JP6231441B2 - Radiant air conditioning system - Google Patents

Radiant air conditioning system Download PDF

Info

Publication number
JP6231441B2
JP6231441B2 JP2014123976A JP2014123976A JP6231441B2 JP 6231441 B2 JP6231441 B2 JP 6231441B2 JP 2014123976 A JP2014123976 A JP 2014123976A JP 2014123976 A JP2014123976 A JP 2014123976A JP 6231441 B2 JP6231441 B2 JP 6231441B2
Authority
JP
Japan
Prior art keywords
air
space
radiation
indoor space
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014123976A
Other languages
Japanese (ja)
Other versions
JP2016003808A (en
Inventor
幹治 小野
幹治 小野
勇輝 滝澤
勇輝 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2014123976A priority Critical patent/JP6231441B2/en
Publication of JP2016003808A publication Critical patent/JP2016003808A/en
Application granted granted Critical
Publication of JP6231441B2 publication Critical patent/JP6231441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Description

本発明は、熱の放射により室内空間の空調を行う空調システムに関するものである。   The present invention relates to an air conditioning system for air conditioning an indoor space by radiation of heat.

室内空間の温湿度環境を快適にするための空調機は、空調空気を室内空間へ噴き出して対流させるものが一般的である。このような空気噴流式の空調機によれば、室内空間に気流が発生し、その気流が人体に直接当たることで不快を感じることがある。そこで近年は、不快な気流感や、室内空間の上下温度分布が発生しにくい放射空調システムが注目されている。   In general, an air conditioner for making the temperature and humidity environment of the indoor space comfortable is designed to jet conditioned air into the indoor space and convect it. According to such an air jet type air conditioner, an air flow is generated in the indoor space, and the air flow directly hits the human body, which may cause discomfort. Therefore, in recent years, attention has been paid to a radiation air-conditioning system in which an unpleasant air flow feeling and an indoor temperature vertical temperature distribution are less likely to occur.

図9は、この種の放射空調システムの従来技術を示すものである。すなわち図9に示す放射空調システムは、天井材101の裏側に上部及び側部が断熱材102によって適切に断熱され密閉された天井裏空間104を形成して、この天井裏空間104に空気調和機103からの冷却空気又は加熱空気Aを供給して、天井材101からの熱放射により室内空間105の冷暖房を行うものである(下記の特許文献1参照)。   FIG. 9 shows the prior art of this type of radiant air conditioning system. That is, the radiant air-conditioning system shown in FIG. 9 forms a ceiling back space 104 whose upper and side portions are appropriately insulated and sealed by the heat insulating material 102 on the back side of the ceiling material 101, and the air conditioner is installed in the ceiling back space 104. Cooling air or heating air A from 103 is supplied, and the indoor space 105 is cooled and heated by heat radiation from the ceiling material 101 (see Patent Document 1 below).

ここで、ヒトの体感温度は、おおよそ次式(1)で表すことができる。
そして放射空調システムは、式(1)におけるtを調整することによって適正な体感温度を得ようとするものであり、空調空気を室内空間へ噴き出す一般的な空気噴流式の空調システムと比較して、空気を攪拌する必要がないので、不快な気流感や空調騒音が少なく、室内の空気温度自体は、冬は低めに、夏は高めに抑えられるので、窓を通した熱漏れや換気によるエネルギーロスが少なくなり、さらには空気温度の設定が抑えられるため、冬の相対湿度は高めに、夏の相対湿度は低めにシフトし、快適な湿度環境が形成されるといった利点があり、就寝中の人や低代謝の人に適した空調システムであるといえる。
Here, the human sensible temperature can be roughly expressed by the following equation (1).
The radiation air conditioning system is to be obtained a proper sensible temperature by adjusting the t 2 in the formula (1), as compared to general air jets air conditioning system that blows conditioned air into the indoor space Because there is no need to stir the air, there is less unpleasant airflow and air conditioning noise, and the indoor air temperature itself can be kept low in winter and high in summer. Since energy loss is reduced and the air temperature setting is reduced, the relative humidity in winter is increased and the relative humidity in summer is shifted to a lower level, creating a comfortable humidity environment. It can be said that it is an air conditioning system suitable for people with low metabolism and those with low metabolism.

特開平5−149586号公報JP-A-5-149586

しかしながら、図9に示す従来の技術による放射空調システムは、空調機103や断熱材102や配管などを天井裏空間104に設置するものであることから、施工やメンテナンスなどが天井裏での作業となり、しかも天井裏空間104の高さがある程度高いものである必要がある。しかも、天井裏空間104がある程度加熱あるいは冷却されないと、天井材101から室内空間105への放射が行われないため冷暖房の立ち上がりが悪く、このため室内空間105が快適な空間となるのに長時間を要し、室内空間105で発生した水分を透湿性のある天井材101を用いて天井裏空間104へ透過させることによって除湿効果を期待しているが、一般的な室内対流による空調方式に比較して、除湿能力が劣る懸念もあった。   However, since the conventional radiant air conditioning system shown in FIG. 9 installs the air conditioner 103, the heat insulating material 102, the piping, and the like in the ceiling space 104, construction and maintenance work is performed on the ceiling. In addition, the height of the ceiling space 104 needs to be high to some extent. In addition, if the ceiling space 104 is not heated or cooled to some extent, radiation from the ceiling material 101 to the indoor space 105 is not performed, so that the heating and cooling does not start well, and therefore the indoor space 105 becomes a comfortable space for a long time. The dehumidifying effect is expected by allowing moisture generated in the indoor space 105 to permeate into the ceiling space 104 using the ceiling material 101 having moisture permeability. There was also a concern that the dehumidifying ability was inferior.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題とするところは、天井裏空間の高さに関係なく施工可能であって、しかも冷暖房の立ち上がりや除湿能力に優れた放射空調システムを提供することにある。   The present invention has been made in view of the above points, and the technical problem is that it can be constructed regardless of the height of the space behind the ceiling, and the rise and dehumidification ability of the cooling and heating It is to provide an excellent radiation air conditioning system.

上述した技術的課題を有効に解決するための手段として、請求項1の発明に係る放射空調システムは、室内空間を区画する面に離間配置されて室内空間への熱放射を行う放射パネルと、冷房運転と暖房運転とを行い、室内空間の空気を取り込んで前記室内空間を区画する面と前記放射パネルとの間の空調空気流通空間へ冷却空気又は加熱空気を供給する空調機と、を備え、前記空調空気流通空間は前記室内空間へ開放されており、前記放射パネルは水蒸気の通過を許容する透湿性を有する。なお、ここでいう「室内空間を区画する面」とは、天井面、壁面、床面を総称するものである。 As a means for effectively solving the technical problem described above, a radiant air conditioning system according to the invention of claim 1 includes a radiant panel that is spaced apart from a surface that divides the indoor space and radiates heat to the indoor space; perform cooling operation and heating operation, it takes in air in the indoor space and a air conditioner for supplying cooling air or heating air to the conditioned air flow space between the surface and the radiation panel for partitioning the interior space The conditioned air circulation space is open to the indoor space, and the radiant panel has moisture permeability that allows water vapor to pass therethrough. In addition, the "surface which divides indoor space" here is a general term for a ceiling surface, a wall surface, and a floor surface.

