そ
して、凹部8内に貫通するパイプ11を介して真空ポン
プ6と凹部8内の閉塞空間とは接続され真空状態とし得
るように設けられている。また、パイプ11には真空バ
ルブ12が設けられている。したがって、真空ポンプ6
により閉塞空間特に放射冷却パネル1とポリエチレン膜
4との間の空間が真空状態にされた後、真空バルブ12
を閉めることによって真空状態が維持される。これによ
って放射冷却パネル1とポリエチレン膜4との間に真空
断熱層7が形成され、ポリエチレン膜4から放射冷却パ
ネル1への伝導および対流による熱移動が抑制される。
ポリエチレン膜4は外気に接触するため、ポリエチレン
膜4の表面の温度は室温とほぼ等しくなり、露点以下と
ならず、ポリエチレン膜4の表面で結露することがな
い。
The closed space formed by the recess 8 of the heat insulating container 2 and the polyethylene film 4 is sealed by a seal frame 10 to prevent outside air from entering therein. The vacuum pump 6 and the closed space in the recess 8 are connected to each other through a pipe 11 penetrating the recess 8 so that a vacuum can be obtained. A vacuum valve 12 is provided on the pipe 11. Therefore, the vacuum pump 6
After the closed space, especially the space between the radiation cooling panel 1 and the polyethylene film 4 is evacuated, the vacuum valve 12
The vacuum is maintained by closing. As a result, the vacuum heat insulating layer 7 is formed between the radiation cooling panel 1 and the polyethylene film 4, and the heat transfer due to conduction and convection from the polyethylene film 4 to the radiation cooling panel 1 is suppressed.
Since the polyethylene film 4 comes into contact with the outside air, the temperature of the surface of the polyethylene film 4 becomes substantially equal to room temperature, does not fall below the dew point, and dew condensation does not occur on the surface of the polyethylene film 4.

【0015】ポリエチレン膜4は、硬質ポリエチレン製
の格子状の補強用枠13によって裏面側から補強されて
いる。したがって、ポリエチレン膜4の裏面側の真空断
熱層7と表面側の外気との圧力差でポリエチレン膜4が
放射冷却パネル1に接触することが防止される。
The polyethylene film 4 is reinforced from the back side by a grid-shaped reinforcing frame 13 made of hard polyethylene. Therefore, the polyethylene film 4 is prevented from coming into contact with the radiation cooling panel 1 due to the pressure difference between the vacuum heat insulating layer 7 on the back surface side of the polyethylene film 4 and the outside air on the front surface side.

【0016】また、断熱容器2の凹部8の内面と放射冷
却パネル1の放射面3以外の面即ち側面14および背面
15には可視光域と近赤外線と遠赤外線の全域で良好な
高反射特性を有する金属薄膜例えばアルミニウム薄膜1
6が接着されている。これによって、断熱容器2と放射
冷却パネル1の側面14および背面15への放射熱交換
による熱流入を極力防止できる。また、ポリエチレン膜
4を透過して断熱容器2の凹部8に侵入する外部光(特
に可視光と近赤外線)による断熱容器2の加熱を極力防
止することができる。即ち、本実施例の場合、天井面設
置型であるため放射冷却パネル1の放射面3に対面する
人体などからの熱を主にとり、天井面や壁面などから放
射される熱を遮断して冷房効果を上げるようにしてい
る。
In addition, the inner surface of the recess 8 of the heat insulating container 2 and the surfaces other than the radiation surface 3 of the radiation cooling panel 1, ie, the side surface 14 and the back surface 15, have good high reflection characteristics in the visible light region, near infrared light and far infrared light. Thin metal film having, for example, aluminum thin film
6 is glued. Thereby, heat inflow due to radiant heat exchange to the side surface 14 and the back surface 15 of the heat insulating container 2 and the radiation cooling panel 1 can be prevented as much as possible. Further, it is possible to prevent heating of the heat insulating container 2 by external light (especially visible light and near infrared rays) that penetrates the polyethylene film 4 and enters the concave portion 8 of the heat insulating container 2 as much as possible. That is, in the case of the present embodiment, since it is a ceiling surface installation type, it mainly takes the heat from the human body or the like facing the radiation surface 3 of the radiation cooling panel 1 and shuts off the heat radiated from the ceiling surface or the wall surface to cool the room. I try to improve the effect.

