JPH0632285B2 - Method and device for induction heating of metal tube - Google Patents

Method and device for induction heating of metal tube

Info

Publication number
JPH0632285B2
JPH0632285B2 JP62266031A JP26603187A JPH0632285B2 JP H0632285 B2 JPH0632285 B2 JP H0632285B2 JP 62266031 A JP62266031 A JP 62266031A JP 26603187 A JP26603187 A JP 26603187A JP H0632285 B2 JPH0632285 B2 JP H0632285B2
Authority
JP
Japan
Prior art keywords
metal tube
induction heating
refrigerant
temperature
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62266031A
Other languages
Japanese (ja)
Other versions
JPH01107489A (en
Inventor
宣昭 平岡
博 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62266031A priority Critical patent/JPH0632285B2/en
Publication of JPH01107489A publication Critical patent/JPH01107489A/en
Publication of JPH0632285B2 publication Critical patent/JPH0632285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属管の誘導加熱方法に係わり、特に管材の偏
肉に起因する加熱後の管断面方向での温度差(以下偏熱
と呼ぶ)を減少し、均等な加熱を実現するための誘導加
熱方法及びその実施に使用する装置に関する。
Description: TECHNICAL FIELD The present invention relates to an induction heating method for a metal tube, and particularly to a temperature difference in the cross-sectional direction of the tube after heating due to uneven thickness of the tube material (hereinafter referred to as “unbalanced heat”). ) And an induction heating method for realizing uniform heating and a device used for the same.

〔従来技術〕[Prior art]

金属管の加熱は連続炉とバッチ炉とに大きく分類され、
連続炉をさらに送管機構で分けると、ディスクローラ式
(バレル炉),ハースローラ式(ローラハース炉)及び
ウォーキングビーム式に分類される。これらはいずれも
炉内輻射及び対流により管に熱を伝える方法であるの
で、管の温度は炉壁又は対流温度以上にはなり得ず、少
々の偏肉がある処理材でも均一に加熱を行うことができ
る。
Heating of metal tubes is roughly classified into continuous furnace and batch furnace,
If the continuous furnace is further divided by a pipe feeding mechanism, it is classified into a disk roller type (barrel furnace), a hearth roller type (roller hearth furnace) and a walking beam type. All of these are methods to transfer heat to the tube by radiation and convection in the furnace, so the temperature of the tube cannot exceed the furnace wall or convection temperature, and even the treated material with a slight uneven wall thickness is uniformly heated. be able to.

しかしながら加熱に長い時間を要し、周囲雰囲気に曝さ
れる時間が長いので、表面の酸化,金属組織の調整及び
物理的性質の安定性の面で問題が多かった。
However, since it takes a long time to heat and it is exposed to the ambient atmosphere for a long time, there were many problems in terms of surface oxidation, adjustment of metal structure and stability of physical properties.

これに対して最近誘導加熱コイルにより金属管の加熱を
短時間で、しかも清浄な雰囲気で行う方法が提案されて
いる。しかしながらこの方法は以前の方法と異なり、電
磁誘導により金属管に渦電流を発生させ、これによるジ
ュール熱により加熱する原理を利用しているので、周方
向に大きな偏肉があるとき、その薄肉部は他に比べて過
度な高温度になる可能性があり、温度の制御が非常に難
しく、温度条件が厳しい金属管の製造には適さなかっ
た。
On the other hand, recently, a method of heating a metal tube by an induction heating coil in a short time and in a clean atmosphere has been proposed. However, unlike the previous method, this method uses the principle of generating an eddy current in the metal tube by electromagnetic induction and heating it by Joule heat, so when there is a large uneven thickness in the circumferential direction, the thin wall part Has a possibility of reaching an excessively high temperature compared to others, and it is very difficult to control the temperature, and it was not suitable for the production of metal pipes under severe temperature conditions.