請求項1の構成によれば、放射パネルは、この放射パネルと、室内空間を区画する面との間の空調空気流通空間へ、空調機から冷却空気又は加熱空気(空調空気)を供給することによって、この空調空気が擦過する過程で熱交換されて冷却又は加熱され、その表面温度に応じた放射強度で室内空間へ熱放射することによる放射冷暖房を行い、すなわち先に説明した式(1)におけるt2を調整するものである。一方、放射パネルと熱交換されることによって適宜昇温した前記冷却空気又は適宜降温した前記加熱空気は、前記空調空気流通空間の開放端部から室内空間へ流出し、対流によって室内空間の空気を調温する室内対流冷暖房を行い、すなわち式(1)におけるt1を調整して、上記放射冷暖房効果を補うものである。また放射パネルが水蒸気の通過を許容する本発明の放射空調システムは、冷房運転時に空調空気流通空間を通過する空調空気(冷却空気)によって冷却される放射パネルに結露を生じるのを防止することができる。 According to the first aspect, the radiation panel, supply and the radiation panel, the conditioned air flow space between the surface defining the interior space, the air conditioner or al cold却空air or heated air (conditioned air) In this process, the air-conditioned air is heat-exchanged in the process of being rubbed and cooled or heated, and radiant cooling / heating is performed by radiating heat into the indoor space with a radiation intensity corresponding to the surface temperature. T2 in 1) is adjusted. On the other hand, the cooling air appropriately heated by the heat exchange with the radiant panel or the heated air appropriately cooled flows out from the open end of the air-conditioned air circulation space into the indoor space, and the air in the indoor space is convected. Indoor convection cooling / heating for temperature adjustment is performed, that is, t1 in the equation (1) is adjusted to supplement the radiant cooling / heating effect. In addition, the radiant air conditioning system of the present invention in which the radiant panel allows the passage of water vapor prevents the radiant panel cooled by the conditioned air (cooling air) passing through the conditioned air circulation space during cooling operation from causing condensation. it can.

また、請求項2の発明に係る放射空調システムは、請求項1に記載の構成において、室内空間を区画する面のうち空調空気流通空間を介して放射パネルと対向する位置に断熱板を設けたことを特徴とするものである。   Moreover, the radiation air-conditioning system which concerns on invention of Claim 2 provided the heat insulation board in the position which opposes a radiation panel through the air-conditioning air circulation space among the surfaces which divide indoor space in the structure of Claim 1. It is characterized by this.

請求項2の構成によれば、空調機からの空調空気が空調空気流通空間を通過する過程で室内空間を区画する面と熱交換されることによる熱損失が断熱板によって抑制されるので、放射パネルからの熱放射効率、及び前記空調空気流通空間の開放端部から室内空間へ流出する空調空気による調温効率を高めると共に、冷房運転時に室内空間を区画する面が冷却されることによる結露の発生を防止することができる。   According to the configuration of claim 2, since heat loss due to heat exchange with the surface defining the indoor space in the process of passing the conditioned air from the air conditioner through the conditioned air circulation space is suppressed by the heat insulating plate, radiation The heat radiation efficiency from the panel and the temperature control efficiency by the conditioned air flowing out from the open end of the conditioned air circulation space to the indoor space are increased, and the surface that partitions the indoor space is cooled during cooling operation. Occurrence can be prevented.

請求項3の発明に係る放射空調システムは、請求項2に記載の構成において、断熱板が、室内空間を区画する面に所要の間隔をもって離間配置されたことを特徴とするものである。   A radiant air-conditioning system according to a third aspect of the present invention is characterized in that, in the configuration according to the second aspect, the heat insulating plates are spaced apart from each other on a surface partitioning the indoor space with a predetermined interval.

請求項3の構成によれば、室内空間を区画する面における既設部材等との断熱板の干渉を回避することが可能であり、あるいは室内空間を区画する面と断熱板の間の空間を利用して電気配線などを行うことも可能である。また、室内空間を区画する面と断熱板の間に介在する空気層が、断熱板から室内空間を区画する面への伝熱を絶縁する作用を奏するため、このことも、放射パネルからの熱放射効率、及び空調空気流通空間の開放端部から室内空間へ流出する空調空気による調温効率の向上に貢献する。   According to the configuration of claim 3, it is possible to avoid the interference of the heat insulating plate with the existing members on the surface that partitions the indoor space, or the space between the surface that partitions the indoor space and the heat insulating plate is used. It is also possible to perform electrical wiring. In addition, the air layer interposed between the surface that partitions the indoor space and the heat insulating plate acts to insulate the heat transfer from the heat insulating plate to the surface that partitions the indoor space. And it contributes to the improvement of temperature control efficiency by the conditioned air flowing out from the open end of the conditioned air circulation space to the indoor space.

請求項4の発明に係る放射空調システムは、請求項1〜3のいずれかに記載の構成において、放射パネルは、硬質繊維板であることを特徴とするものである。 A radiant air conditioning system according to a fourth aspect of the invention is characterized in that , in the configuration according to any one of the first to third aspects, the radiating panel is a hard fiberboard .

請求項4の構成によれば、空調機からの空調空気が空調空気流通空間を通過する過程で放射パネルと対向する面(室内空間を区画する面又は断熱板)側へ熱放射することによる熱損失、あるいは前記放射パネルが室内空間と反対側の面(空調空気流通空間側の面)から熱放射することによる熱損失が、反射材によって抑制されるので、放射パネルから室内空間への熱放射効率、及び前記空調空気流通空間の開放端部から室内空間へ流出する空調空気による調温効率を高めることができる。   According to the structure of Claim 4, the heat | fever by the heat radiation to the surface (surface or heat insulation board which divides indoor space) facing the radiation panel in the process in which the conditioned air from an air conditioner passes the conditioned air circulation space. Loss or heat loss due to heat radiation from the surface opposite to the indoor space (surface on the side of the conditioned air circulation space) is suppressed by the reflector, so that heat radiation from the radiation panel to the indoor space Efficiency and temperature control efficiency by the conditioned air flowing out from the open end of the conditioned air circulation space into the indoor space can be increased.

請求項5の発明に係る放射空調システムは、請求項1〜4のいずれかに記載の構成において、前記放射パネルには、透湿クロス材が貼着されていることを特徴とするものである。 Radiation air-conditioning system according to the invention of claim 5, in the structure according to any one of claims 1 to 4, wherein the radiation panel, characterized in that the moisture-permeable cloth material is adhered is there.

請求項6の発明に係る放射空調システムは、請求項1〜5のいずれかに記載の構成において、空調空気流通空間の外周部に、室内空間への空調空気の流出範囲を制限する堰き止め部を設けたことを特徴とするものである。 A radiant air-conditioning system according to a sixth aspect of the present invention is the damming device according to any one of the first to fifth aspects, wherein the outer peripheral portion of the conditioned air circulation space restricts the flow range of the conditioned air into the indoor space. This is characterized in that a portion is provided.