【0017】放射冷却パネル1には給水管17および排
水管18を介して恒温水槽5が接続され、給水管17と
排水管18との中間部に循環ポンプ19が設けられてい
る。恒温水槽5の内部には水を冷却するクーラー20が
設置されている。したがって、放射冷却パネル1は恒温
水槽5から給水管17を介して供給される水により冷却
され、排水管18を介して恒温水槽5に戻された水は再
びクーラー20で設定温度まで冷却される。
A constant temperature water tank 5 is connected to the radiant cooling panel 1 via a water supply pipe 17 and a drain pipe 18, and a circulation pump 19 is provided in an intermediate portion between the water supply pipe 17 and the drain pipe 18. A cooler 20 for cooling water is installed inside the constant temperature water tank 5. Therefore, the radiation cooling panel 1 is cooled by the water supplied from the constant temperature water tank 5 through the water supply pipe 17, and the water returned to the constant temperature water tank 5 through the drain pipe 18 is cooled again to the set temperature by the cooler 20. .

【0018】クーラー20と循環ポンプ19と真空ポン
プ6及び真空バルブ12を制御するコントローラ21が
室内に設置されている。在室者22がコントローラ21
を操作することにより、クーラー20を制御して恒温水
槽5の設定水温を調整したり、また循環ポンプ19を制
御して恒温水槽5と放射冷却パネル1との間の流水量を
調整したり、必要に応じて真空ポンプ6を制御して真空
断熱層7の真空度を調整できる。
A controller 21 for controlling the cooler 20, the circulation pump 19, the vacuum pump 6 and the vacuum valve 12 is installed in the room. The occupant 22 is the controller 21
By operating the cooler 20 to adjust the set water temperature of the constant temperature water tank 5, or to control the circulation pump 19 to adjust the amount of water flowing between the constant temperature water tank 5 and the radiant cooling panel 1. The vacuum degree of the vacuum heat insulation layer 7 can be adjusted by controlling the vacuum pump 6 as needed.

【0019】なお、本実施例では放射冷却パネル1を水
冷式としているが、水以外の冷却媒体を流して冷却して
も良いし、ペルチエ素子のような電気的効果により冷却
可能なパネル1を採用しても良い。
In this embodiment, the radiation cooling panel 1 is of the water cooling type, but it may be cooled by flowing a cooling medium other than water, or the panel 1 which can be cooled by an electric effect such as a Peltier element. You may adopt it.

【0020】以上のように構成された本実施例の放射冷
房装置は、例えば図1に示すように天井に設置されて使
用され、室内湿度に関係なく人体と放射冷却パネルとの
間での放射熱交換を行い、結露を招くことなく在室者に
快適な冷房感を与えることができる。
The radiant cooling apparatus of the present embodiment constructed as described above is used, for example, installed on the ceiling as shown in FIG. 1, and radiates between the human body and the radiant cooling panel regardless of indoor humidity. By exchanging heat, it is possible to give a comfortable feeling of cooling to a person in the room without causing dew condensation.

【0021】まず、冷房装置の運転開始時には、真空ポ
ンプ6の作動により断熱容器2の中の閉塞空間を真空状
態にした後に真空バルブ12を閉めて真空断熱層7を形
成する。そして、恒温水槽5と放射冷却パネル1との間
で水を循環させて放射冷却パネル1を冷却する。
First, at the start of the operation of the cooling device, the vacuum pump 6 is operated to bring the closed space in the heat insulating container 2 into a vacuum state, and then the vacuum valve 12 is closed to form the vacuum heat insulating layer 7. Then, water is circulated between the constant temperature water tank 5 and the radiation cooling panel 1 to cool the radiation cooling panel 1.

【0022】在室者22から放射される波長8μmから
10μmの遠赤外線は、ポリエチレン膜4を透過してポ
リエチレン製の放射冷却パネル1の中の水に直接吸収さ
れ、効率的な放射熱交換によって在室者22に冷涼感を
与える。
Far-infrared rays having a wavelength of 8 μm to 10 μm emitted from the occupants 22 penetrate the polyethylene film 4 and are directly absorbed by the water in the radiant cooling panel 1 made of polyethylene. A coolness is given to the occupants 22.