誘導加熱方法で金属管の温度制御を難しくしている要因
の大きなものは、加熱コイルと金属管との中心軸のずれ
(以下偏芯という)と金属管の周方向の偏肉とである。
偏芯による偏熱については金属管に回転を加えながら加
熱すれば、金属管の全周にわたって均等に伝熱が行なわ
れるので解消される。周方向の偏肉については、現状の
製管技術レベルではある程度避け得ないので、誘導加熱
を行う場合の問題は、如何にして偏肉による偏熱を低減
するかにかかっている。
A major factor that makes it difficult to control the temperature of the metal tube by the induction heating method is the deviation of the center axis between the heating coil and the metal tube (hereinafter referred to as eccentricity) and the uneven thickness of the metal tube in the circumferential direction.
The eccentricity due to the eccentricity can be eliminated by heating the metal tube while rotating it, because the heat is uniformly transferred over the entire circumference of the metal tube. Since the uneven thickness in the circumferential direction cannot be avoided to some extent at the current level of pipe manufacturing technology, the problem in the induction heating depends on how to reduce the uneven heat due to the uneven thickness.

誘導加熱方法において、偏肉がある金属管の偏熱の発生
を低減させる方法として、誘導加熱電源の周波数を低く
して浸透深さを大きくする(特開昭52−14486号,特開
昭53−10141 号)か、肉厚計で周方向の肉厚分布を計測
するか、温度計で周方向の温度分布を計測する(特開昭
53−114712号,特開昭55−128539号)という方法を用い
て、各々偏熱を最小限に抑えようとする提案がなされて
いる。
In the induction heating method, as a method for reducing the occurrence of uneven heat generation in a metal tube having uneven thickness, the frequency of the induction heating power source is lowered to increase the penetration depth (Japanese Patent Laid-Open Nos. 52-14486 and 53-53). -10141), or the thickness distribution in the circumferential direction is measured with a wall thickness gauge, or the temperature distribution in the circumferential direction is measured with a thermometer (Japanese Patent Laid-Open No. Sho.
Proposals have been made to minimize uneven heat distribution by using methods such as 53-114712 and JP-A-55-128539).

前者の方法のうち、1つは加熱コイルの外に、これとは
別の周波数で励磁される均熱コイルを設け,それを移動
して厚肉部を加熱するというものであり、もう1つは高
温域と低音域とで各別の周波数を使用して偏熱を防ぐと
いうものである。
Among the former methods, one is to provide a soaking coil outside the heating coil, which is excited at a frequency different from this, and move the soaking coil to heat the thick portion. Is to prevent uneven heat by using different frequencies for the high temperature range and the low frequency range.

後者の2つの方法のうち1つは肉厚計により厚肉部を検
出し、厚肉部を常にコイル内で上面にして偏熱を防ぐも
のであり、他の1つは温度又は肉厚の偏りを検出し、そ
れにより誘導コイルを偏芯させ、偏熱を防ぐものであ
る。
One of the latter two methods is to detect the thick portion by a wall thickness gauge and always keep the thick portion on the upper surface in the coil to prevent unbalanced heat. The deviation is detected, and thereby the induction coil is eccentric to prevent the deviation of heat.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前者の方法においては、周波数を低くし、浸透深さを大
きくする必要があるが、周波数を低くすると加熱コイル
から管への熱伝達効率が落ちるため、周波数をある程度
高くせざるを得ず、実際には浸透深さをあまり大きくす
ることはできなかった。また2種類の周波数が必要な場
合は別電源が必要となり、設備費も高価となる。
In the former method, it is necessary to lower the frequency and increase the penetration depth, but lowering the frequency lowers the efficiency of heat transfer from the heating coil to the tube, so there is no choice but to raise the frequency to some extent. The penetration depth could not be increased so much. Further, when two types of frequencies are required, a separate power source is required, and the equipment cost becomes expensive.

さらに後者においては、実際の制御が温度計及び肉厚計
の精度の問題、鋼管の周方向の各種温度分布に対する制
御性の問題、加熱コイル位置修正装置の応答性の遅れ等
から難しい。
Further, in the latter case, the actual control is difficult due to the problems of the accuracy of the thermometer and the wall thickness gauge, the problem of the controllability with respect to various temperature distributions in the circumferential direction of the steel pipe, the delay of the responsiveness of the heating coil position correcting device, and the like.