請求項6の構成によれば、空調機から空調空気流通空間を経由して室内空間へ流出する空調空気が堰き止め部によって一定の方向へ案内され、空調空気により冷却又は加熱される放射パネルの表面(放射面)の温度ムラができにくくなるので、室内空間への放射の均一化を図ることができる。   According to the configuration of the sixth aspect, the conditioned air flowing out from the air conditioner to the indoor space via the conditioned air circulation space is guided in a certain direction by the damming portion, and is cooled or heated by the conditioned air. Since it becomes difficult for the surface (radiation surface) to have temperature unevenness, radiation to the indoor space can be made uniform.

請求項7の発明に係る放射空調システムは、請求項1〜6のいずれかに記載の構成において、空調空気流通空間に、この空調空気流通空間を複数の流路に分割する仕切り部を設け、空調機からの空調空気の供給を、前記複数の流路に選択的に切り替え可能としたことを特徴とするものである。 A radiant air-conditioning system according to a seventh aspect of the present invention is the configuration according to any one of the first to sixth aspects, wherein the conditioned air circulation space is provided with a partition that divides the conditioned air circulation space into a plurality of flow paths. The supply of conditioned air from the air conditioner can be selectively switched to the plurality of flow paths.

請求項7の構成によれば、空調空気により冷却又は加熱される放射パネルによる熱放射の稼働範囲を任意に制御することができる。   According to the structure of Claim 7, the operating range of the heat radiation by the radiation panel cooled or heated by the conditioned air can be arbitrarily controlled.

請求項8の発明に係る放射空調システムは、請求項1〜7のいずれかに記載の構成において、放射パネル2に、室内空間を照明する照明器具を取り付けたことを特徴とするものである。 A radiant air-conditioning system according to an eighth aspect of the invention is characterized in that, in the configuration according to any one of the first to seventh aspects, a lighting fixture for illuminating an indoor space is attached to the radiant panel 2. .

請求項8の構成によれば、本発明の放射空調システムを設けずに天井面に照明器具を取り付けた場合と同様の室内照明を確保することができる。   According to the structure of Claim 8, the indoor lighting similar to the case where a lighting fixture is attached to a ceiling surface without providing the radiation air-conditioning system of this invention can be ensured.

本発明に係る放射空調システムによれば、空調機等を必ずしも天井裏空間に設置する必要がなく、設置の自由度が高まるため、天井裏空間の高さに関係なく施工可能である。また、放射パネルからの熱放射による放射冷暖房効果と、放射パネルの裏側の空調空気流通空間の開放端部から冷却空気又は加熱空気が室内空間へ流出することによる対流冷暖房効果が互いに補完し合うため、立ち上がり性に優れた冷暖房が可能となる。しかも、空調機は対流冷暖房用と同様に室内空気を取り込んで空調するものであるため、冷房時における除湿性を確保することができる。   According to the radiant air-conditioning system according to the present invention, it is not always necessary to install an air conditioner or the like in the ceiling space, and the degree of freedom of installation increases, so that the construction can be performed regardless of the height of the ceiling space. In addition, the radiant cooling and heating effect by heat radiation from the radiant panel complements the convective cooling and heating effect caused by cooling air or heated air flowing into the indoor space from the open end of the conditioned air circulation space on the back side of the radiant panel. This makes it possible to perform air conditioning with excellent standing characteristics. Moreover, since the air conditioner takes in indoor air and performs air conditioning in the same manner as for convection cooling and heating, it is possible to ensure dehumidification during cooling.

射空調システムの第一の実施の形態を示す概略構成説明図である。It is a schematic diagram showing a first embodiment of release morphism air conditioning system. 射空調システムの第二の実施の形態を示す概略構成説明図である。It is a schematic diagram showing a second embodiment of release morphism air conditioning system. 射空調システムの第三の実施の形態を示す概略構成説明図である。It is a schematic diagram showing a third embodiment of release morphism air conditioning system. 射空調システムの第四の実施の形態を示す概略構成説明図である。It is a schematic configuration diagram showing a fourth embodiment of release morphism air conditioning system. 射空調システムの第五の実施の形態を示す概略構成説明図である。It is a schematic explanatory view illustrating a fifth embodiment of the release morphism air conditioning system. 射空調システムの第六の実施の形態を示す概略構成説明図である。It is a schematic explanatory view illustrating a sixth embodiment of the release morphism air conditioning system. 射空調システムの第七の実施の形態を示す概略構成説明図である。It is a schematic diagram showing a seventh embodiment of the release morphism air conditioning system. 射空調システムの第八の実施の形態を示す概略構成説明図である。Is a schematic diagram showing an eighth embodiment of the release morphism air conditioning system. 従来技術に係る放射空調システムの一例を概略的に示す縦断面図である。It is a longitudinal section showing an example of a radiation air-conditioning system concerning a prior art roughly.

以下、放射空調システムの種々の実施の形態について、図面を参照しながら説明する。まず図1は、第一の実施の形態を示すものである。 Hereinafter, various embodiments of release morphism air conditioning system will be described with reference to the drawings. First, FIG. 1 shows a first embodiment.

図1における参照符号1は室内空間であり、11は室内空間1を画成する天井面、12は壁面、13は床面である。天井面11には放射パネル2が離間配置され、壁面12には室内空間1の空気を取り込んで天井面11と放射パネル2の裏面との間の空調空気流通空間S1へ空調空気を供給する空調機(ヒートポンプ式空調機における室内機)3が取り付けられており、空調空気流通空間S1は室内空間1へ開放されている。なお、天井面11は請求項1に記載された「室内空間を区画する面」に相当する。   Reference numeral 1 in FIG. 1 is an indoor space, 11 is a ceiling surface that defines the indoor space 1, 12 is a wall surface, and 13 is a floor surface. The radiating panel 2 is spaced apart from the ceiling surface 11, and the wall surface 12 takes in air from the indoor space 1 and supplies conditioned air to the conditioned air circulation space S 1 between the ceiling surface 11 and the back surface of the radiating panel 2. A machine (indoor unit in a heat pump type air conditioner) 3 is attached, and the conditioned air circulation space S1 is open to the indoor space 1. The ceiling surface 11 corresponds to the “surface that divides the indoor space” described in claim 1.

放射パネル2としては、好ましくは熱抵抗が小さく(熱伝導性が良く)、かつ透湿性を有する薄肉の硬質繊維板(たとえば厚さ2.5mmのハードボード)が採用され、空調機3からの空調空気(冷却・除湿空気又は加熱空気)は、通風管31を介して空調空気流通空間S1へ送られるようになっている。   As the radiating panel 2, a thin hard fiber board (for example, a hard board having a thickness of 2.5 mm) having a low thermal resistance (good thermal conductivity) and moisture permeability is preferably used. The conditioned air (cooling / dehumidified air or heated air) is sent to the conditioned air circulation space S <b> 1 through the ventilation pipe 31.