【0023】一方、放射冷却パネル1とポリエチレン膜
4との間には真空断熱層7が介在されているので、ポリ
エチレン膜4から放射冷却パネル2への伝導及び対流に
よる熱移動は阻止され、ポリエチレン膜4の表面の温度
は室温とほぼ等しい温度に維持され、露点以下とならな
いのでポリエチレン膜4の表面で結露することがない。
したがって、室内の湿度が高かったり、あるいは換気に
よって湿度が絶えず変動しても、ポリエチレン膜4の表
面で結露することはない。ここで、放射によりポリエチ
レン膜4から放射冷却パネル1に熱が移動し、ポリエチ
レン膜4が下がることも懸念されるが、ポリエチレン膜
4の厚さが薄ければ、例えば0.1mm程度であれば、
ポリエチレン膜4から放射により放射冷却パネル1に熱
が移動しても、在室者22との放射熱交換や室内空気の
対流熱伝達によりポリエチレン膜4に熱供給が行われる
ため、ポリエチレン膜4は表面も裏面も常に室温とほぼ
等しくなると考えられるので実用上問題ないと思われ
る。
On the other hand, since the vacuum heat insulating layer 7 is interposed between the radiant cooling panel 1 and the polyethylene film 4, heat transfer due to conduction and convection from the polyethylene film 4 to the radiant cooling panel 2 is blocked, and the polyethylene film is prevented. The temperature of the surface of the membrane 4 is maintained at a temperature almost equal to room temperature and does not fall below the dew point, so that no condensation occurs on the surface of the polyethylene membrane 4.
Therefore, even if the humidity in the room is high or the humidity constantly changes due to ventilation, dew condensation does not occur on the surface of the polyethylene film 4. Here, heat may be transferred from the polyethylene film 4 to the radiation cooling panel 1 by radiation, and the polyethylene film 4 may be lowered, but if the polyethylene film 4 is thin, for example, about 0.1 mm. ,
Even if heat is transferred from the polyethylene film 4 to the radiant cooling panel 1, heat is supplied to the polyethylene film 4 by radiant heat exchange with the occupants 22 and convective heat transfer of indoor air. It is considered that there is no problem in practical use because it is considered that the front surface and the back surface are always almost equal to room temperature.

【0024】しかも、膜厚0.1mm程度であれば、波
長8μm〜10μmの遠赤外線の透過率は80%程度で
あり、放射熱交換には実用上問題とならない。このこと
を厚さ0.1mmのポリエチレン膜を試料として波長ご
との分光透過率を実験により求めた。その実験の結果を
図4に示す。図4において、横軸は波長(μm)、縦軸
は透過率をとっている。図4から、この試料は、波長8
μmから10μmの遠赤外線の平均80%を透過させて
いることが判明した。
Moreover, if the film thickness is about 0.1 mm, the transmittance of far infrared rays having a wavelength of 8 μm to 10 μm is about 80%, which is not a practical problem for radiant heat exchange. This was determined experimentally by measuring the spectral transmittance for each wavelength using a polyethylene film having a thickness of 0.1 mm as a sample. The result of the experiment is shown in FIG. In FIG. 4, the horizontal axis represents wavelength (μm) and the vertical axis represents transmittance. From FIG. 4, this sample has a wavelength of 8
It was found that 80% of far infrared rays having an average wavelength of 10 μm were transmitted.

【0025】なお、上述の実施例は本発明の好適な実施
の一例ではあるがこれに限定されるものではなく本発明
の要旨を逸脱しない範囲において種々変形実施可能であ
る。
The above-described embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention.

【0026】[0026]

【発明の効果】以上の説明より明らかなように、本発明
の放射冷房装置では、放射冷却パネルに対向して波長8
μmから10μm前後の遠赤外線を良好に透過する高分
子系薄膜を配置すると共に、高分子系薄膜と放射冷却パ
ネルとの間に真空断熱層を形成するようにしているの
で、放射冷却パネルと高分子系薄膜との間の真空断熱層
によって伝導及び対流による熱移動が阻止されて外気に
触れる高分子系薄膜の表面温度が室温とほぼ等しく露点
以下とならないため、高分子系薄膜の表面で結露するこ
とを防止できる一方、在室者から放射される波長8μm
から10μmの遠赤外線は高分子系薄膜を良好に透過し
て放射冷却パネルとの間で放射熱交換されるため、在室
者は冷涼感を得ることができる。
As is apparent from the above description, in the radiant cooling apparatus of the present invention, the radiant cooling panel facing the radiant cooling panel has a wavelength of 8 mm.
Since the polymer thin film which transmits far infrared rays of around 10 μm to 10 μm is arranged well, and the vacuum heat insulating layer is formed between the polymer thin film and the radiation cooling panel, the radiation cooling panel and Condensation occurs on the surface of the polymer thin film because the vacuum insulating layer between the polymer thin film and the polymer thin film prevents heat transfer due to conduction and convection and the surface temperature of the polymer thin film exposed to the outside air is almost equal to room temperature and does not fall below the dew point. The wavelength emitted from the occupants is 8 μm.
Far infrared rays of 10 μm to 10 μm satisfactorily pass through the polymer thin film and undergo radiative heat exchange with the radiant cooling panel, so that the person in the room can feel a cool sensation.