さらに偏肉には大きく分けて金属管の内外径の芯ずれの
ような偏芯性偏肉と、金属管の外周が真円形をなし、内
周が外周と同芯の略楕円形をなし、対向部の肉厚が同じ
傾向の対向性偏肉とがあるが、従来方法のうち後者の方
法では、この対向性偏肉については対処できなかった。
Furthermore, eccentricity is roughly divided into eccentricity eccentricity such as core misalignment of the inner and outer diameters of the metal tube, the outer circumference of the metal tube has a perfect circular shape, and the inner circumference has a substantially elliptical shape concentric with the outer circumference, Although there is a facing uneven thickness in which the thickness of the facing portion has the same tendency, the latter method of the conventional methods cannot deal with this facing uneven thickness.

本発明の第1の目的は安価な設備で格別の温度制御を必
要とすることなく偏肉の存在する金属管を加熱する際に
偏肉に起因して生じる偏熱を低減するにある。
A first object of the present invention is to reduce uneven heat generated due to uneven thickness when heating a metal tube having uneven thickness without requiring special temperature control with inexpensive equipment.

また本発明の第2の目的は金属管をその縦走方向の各部
に対し、短い縦走距離で加熱,強制冷却を複数回施すこ
とで短時間加熱により効果的な偏熱防止を図れるように
するにある。
A second object of the present invention is to effectively prevent uneven heat distribution by short-time heating by heating a metal tube to each part in the longitudinal direction at a short vertical distance and performing forced cooling a plurality of times. is there.

更に本発明の第3の目的は金属管の誘導加熱コイルと金
属管の縦走方向の下流側の冷媒噴射器とを組合せること
で、簡単な設備を利用して安価に、しかも既存の製管ラ
インに容易に適用可能とするにある。
A third object of the present invention is to combine an induction heating coil for a metal tube and a refrigerant injector on the downstream side of the metal tube in the longitudinal direction, thereby making it possible to use a simple facility at a low cost and to produce an existing tube. It can be easily applied to the line.

〔問題点を解決するための手段〕[Means for solving problems]

第1の発明に係る金属管の誘導加熱方法は、金属管を縦
走させつつ金属管に対する誘導加熱と、強制冷却とを交
互に施す過程で、金属管の温度を検出し、検出温度に基
づき金属管の偏熱を低減すべく、金属管に対する誘導加
熱出力,金属管に噴射される冷媒量を制御することを特
徴とする。
A metal pipe induction heating method according to a first aspect of the present invention detects a temperature of a metal pipe in a process of alternately performing induction heating and forced cooling of the metal pipe while vertically traversing the metal pipe, and detects the metal based on the detected temperature. It is characterized in that the induction heating output to the metal tube and the amount of the refrigerant injected into the metal tube are controlled in order to reduce the unbalanced heat of the tube.

第2の発明に係る金属管の誘導加熱装置は、金属管の縦
送方法に所定の間隙を隔てて配設され、夫々その搬送域
を囲繞する複数の環状の誘導加熱コイルと各誘導加熱コ
イル間を通じて金属管表面に冷媒を噴射する冷媒噴射器
とを有する少なくとも1個の誘導加熱器と、該誘導加熱
器の出側で測定した金属管の温度に基づき金属管の偏熱
を低減すべく前記誘導加熱コイル出力,冷媒噴射器から
の金属管に噴射される冷媒量を制御する制御装置とを備
えることを特徴とする。
An induction heating device for a metal tube according to a second aspect of the invention is provided with a plurality of annular induction heating coils and respective induction heating coils which are arranged with a predetermined gap in the longitudinal direction of the metal tube and surround the transportation area. At least one induction heater having a refrigerant injector for injecting a refrigerant onto the surface of the metal tube through the space, and to reduce the unbalanced heat of the metal tube based on the temperature of the metal tube measured at the outlet side of the induction heater. And a control device for controlling the output of the induction heating coil and the amount of the refrigerant injected from the refrigerant injector into the metal pipe.