上記構成において、夏季に冷房を行う場合は、ユーザーが不図示のリモコン等の操作によって空調機3を冷房運転させると、まず空調機3からの冷却空気が通風管31を介して空調空気流通空間S1へ送られる。そしてこの冷却・除湿空気が空調空気流通空間S1を通過する過程で、熱抵抗の小さい放射パネル2の裏面(上面)を擦過することによってこの放射パネル2との熱交換が行われ、すなわち放射パネル2が冷却されるので、先に説明した式(1)におけるtが低下し、この放射パネル2の表面(下面)から室内空間1への冷熱の放射TRが行われる。なお、この場合、実際には、冷却された放射パネル2からの熱(赤外線)の放射強度は著しく低いものとなるので、ヒトの体表面などから放射された熱が、冷却された放射パネル2の表面で反射せずに吸収されることによって冷感を感じるものであるが、ここでは便宜的に、放射パネル2からの放射TRによる冷感を感じるものとする。 In the above configuration, when performing cooling in the summer, when the user performs cooling operation of the air conditioner 3 by operating a remote controller (not shown), first, the cooling air from the air conditioner 3 is conditioned air circulation space via the ventilation pipe 31. S1 is sent. In the process of passing the cooling / dehumidifying air through the conditioned air circulation space S1, heat exchange with the radiant panel 2 is performed by rubbing the back surface (upper surface) of the radiant panel 2 having a small thermal resistance. Since 2 is cooled, t 2 in the above-described equation (1) decreases, and radiation of cold heat TR from the surface (lower surface) of the radiation panel 2 to the indoor space 1 is performed. In this case, the radiation intensity of the heat (infrared rays) from the cooled radiating panel 2 is actually extremely low, so that the heat radiated from the human body surface or the like is cooled by the cooled radiating panel 2. However, for the sake of convenience, it is assumed that the cooling sensation due to the radiation TR from the radiating panel 2 is sensed.

一方、放射パネル2と熱交換されることによって適宜昇温した冷却空気は、空調空気流通空間S1の開放端部から室内空間1へ流出し、対流によって室内空間1を下降する。そしてこの冷却空気の流れは、空調空気流通空間S1での拡散や摩擦によって減速されていることに加え、上述のように、放射パネル2との熱交換によって適宜昇温しているため、室内対流による下降速度が緩やかであり、しかもこの下降気流は放射パネル2の周囲から壁面12に沿って発生する。このため不快な気流感が抑えられて、例えば横臥位にあるユーザーは、主として放射パネル2からの放射TRによる冷感を感じることとなる。   On the other hand, the cooling air whose temperature is appropriately increased by heat exchange with the radiant panel 2 flows out from the open end of the conditioned air circulation space S1 to the indoor space 1 and descends the indoor space 1 by convection. The flow of the cooling air is decelerated by diffusion and friction in the conditioned air circulation space S1 and, as described above, is appropriately heated by heat exchange with the radiating panel 2, so that the indoor convection The descending speed due to the above is moderate, and this descending airflow is generated along the wall surface 12 from the periphery of the radiation panel 2. For this reason, an unpleasant air flow feeling is suppressed, and for example, a user in a lying position feels a cooling sensation mainly due to the radiation TR from the radiation panel 2.

また、空調機3は室内空間1の空気を取り込んで冷却・除湿するため、室内空間1の水蒸気量が減少する。詳しくは、室内空間1内の空気が空調機3に取り込まれて冷却される際には、空気に含まれる水蒸気が飽和して凝縮され、液化して建物の外部へ排出されるので、空調空気流通空間S1へ供給される冷却空気は湿度が低いものとなっている。このため透湿性を有する放射パネル2に吸収された水蒸気が浸透圧によって空調空気流通空間S1へ効率良く放湿され、その後、室内空間1を経由して空調機3に取り込まれて凝縮され、除去されることになる。またこのとき、空調機3内で水蒸気が液化する際の潜熱もヒートポンプ機構によって建物の外部へ放出されるため、室内空間1の水蒸気量が減少するのである。   Moreover, since the air conditioner 3 takes in the air of the indoor space 1 and cools and dehumidifies it, the amount of water vapor in the indoor space 1 decreases. Specifically, when the air in the indoor space 1 is taken into the air conditioner 3 and cooled, the water vapor contained in the air is saturated and condensed, liquefied and discharged outside the building. The cooling air supplied to the circulation space S1 has a low humidity. For this reason, the water vapor absorbed by the radiant panel 2 having moisture permeability is efficiently released into the conditioned air circulation space S1 by osmotic pressure, and then taken into the air conditioner 3 via the indoor space 1 to be condensed and removed. Will be. At this time, since the latent heat generated when the water vapor is liquefied in the air conditioner 3 is also released to the outside of the building by the heat pump mechanism, the amount of water vapor in the indoor space 1 is reduced.

また、従来の放射空調システムのように天井裏の空間全体を冷却する必要がないことに加え、空調空気流通空間S1を通過した冷却空気が室内空間1の上部へ流出するようにしたため、放射冷房の立ち上がりの悪さが改善され、短時間で快適な環境とすることができる。さらに、式(1)におけるtが低下するため、一般的な対流型(空気噴流型)の空調システムに比較して室温(式(1)における空気の温度t)を高く設定することができ、このため例えば窓を開けて換気を行う場合の外気との温度差が小さくなって熱損失も小さく抑えられ、その結果、省エネルギーに寄与することができる。 In addition to the need to cool the entire space behind the ceiling unlike the conventional radiant air conditioning system, the cooling air that has passed through the conditioned air circulation space S1 flows out to the upper part of the indoor space 1. The poor start-up is improved, and a comfortable environment can be achieved in a short time. Furthermore, since t 2 in the equation (1) decreases, the room temperature (the air temperature t 1 in the equation (1)) can be set higher than in a general convection type (air jet type) air conditioning system. For this reason, for example, the temperature difference with the outside air when ventilating by opening a window is reduced, and the heat loss is also reduced, and as a result, it is possible to contribute to energy saving.

しかも、放射パネル2を構成する硬質繊維板は透湿性を有するため、空調空気流通空間S1を通過する冷却空気で冷却されることによって放射パネル2の放射面(室内空間1を向いた面)に結露を生じるのを防止することができ、このため、結露に伴う潜熱放出による放射冷房効率の悪化も防止することができる。   And since the hard fiber board which comprises the radiation panel 2 has moisture permeability, it cools with the cooling air which passes air-conditioning air circulation space S1, and becomes the radiation | emission surface (surface which faced the indoor space 1) of the radiation panel 2 Condensation can be prevented from occurring, and therefore, deterioration of the radiant cooling efficiency due to latent heat emission accompanying condensation can be prevented.

次に、冬季に暖房を行う場合は、ユーザーが不図示のリモコン等の操作によって空調機3を暖房運転させると、まず空調機3からの加熱空気が通風管31を介して空調空気流通空間S1へ送られる。そしてこの加熱空気が空調空気流通空間S1を通過する過程で放射パネル2との熱交換が行われ、すなわち放射パネル2が加熱されるので、先に説明した式(1)におけるtが高くなり、この放射パネル2によって室内空間1への熱の放射TRが行われる。 Next, in the case of heating in winter, when the user causes the air conditioner 3 to perform a heating operation by operating a remote controller (not shown), first, heated air from the air conditioner 3 is conditioned air circulation space S1 via the ventilation pipe 31. Sent to. Then, heat exchange with the radiating panel 2 is performed in a process in which the heated air passes through the conditioned air circulation space S1, that is, the radiating panel 2 is heated, so that t 2 in the formula (1) described above becomes high. The radiation panel 2 radiates heat TR to the indoor space 1.