【0027】また、本発明の放射冷房装置によると、高
分子系薄膜の表面で結露することがないので、大容量あ
るいは複数の除湿器を設置する必要がなく、設備コスト
やランニングコストを大幅に低減できるし省エネルギー
を実現できる。
Further, according to the radiant cooling apparatus of the present invention, since dew condensation does not occur on the surface of the polymer thin film, it is not necessary to install a large capacity or a plurality of dehumidifiers, and equipment cost and running cost are greatly increased. It can reduce the energy consumption.

【0028】更に、本発明の放射冷房装置によると、結
露の心配がないので冷房時に換気することが可能とな
り、室内に常時新鮮な空気を供給でき、冷房中に室内の
空気が汚れるのを防止できる。
Further, according to the radiant cooling apparatus of the present invention, since there is no concern of dew condensation, it is possible to ventilate during cooling, and it is possible to constantly supply fresh air to the room and prevent the room air from becoming dirty during cooling. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放射冷房装置の一実施例を示す概略図
である。
FIG. 1 is a schematic view showing an embodiment of a radiation cooling device of the present invention.

【図2】図1の放射冷房装置の要部の断面図である。FIG. 2 is a cross-sectional view of a main part of the radiant cooling apparatus in FIG.

【図3】高分子系薄膜を部分的に示す斜視図である。FIG. 3 is a perspective view partially showing a polymer thin film.

【図4】ポリエチレン膜の分光透過率を示すグラフであ
る。
FIG. 4 is a graph showing the spectral transmittance of a polyethylene film.

【符号の説明】[Explanation of symbols]

1 放射冷却パネル 2 断熱容器 3 放射面 4 ポリエチレン膜(高分子系薄膜) 6 真空ポンプ 7 真空断熱層 1 radiation cooling panel 2 heat insulation container 3 radiation surface 4 polyethylene membrane (polymer thin film) 6 vacuum pump 7 vacuum insulation layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 放射冷却パネルを備えた放射冷房装置に
おいて、前記放射冷却パネルの放射面に対向して波長8
μmから10μm前後の遠赤外線を良好に透過する高分
子系薄膜を配置し、該高分子系薄膜と前記放射冷却パネ
ルの放射面との間に真空断熱層を形成したことを特徴と
する放射冷房装置。
1. A radiant cooling apparatus including a radiant cooling panel, wherein a wavelength of 8 is provided opposite to a radiant surface of the radiant cooled panel.
Radiant cooling, characterized in that a polymer thin film that satisfactorily transmits far-infrared rays of about 10 μm to 10 μm is arranged, and a vacuum heat insulating layer is formed between the polymer thin film and the radiation surface of the radiation cooling panel. apparatus.
JP13517293A 1993-05-14 1993-05-14 Radiation cooling apparatus Pending JPH06323577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13517293A JPH06323577A (en) 1993-05-14 1993-05-14 Radiation cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13517293A JPH06323577A (en) 1993-05-14 1993-05-14 Radiation cooling apparatus

Publications (1)

Publication Number Publication Date
JPH06323577A true JPH06323577A (en) 1994-11-25

Family

ID=15145522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13517293A Pending JPH06323577A (en) 1993-05-14 1993-05-14 Radiation cooling apparatus

Country Status (1)