第3の発明に係る金属管の誘導加熱装置は、金属管の縦
走方向に沿って、交互に複数組配設された金属管の搬送
域を囲繞する環状の誘導加熱コイル及び誘導加熱コイル
よりも金属管の縦走方向の下流側に位置し、金属管に冷
媒を噴射する冷媒噴射器と、金属管の温度を検出し、検
出温度に基づき誘導加熱コイル出力、前記冷媒噴射器か
らの金属管に噴射される冷媒量を制御する制御装置とを
備えることを特徴とする。
The induction heating device for a metal tube according to the third aspect of the present invention is more preferable than the annular induction heating coil and the induction heating coil that surround a plurality of sets of metal tube transport areas that are alternately arranged along the longitudinal direction of the metal tube. Located on the downstream side in the longitudinal direction of the metal tube, a refrigerant injector for injecting a refrigerant into the metal tube, and detecting the temperature of the metal tube, based on the detected temperature induction heating coil output, to the metal tube from the refrigerant injector. And a control device that controls the amount of the injected refrigerant.

〔作用〕 円周方向に偏肉のある金属管を誘導加熱した後、円周方
向に均質に強制冷却すると、薄肉部は冷えやすく、厚肉
部は冷えにくい。従って強制冷却することにより、誘導
加熱により引起される偏熱が打ち消されることとなり、
管の温度を円周方向に均質化することができる。
[Operation] When a metal tube having an uneven thickness in the circumferential direction is induction-heated and then forced to be uniformly cooled in the circumferential direction, the thin portion is easily cooled and the thick portion is difficult to be cooled. Therefore, by forcibly cooling, the unbalanced heat caused by induction heating is canceled out,
The temperature of the tube can be homogenized in the circumferential direction.

〔発明の原理〕[Principle of Invention]

以下本発明の原理を図面に基づき具体的に説明する。 Hereinafter, the principle of the present invention will be specifically described with reference to the drawings.

第1図は本発明の原理を説明するために描かれた、円周
方向に偏肉がある金属等の模式的断面図である。単位長
さの金属管の断面を周方向にn等分し、各々その分割片
に1,2,…i−1,i,i+1,…nと番号を付す。
tmax は全体の最大肉厚であり、tmin は同最小肉厚であ
る。tiは分割片i の肉厚であり、riは分割片iの平均半
径である。又Q1iは分割片iの外部から冷却による対流
伝達熱量、Q2i,Q3iは各々分割片iと両隣の分割片i
−1,同i+1との管内熱伝導熱量、Q4iは断熱熱量と
する。
FIG. 1 is a schematic sectional view of a metal or the like having an uneven thickness in the circumferential direction, which is drawn for explaining the principle of the present invention. The cross section of a metal pipe of unit length is divided into n equal parts in the circumferential direction, and the divided pieces are numbered 1, 2, ... i-1, i, i + 1 ,.
t max is the overall maximum wall thickness, and t min is the same minimum wall thickness. ti is the thickness of the divided piece i, and ri is the average radius of the divided piece i. Further, Q 1i is the amount of heat transferred by convection from the outside of the divided piece i, and Q 2i and Q 3i are the divided piece i and the adjacent divided pieces i.
-1, heat conduction heat quantity in the tube with i + 1, Q 4i is adiabatic heat quantity.

強制冷却により薄肉部の冷却効果が厚肉部より大きい理
由は以下のとおりである。
The reason why the cooling effect of the thin portion is larger than that of the thick portion by the forced cooling is as follows.

いま初期条件として、偏肉のある金属管が全体にわたり
均熱状態にあるとする。そこにQ1iなる対流伝達熱量に
より冷却を加えて、分割片iの温度θi が単位時間Δt
秒後θi′になったとすれば、伝熱理論より差分近似内
的を求めると、下記の如くなる。
Now, as an initial condition, it is assumed that the metal pipe having uneven thickness is in a uniform temperature state throughout. Cooling is applied thereto by the amount of heat transferred by convection, Q 1i, so that the temperature θ i of the divided piece i becomes unit time Δt
If θ i ′ is reached after a second, the difference approximation internal is obtained from the heat transfer theory as follows.