一方、放射パネル2と熱交換されることによって適宜降温した加熱空気は、空調空気流通空間S1の開放端部から室内空間1へ流出し、室内空間1の上部(ヒトの身長より高い領域)に滞留する。このためヒトの生活空間内での上下温度分布差や気流による不快感が抑えられて、例えば横臥位にあるユーザーは、主として放射パネル2からの放射TRによる温感を感じるものとなる。   On the other hand, the heated air appropriately cooled by heat exchange with the radiant panel 2 flows out from the open end portion of the conditioned air circulation space S1 into the indoor space 1 and enters the upper portion of the indoor space 1 (an area higher than the height of the human). Stay. For this reason, the discomfort due to the difference in temperature distribution in the human living space and the airflow is suppressed, and for example, a user in the lying position feels a warm feeling mainly due to the radiation TR from the radiation panel 2.

また、従来の放射空調システムのように天井裏の空間全体を温める必要がないので、放射暖房の立ち上がりの悪さが改善され、短時間で快適な環境とすることができる。さらに、式(1)におけるtを上昇させるため、一般的な対流型(空気噴流型)の空調システムに比較して室温(式(1)における空気の温度t)を低く設定することができる。しかも空調空気流通空間S1から流出した加熱空気は室内空間1の上部に滞留しており、室内空間1の下部の空気は比較的低温であるため、例えば窓を開けて換気を行う場合の外気との温度差が小さくなって熱損失も小さく抑えられ、その結果、省エネルギーに寄与することができる。 Moreover, since it is not necessary to heat the entire space behind the ceiling unlike the conventional radiant air conditioning system, the bad rise of the radiant heating is improved, and a comfortable environment can be obtained in a short time. Further, to raise the t 2 in the formula (1), common convection be set low (temperature t 1 of the air in the formula (1)) at room temperature compared to the air conditioning system (air jet type) it can. Moreover, since the heated air that has flowed out of the conditioned air circulation space S1 stays in the upper portion of the indoor space 1 and the air in the lower portion of the indoor space 1 is relatively low temperature, for example, outside air when opening a window for ventilation As a result, the temperature difference is reduced and the heat loss is also reduced. As a result, it is possible to contribute to energy saving.

さらに、夏季の冷房時には、空調機3によって室内空間1の空気が除湿されることに加え、上述のように、室温を高く設定できることから、夏の室内の相対湿度が低めにシフトし、冬季の暖房時には室温を低く設定できることから、冬の室内の相対湿度が高めにシフトすることになる。したがって快適な湿度環境を創出することができる。また先に説明したように、横臥位にあるユーザーは、主として放射パネル2からの放射による穏やかな冷感や温感を与えられるので、住宅の寝室、老人福祉施設の個室など、人が仰臥位もしくは低代謝でいる時間が長い室内の空調手段として効果的である。   Further, during the cooling in summer, the air in the indoor space 1 is dehumidified by the air conditioner 3 and, as described above, the room temperature can be set high, so that the relative humidity in the summer shifts to a lower level in the winter. Since the room temperature can be set low during heating, the relative humidity in the winter room shifts to a higher level. Therefore, a comfortable humidity environment can be created. In addition, as described above, users in a lying position are given a gentle cooling and warm feeling mainly by radiation from the radiating panel 2, so that a person is supine, such as a bedroom in a house or a private room in a welfare facility for the elderly. Or it is effective as an indoor air-conditioning means with a long period of low metabolism.

しかも上記構成の放射空調システムによれば、空調機3などは室内空間1に設置されるものであり、従来のように天井裏に設置する必要がないため、天井裏空間の高さに関係なく施工可能である。またこのため、メンテナンスなども容易に行うことができる。   Moreover, according to the radiation air conditioning system having the above-described configuration, the air conditioner 3 and the like are installed in the indoor space 1 and do not need to be installed on the back of the ceiling as in the conventional case. Construction is possible. For this reason, maintenance and the like can be easily performed.

なお、図1に示す例では、空調機3からの空調空気を放射パネル2の裏面の中央部に垂直に吹き付けて拡散させるようにしているが、温度を均一化させるには、後述する各形態のように、空調空気を放射パネル2と平行な方向へ供給することも好適である。   In the example shown in FIG. 1, the conditioned air from the air conditioner 3 is blown perpendicularly to the center of the back surface of the radiating panel 2 and diffused. As described above, it is also preferable to supply the conditioned air in a direction parallel to the radiation panel 2.

図2は、放射空調システムの第二の実施の形態を示すものである。この第二の実施の形態は、上述した第一の実施の形態の構成に加えて、天井面11のうち空調空気流通空間S1を介して放射パネル2と対向する位置に、例えば発泡樹脂保温材等からなる断熱板4を設けたものである。 Figure 2 shows a second embodiment of release morphism air conditioning system. In the second embodiment, in addition to the configuration of the first embodiment described above, for example, a foamed resin heat insulating material is provided at a position on the ceiling surface 11 facing the radiation panel 2 via the conditioned air circulation space S1. A heat insulating plate 4 made of or the like is provided.

このように構成すれば、空調空気流通空間S1が放射パネル2と断熱板4の間に形成されることになり、したがって空調機3から通風管31を介して送られる空調空気(冷却・除湿空気又は加熱空気)は、空調空気流通空間S1を通過する過程で天井面11への伝熱が遮断されるので熱損失が小さくなり、放射パネル2からの室内空間1への放射効率を高めると共に、空調空気流通空間S1の開放端部から室内空間1へ流出する空調空気による調温効率を高めることができる。   If comprised in this way, air-conditioning air circulation space S1 will be formed between the radiation panel 2 and the heat insulation board 4, Therefore, the air-conditioning air (cooling / dehumidification air sent from the air conditioner 3 via the ventilation pipe 31 is used. (Or heated air), the heat transfer to the ceiling surface 11 is blocked in the process of passing through the air-conditioned air circulation space S1, so that heat loss is reduced, and the radiation efficiency from the radiation panel 2 to the indoor space 1 is increased. The temperature control efficiency by the conditioned air flowing out from the open end of the conditioned air circulation space S1 into the indoor space 1 can be increased.

特に冷房運転時に、空調空気流通空間S1を通る冷却空気によって天井面11が冷却されないので、天井面11での結露の発生を防止することができる。   In particular, during the cooling operation, the ceiling surface 11 is not cooled by the cooling air passing through the conditioned air circulation space S1, so that it is possible to prevent condensation on the ceiling surface 11.