Country Link
JP (1) JPH06323577A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0715330A1 (en) * 1994-11-28 1996-06-05 Texas Instruments Incorporated Radiation cooling apparatus related to display devices
WO2002039031A1 (en) * 2000-11-07 2002-05-16 Koji Hisakuni Regional meteorological controller
JP2007155206A (en) * 2005-12-05 2007-06-21 Sanken Setsubi Kogyo Co Ltd Radiation cooling/heating system and control method therefor
KR101498117B1 (en) * 2010-12-07 2015-03-04 케이에프티 가부시키가이샤 Indoor environment adjustment system
JP2016085012A (en) * 2014-10-28 2016-05-19 株式会社ヤマザキ Local cooling method and device
DE102015211473A1 (en) * 2015-06-22 2016-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for air conditioning a room
DE102016117742A1 (en) * 2016-09-20 2018-03-22 Technische Universität Kaiserslautern Heating / cooling device
CN109437596A (en) * 2018-11-08 2019-03-08 宁波瑞凌节能环保创新与产业研究院 A kind of radiation refrigeration glass and preparation method thereof
CN115509275A (en) * 2022-10-07 2022-12-23 哈尔滨工业大学 Multi-mode composite and active gas bath double-layer ultra-precise temperature control device
DE102022112411A1 (en) 2022-05-17 2023-11-23 interpanel GmbH Heat exchanger panel for temperature control of a room

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0715330A1 (en) * 1994-11-28 1996-06-05 Texas Instruments Incorporated Radiation cooling apparatus related to display devices
WO2002039031A1 (en) * 2000-11-07 2002-05-16 Koji Hisakuni Regional meteorological controller
JP2007155206A (en) * 2005-12-05 2007-06-21 Sanken Setsubi Kogyo Co Ltd Radiation cooling/heating system and control method therefor
KR101498117B1 (en) * 2010-12-07 2015-03-04 케이에프티 가부시키가이샤 Indoor environment adjustment system
JP2016085012A (en) * 2014-10-28 2016-05-19 株式会社ヤマザキ Local cooling method and device
US10371398B2 (en) 2015-06-22 2019-08-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for air-conditioning a room
DE102015211473A1 (en) * 2015-06-22 2016-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for air conditioning a room
DE102016117742A1 (en) * 2016-09-20 2018-03-22 Technische Universität Kaiserslautern Heating / cooling device
CN109437596A (en) * 2018-11-08 2019-03-08 宁波瑞凌节能环保创新与产业研究院 A kind of radiation refrigeration glass and preparation method thereof
CN109437596B (en) * 2018-11-08 2023-11-03 宁波瑞凌新能源材料研究院有限公司 Radiation refrigeration glass and preparation method thereof
DE102022112411A1 (en) 2022-05-17 2023-11-23 interpanel GmbH Heat exchanger panel for temperature control of a room
WO2023222539A1 (en) 2022-05-17 2023-11-23 interpanel GmbH Heat exchanger panel for controlling the temperature of a space
CN115509275A (en) * 2022-10-07 2022-12-23 哈尔滨工业大学 Multi-mode composite and active gas bath double-layer ultra-precise temperature control device
CN115509275B (en) * 2022-10-07 2024-04-12 哈尔滨工业大学 Multimode composite and active gas bath double-layer ultra-precise temperature control device

Similar Documents

Publication Publication Date Title
JP6231441B2 (en) Radiant air conditioning system
JPH06323577A (en) Radiation cooling apparatus
JP6512658B2 (en) Radiant air conditioning system
TWI477723B (en) The heat storing type radiation air conditioning system using a heat pump air conditioner
JPH08178372A (en) Radiation air conditioning apparatus and operation thereof
JP2016196974A (en) Radiation air-conditioning system
JP3914872B2 (en) Air conditioning device
JPH11325689A (en) Wine cellar
JP2010139124A (en) Air-circulation type cooling/heating system
JP2008075922A (en) Humidity-conditioning cooling/heating device and spatial structure using the same
JP4605759B2 (en) Indoor air conditioning system for buildings
JPH05141708A (en) Radiational panel for cooling and heating
JP6811542B2 (en) Radiant heating and cooling system
JPH1089727A (en) Radiant cooling and heating system
JPH11304195A (en) Radiation heating-cooling combination system
EP0103610B1 (en) An arrangement in internal panels for eliminating cold radiating surfaces on walls, ceilings and floors
JP2011002104A (en) Air conditioning system
JP3715015B2 (en) Membrane ceiling panel and ceiling air conditioner
JPH09170784A (en) Method of air radiation type air conditioning and device therefor
JP2007315690A (en) Air conditioning system
JP2008304129A (en) Radiation heating-cooling system
JPH0445334A (en) Radiation panel
JP6389550B2 (en) Radiant air conditioning method
JPH10205802A (en) Radiation type air conditioner
JP6789330B2 (en) Radiant air conditioning system