なお、放射パネル2と断熱板4との間隔(空調空気流通空間S1の高さ)L1は狭いほど熱効率は良くなるが空気抵抗が大きくなり、広いほど抵抗は小さくなるが、広すぎると暖房運転時において空調空気流通空間S1へ供給された加熱空気が放射パネル2と接触せずに上昇してしまいやすく、熱効率が低下するので、10〜50mm程度とするのが好ましい。そしてこのような間隔L1を保つために、放射パネル2と断熱板4の間に不図示のスペーサを介在させて、この放射パネル2と断熱板4を天井面11に取り付ける。   Note that the narrower the distance L1 between the radiating panel 2 and the heat insulating plate 4 (the height of the air-conditioned air circulation space S1), the better the thermal efficiency, but the greater the air resistance, and the wider the resistance, the smaller the resistance. At this time, the heated air supplied to the conditioned air circulation space S1 is likely to rise without coming into contact with the radiating panel 2, and the thermal efficiency is lowered. And in order to maintain such a space | interval L1, the spacer (not shown) is interposed between the radiation panel 2 and the heat insulation board 4, and this radiation panel 2 and the heat insulation board 4 are attached to the ceiling surface 11. FIG.

図3は、放射空調システムの第三の実施の形態を示すものである。この第三の実施の形態は、上述した第二の実施の形態の構成に加えて、放射パネル2に、室内空間1を照明する照明器具5を取り付けたものである。この場合、照明器具5への電気配線は空調空気流通空間S1を利用して行うことができる。 Figure 3 shows a third embodiment of release morphism air conditioning system. In the third embodiment, in addition to the configuration of the second embodiment described above, a luminaire 5 for illuminating the indoor space 1 is attached to the radiation panel 2. In this case, the electrical wiring to the lighting fixture 5 can be performed using the conditioned air circulation space S1.

このように構成すれば、放射空調システムを設けずに天井面11に照明器具5を取り付けた場合とほぼ同様の室内照明を確保することができる。なおこの場合、照明器具5の周囲の領域で放射パネル2からの放射TRが行われる。 According to this structure, it is possible to secure substantially the same room lighting and if fitted with a lighting apparatus 5 to the ceiling surface 11 without providing the air conditioning radiate system. In this case, radiation TR from the radiation panel 2 is performed in a region around the lighting fixture 5.

図4は、放射空調システムの第四の実施の形態を示すものである。この第四の実施の形態は、上述した第二の実施の形態の構成に加えて、断熱板4における空調空気流通空間S1側の面及び(又は)天井面11側の面に、薄膜状の金属、例えばアルミニウムからなる反射材41を貼着したものである。 Figure 4 shows a fourth embodiment of release morphism air conditioning system. In the fourth embodiment, in addition to the configuration of the second embodiment described above, the surface of the heat insulating plate 4 on the air-conditioned air circulation space S1 side and / or the surface on the ceiling surface 11 side is a thin film. A reflective material 41 made of metal, for example, aluminum, is attached.

このように構成すれば、空調空気流通空間S1を通過する空調空気(冷却・除湿空気又は加熱空気)から、断熱板4側へ放射される熱が、断熱板4における空調空気流通空間S1側の面を覆う反射材41によって放射パネル2側へ反射されるので、断熱板4自体への伝熱による熱損失が低減するばかりでなく、放射パネル2への放射熱の入射量も増加する。したがって放射パネル2からの室内空間1への放射効率を高めると共に、空調空気流通空間S1の開放端部から室内空間1へ流出する空調空気による調温効率を高めることができる。また、天井面11からの放射熱は、断熱板4における天井面11側の面を覆う反射材41によって天井面11側へ反射される。   If comprised in this way, the heat radiated from the conditioned air (cooling / dehumidified air or heated air) passing through the conditioned air circulation space S1 to the heat insulation plate 4 side will be on the conditioned air circulation space S1 side in the heat insulation plate 4. Since it is reflected toward the radiation panel 2 by the reflecting material 41 covering the surface, not only heat loss due to heat transfer to the heat insulating plate 4 itself is reduced, but also the amount of incident radiation heat to the radiation panel 2 is increased. Therefore, the radiation efficiency from the radiation panel 2 to the indoor space 1 can be enhanced, and the temperature control efficiency by the conditioned air flowing out from the open end of the conditioned air circulation space S1 to the indoor space 1 can be enhanced. Further, the radiant heat from the ceiling surface 11 is reflected toward the ceiling surface 11 by the reflecting material 41 that covers the surface of the heat insulating plate 4 on the ceiling surface 11 side.

図5は、放射空調システムの第五の実施の形態を示すものである。この第五の実施の形態は、先に説明した第二の実施の形態の構成において、放射パネル2における空調空気流通空間S1と反対側(室内空間1側)の面に意匠性を高めるためにクロス材21を貼着し、このクロス材21には、放射パネル2の透湿性を損なうことのないように、透湿クロス材を採用したものである。 Figure 5 shows a fifth embodiment of the release morphism air conditioning system. In the fifth embodiment, in the configuration of the second embodiment described above, in order to improve the design on the surface of the radiating panel 2 opposite to the conditioned air circulation space S1 (inside the indoor space 1). A cloth material 21 is adhered, and a moisture-permeable cloth material is employed for the cloth material 21 so as not to impair the moisture permeability of the radiating panel 2.

図6は、放射空調システムの第六の実施の形態を示すものである。この第六の実施の形態は、先に説明した第二の実施の形態における断熱板4を、天井面11に対して均一な所要の間隔L2をもって離間配置し、適当な吊金具42などを介して取り付けたものである。 Figure 6 shows a sixth embodiment of the release morphism air conditioning system. In the sixth embodiment, the heat insulating plate 4 in the second embodiment described above is spaced apart from the ceiling surface 11 with a uniform required distance L2, and is attached via an appropriate hanging bracket 42 or the like. Attached.

このように構成すれば、天井面11の凹凸や天井面11に配置された埋め込み照明器具、スピーカーなどの器具14との干渉を回避することができ、あるいは断熱板4と天井面11の間の空間S2を利用することで電気配線や器具14の配置の自由度を高めることができる。しかも空間S2に存在する空気層の有する熱抵抗によって、断熱板4から天井面11への伝熱による熱損失も低減されるので、放射パネル2からの熱放射効率、及び空調空気流通空間S1の開放端部から室内空間1へ流出する空調空気による調温効率の向上にも貢献することができる。   If comprised in this way, the unevenness | corrugation of the ceiling surface 11 and interference with the fixtures 14, such as an embedded lighting fixture and a speaker arrange | positioned on the ceiling surface 11, can be avoided, or between the heat insulation board 4 and the ceiling surface 11 is possible. By using the space S2, the degree of freedom of arrangement of the electrical wiring and the instrument 14 can be increased. Moreover, heat loss due to heat transfer from the heat insulating plate 4 to the ceiling surface 11 is also reduced by the thermal resistance of the air layer present in the space S2, so that the heat radiation efficiency from the radiation panel 2 and the conditioned air circulation space S1 It can also contribute to the improvement of the temperature control efficiency by the conditioned air flowing out from the open end to the indoor space 1.

図7は、放射空調システムの第七の実施の形態を示すものである。この第七の実施の形態は、空調空気流通空間S1の外周部のうち、空調機3の吹き出し口から延びる通風管31の下流端部の開口位置側の領域を、放射パネル2の外周部の一部に一体的に取り付けた堰き止め部22によって平面形状コ字形に取り囲み、この堰き止め部22によって、空調空気流通空間S1から室内空間1への空調空気の流出範囲を制限したものである。なお、図7に示されていないその他の部分は、先に説明した図1〜図6に示すいずれの構成を採用しても良い。 Figure 7 shows a seventh embodiment of the release morphism air conditioning system. In the seventh embodiment, the region on the opening position side of the downstream end of the ventilation pipe 31 extending from the outlet of the air conditioner 3 in the outer peripheral portion of the conditioned air circulation space S1 is It is surrounded by a damming portion 22 that is integrally attached to a part in a plane U shape, and this damming portion 22 limits the outflow range of the conditioned air from the conditioned air circulation space S1 to the indoor space 1. In addition, you may employ | adopt any structure shown in FIGS. 1-6 demonstrated previously for the other part which is not shown by FIG.

このように構成すれば、空調機3から通風管31を介して空調空気流通空間S1へ送られた空調空気は、堰き止め部22によって堰き止められていない図中右側の開放端部へ向けて案内され、この開放端部から室内空間1へ流出することになる。したがって、空調空気により冷却又は加熱される放射パネル2の表面(放射面)の温度ムラができにくくなって、室内空間1への放射の均一化を図ることができる。   If comprised in this way, the air-conditioning air sent to the air-conditioning air circulation space S1 from the air conditioner 3 via the ventilation pipe 31 will be directed to the open end on the right side in the figure that is not blocked by the blocking unit 22. It is guided and flows out from the open end portion into the indoor space 1. Therefore, temperature unevenness on the surface (radiation surface) of the radiant panel 2 that is cooled or heated by the conditioned air is less likely to occur, and radiation to the indoor space 1 can be made uniform.

図8は、放射空調システムの第八の実施の形態を示すものである。この第八の実施の形態は、上述した図7と同様、空調空気流通空間S1の外周部を、放射パネル2の外周部の一部に一体的に取り付けた堰き止め部22によって平面形状コ字形に取り囲んだ構成に加え、この堰き止め部22によって囲まれた領域を、図中右側の開放端部へ向けて延びる仕切り部23によって複数の流路S1a,S1bに分割し、空調機3の吹き出し口から延びる通風管31を、ダンパ32を介して選択的に切り替え開閉可能な複数の分岐通風管31a,31bに分岐して、その下流端部を前記各流路S1a,S1bに開口させたものである。なお、図8に示されていないその他の部分は、先に説明した図1〜図6に示すいずれの構成を採用しても良い。 Figure 8 shows the eighth embodiment of the release morphism air conditioning system. In the eighth embodiment, similarly to FIG. 7 described above, the outer peripheral portion of the conditioned air circulation space S1 is planarly shaped by a damming portion 22 that is integrally attached to a part of the outer peripheral portion of the radiation panel 2. In addition to the configuration surrounded by, the area surrounded by the damming portion 22 is divided into a plurality of flow paths S1a and S1b by a partition portion 23 extending toward the open end on the right side in the figure, and the air conditioner 3 blows out. A ventilation pipe 31 extending from the opening is branched into a plurality of branch ventilation pipes 31a and 31b that can be selectively switched and opened via a damper 32, and the downstream ends thereof are opened to the flow paths S1a and S1b. It is. In addition, you may employ | adopt any structure shown in FIGS. 1-6 demonstrated previously for the other part which is not shown by FIG.

このように構成すれば、ダンパ32によって分岐通風管31a,31bの開閉を切り替えることで、空調機3からの空調空気を、空調空気流通空間S1における流路S1a,S1bのいずれかへ選択的に供給することができ、これによって放射領域を任意に変更することができる。   If comprised in this way, by switching opening and closing of the branch ventilation pipes 31a and 31b by the damper 32, the air-conditioning air from the air conditioner 3 is selectively sent to either of the flow paths S1a and S1b in the air-conditioning air circulation space S1. Which can be arbitrarily changed.

なお、放射領域の変更手段としてはダンパ32によるもののほか、仕切り部23の移動によるもの等も考えられる。   In addition, as a means for changing the radiation area, in addition to the one using the damper 32, one using the movement of the partition portion 23 and the like can be considered.

また、上述の各実施の形態では、放射パネル2(及び断熱板4)を天井面11に配置したが、これに限定するものではなく、例えば壁面12に平行に設置しても良い。このように構成した場合は、壁面と放射パネルの間、あるいは壁面に設置した断熱板と放射パネルの間に形成される空調空気流通空間内を空調空気が通過することで、横からの放射が行われる。 In each embodiment described above, it has been placed a radiation panel 2 (and the heat insulating plate 4) on the ceiling surface 11 is not limited to this, for example may be installed parallel to the wall surface 12. When configured in this way, radiation from the side is caused by passing the conditioned air through the conditioned air circulation space formed between the wall surface and the radiation panel or between the heat insulating plate installed on the wall surface and the radiation panel. Done.

なお、上述のように、ヒートポンプなどの空調機の室内機は居室内に設置できるという利点があるが、空気の取り入れ口及び噴き出し口が居室内にあれば、室内機の設置個所は特に限定されず、すなわち居室の天井裏や廊下の天井裏、あるいはクロゼット内などに設置することも可能である。 As described above, the indoor unit of the air conditioner, such as heat Toponpu has the advantage that can be installed in the room, but if inlet and ejection holes of the air within the room, installing locations of the indoor unit is particularly limited In other words, it can be installed in the ceiling of a living room, the ceiling of a corridor, or in a closet.

1 室内空間
11 天井面(室内空間を区画する面)
12 壁面(室内空間を区画する面)
13 床面(室内空間を区画する面)
2 放射パネル
21 クロス材
22 堰き止め部
23 仕切り部
3 空調機
32 ダンパ
4 断熱板
41 反射材
S1 空調空気流通空間
S1a,S1b 流路
1 indoor space 11 ceiling surface (surface which divides indoor space)
12 Wall surface (surface that divides indoor space)
13 Floor (surface that divides indoor space)
2 Radiation panel 21 Cross member 22 Damping part 23 Partition part 3 Air conditioner 32 Damper 4 Heat insulating plate 41 Reflective material S1 Air-conditioned air circulation space S1a, S1b Flow path

Claims (8)

室内空間を区画する面に離間配置されて室内空間への熱放射を行う放射パネルと、
冷房運転と暖房運転とを行い、室内空間の空気を取り込んで前記室内空間を区画する面と前記放射パネルとの間の空調空気流通空間へ冷却空気又は加熱空気を供給する空調機と、
を備え、
前記空調空気流通空間は前記室内空間へ開放されており、
前記放射パネルは水蒸気の通過を許容する透湿性を有する、
ことを特徴とする放射空調システム。
A radiant panel that is spaced apart from the surface that divides the indoor space and radiates heat to the indoor space;
An air conditioner that performs cooling operation and heating operation , takes air in the indoor space, and supplies cooling air or heated air to the air- conditioned air circulation space between the surface that divides the indoor space and the radiation panel;
With
The air-conditioned air circulation space is open to the indoor space ,
The radiant panel has moisture permeability that allows passage of water vapor,
Radiant air conditioning system characterized by that.
室内空間を区画する面のうち空調空気流通空間を介して放射パネルと対向する位置に断熱板を設けたことを特徴とする請求項1に記載の放射空調システム。   The radiant air-conditioning system according to claim 1, wherein a heat insulating plate is provided at a position facing the radiant panel through the conditioned air circulation space on a surface that partitions the indoor space. 断熱板が、室内空間を区画する面に所要の間隔をもって離間配置されたことを特徴とする請求項2に記載の放射空調システム。   The radiant air-conditioning system according to claim 2, wherein the heat insulating plates are spaced apart from each other on a surface partitioning the indoor space with a predetermined interval. 前記放射パネルは、硬質繊維板であることを特徴とする請求項1〜3のいずれかに記載の放射空調システム。 The radiation panel according to any one of claims 1 to 3, wherein the radiation panel is a hard fiberboard . 前記放射パネルには、透湿クロス材が貼着されていることを特徴とする請求項1〜4のいずれかに記載の放射空調システム。 The radiation air-conditioning system according to any one of claims 1 to 4, wherein a moisture-permeable cloth material is attached to the radiation panel . 空調空気流通空間の外周部に、室内空間への空調空気の流出範囲を制限する堰き止め部を設けたことを特徴とする請求項1〜5のいずれかに記載の放射空調システム。 The radiation air-conditioning system according to any one of claims 1 to 5, wherein a damming portion for restricting an outflow range of the conditioned air to the indoor space is provided on an outer peripheral portion of the conditioned air circulation space. 空調空気流通空間に、この空調空気流通空間を複数の流路に分割する仕切り部を設け、空調機からの空調空気の供給を、前記複数の流路に選択的に切り替え可能としたことを特徴とする請求項1〜6のいずれかに記載の放射空調システム。 The air-conditioned air circulation space is provided with a partition that divides the air-conditioned air circulation space into a plurality of flow paths, and the supply of the air-conditioned air from the air conditioner can be selectively switched to the plurality of flow paths. The radiation air-conditioning system according to any one of claims 1 to 6. 放射パネルに、室内空間を照明する照明器具を取り付けたことを特徴とする請求項1〜7のいずれかに記載の放射空調システム。 The radiation panel, radiation air-conditioning system according to any one of claims 1 to 7, characterized in that mounted luminaire for illuminating the indoor space.
JP2014123976A 2014-06-17 2014-06-17 Radiant air conditioning system Active JP6231441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014123976A JP6231441B2 (en) 2014-06-17 2014-06-17 Radiant air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014123976A JP6231441B2 (en) 2014-06-17 2014-06-17 Radiant air conditioning system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017156617A Division JP6389550B2 (en) 2017-08-14 2017-08-14 Radiant air conditioning method

Publications (2)

Publication Number Publication Date
JP2016003808A JP2016003808A (en) 2016-01-12
JP6231441B2 true JP6231441B2 (en) 2017-11-15

Family

ID=55223206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014123976A Active JP6231441B2 (en) 2014-06-17 2014-06-17 Radiant air conditioning system

Country Status (1)

Country Link
JP (1) JP6231441B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811542B2 (en) * 2016-03-29 2021-01-13 株式会社フジタ Radiant heating and cooling system
JP6811543B2 (en) * 2016-03-29 2021-01-13 株式会社フジタ Radiant heating and cooling equipment
JP6945700B2 (en) * 2016-04-05 2021-10-06 株式会社フジタ Radiant heating and cooling system
JP6883950B2 (en) * 2016-04-05 2021-06-09 株式会社フジタ Radiant heating and cooling system
JP6938314B2 (en) * 2017-09-28 2021-09-22 三井住友建設株式会社 Dehumidifying radiant air conditioning system
JP6543386B1 (en) * 2018-06-06 2019-07-10 株式会社フジタ Radiant panel
JP6543385B1 (en) * 2018-06-06 2019-07-10 株式会社フジタ Radiant panel unit and radiant air conditioning system
CN115751519B (en) * 2022-11-01 2024-08-06 珠海格力电器股份有限公司 Heating control method of capillary network air conditioning system, capillary network air conditioning system and storage medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51160447U (en) * 1975-06-14 1976-12-21
US4353411A (en) * 1980-02-04 1982-10-12 Harter James L Architectural support and service assembly
JPH06201152A (en) * 1992-12-29 1994-07-19 Osaka Gas Co Ltd Air-conditioning apparatus
JP3187707B2 (en) * 1996-03-22 2001-07-11 フクビ化学工業株式会社 Building cooling / heating / ventilation system
US5988264A (en) * 1998-02-11 1999-11-23 Goldsmith; Aaron Dynamic insulation and air conditioning and radiant heating system
ES2363911T3 (en) * 2007-08-01 2011-08-19 Caebit S.R.L. CLIMATE CONTROL SYSTEM OF LOW ENERGY CONSUMPTION.
WO2011114339A1 (en) * 2010-03-16 2011-09-22 Vangala Pattabhi Improved fixing of wall mounted fixing panel
JP2012013408A (en) * 2010-07-01 2012-01-19 Fukuchi Kenso:Kk Wall mounted type air conditioner heating radiation heat conversion device
NL2006421C2 (en) * 2011-03-18 2012-09-19 Autarkis B V Displacement ventilation system and inlet part for such a system.
US8528284B2 (en) * 2011-08-11 2013-09-10 Mark A. Aspenson Thermal energy venting system

Also Published As

Publication number Publication date
JP2016003808A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6231441B2 (en) Radiant air conditioning system
JP5544580B1 (en) Air conditioner and method of operating air conditioner
JP6512658B2 (en) Radiant air conditioning system
CN102230648B (en) Radiation heat exchange air-conditioning method of ceiling carrying energy by virtue of circulation air
JP2008304096A (en) Air conditioning system
JP6484090B2 (en) Radiant air conditioning system
WO2015137443A1 (en) Energy-saving building heating and cooling system integrated using effective air circulation technology
JP4648462B2 (en) Ventilation air conditioning system and unit building
US2887564A (en) Combined panel heating
JP6389550B2 (en) Radiant air conditioning method
JP6099151B2 (en) Air conditioner
JP4605759B2 (en) Indoor air conditioning system for buildings
JP2008075922A (en) Humidity-conditioning cooling/heating device and spatial structure using the same
JP4698204B2 (en) Indoor air conditioning system for buildings
JP6811543B2 (en) Radiant heating and cooling equipment
JP2019007716A (en) Radiation air-conditioning system
US2855185A (en) Heating of buildings
JP6789330B2 (en) Radiant air conditioning system
JP2017180904A (en) Radiation air-conditioning system
JP6874960B2 (en) Radiant air conditioner unit and radiant air conditioner using it
KR101081669B1 (en) Light Weight Concrete Panel for Warming-Cooling and Wall Structure using such Panel
JP7015645B2 (en) Air conditioning system
JP2009257681A (en) Air conditioning system
JP3123276U (en) Housing structure
JP6224881B2 (en) Radiant air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170525

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171019

R150 Certificate of patent or registration of utility model

Ref document number: 6231441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250