但し C:金属管の比熱 mi:分割片iの質量 λ:金属管の熱伝導率 λ:冷媒の熱伝導率 θ:冷媒の温度 Nu:ヌセルト数 上記(2)〜(5)式より、外部から冷却を円周方向に均等に
加えたとき、Q1iは分割片番号に関係なく一定であり、
2i,Q3iは初期状態が均熱であるのでQ2i=Q3i=0
である。従って(1)式より となる。(6)式より単位時間Δtあたりの温度降下量
θi′−θi は分割片質量miに依存する。つまり分割片
質量miが小さい薄肉部は、対流熱伝達熱量Q1iが同じ場
合、厚肉部に比べて温度降下量θi′−θi が大きくな
る。即ち薄肉部の方が厚肉部より温度降下が大きくなる
ので、薄肉部の温度が高い偏熱がある金属管を強制冷却
すると偏熱が減少することになる。
However C: Specific heat of metal tube mi: Mass of divided piece i λ: Thermal conductivity of metal tube λ A : Thermal conductivity of refrigerant θ A : Temperature of refrigerant Nu: Nusselt number From the above formulas (2) to (5), when cooling is evenly applied from the outside in the circumferential direction, Q 1i is constant irrespective of the segment number,
Since the initial state of Q 2i and Q 3i is uniform, Q 2i = Q 3i = 0
Is. Therefore, from equation (1) Becomes From equation (6), the temperature drop amount θ i ′ −θ i per unit time Δt depends on the divided piece mass mi. That is, when the convection heat transfer heat quantity Q 1i is the same, the thin wall portion with a small divided piece mass mi has a larger temperature drop amount θ i ′ −θ i than the thick wall portion. That is, the temperature drop in the thin-walled portion is larger than that in the thick-walled portion. Therefore, if the metal pipe having the unbalanced heat whose temperature in the thin-walled portion is high is forcibly cooled, the unbalanced heat is reduced.

〔実施例1〕 第2図は本実施例に使用した誘導加熱器の模式的断面図
であり、誘導加熱器1は誘導加熱コイル2と冷媒噴射器
3とからなり、誘導加熱コイル2は導体をスパイラル状
に金属管より大なる径にて巻いて形成されている。冷媒
噴射器3はケース3a,ノズル3b及び冷媒導入口3cからな
り、ケース3aは円筒状をなした外円筒と、その両端面に
外円筒と同外径で内径が金属管6より稍大きい2つの中
空円板と、円板内径より稍大きな外径の円筒状をなした
内円筒とで構成され、内円筒の内面には前記誘導加熱コ
イル2が設けられている。内円筒と外円筒と2枚の円板
とて囲まれた空間には、冷媒分配室3dが設けられ、内円
筒から誘導加熱コイル2のターン間の間隙に向け、冷媒
噴射孔を設けたノズル3bが複数庫、金属管を円周方向に
均質に強制冷却せしめるように配設してある。さらに該
ケース3aの外周面には複数の冷媒導入口3cが形成してあ
り、冷媒4は図示しない冷媒供給装置から冷媒導入口3
c,冷媒分配室3dを経てノズル3bを通過して金属管6の
外周面へ円周方向に均質に噴射する。このようにして金
属管6は冷媒4により円周方向に均質に強制冷却される
こととなる。
[Example 1] Fig. 2 is a schematic sectional view of an induction heater used in this example. The induction heater 1 includes an induction heating coil 2 and a refrigerant injector 3, and the induction heating coil 2 is a conductor. Is spirally wound with a diameter larger than that of a metal tube. The refrigerant injector 3 includes a case 3a, a nozzle 3b, and a refrigerant inlet 3c. The case 3a has a cylindrical outer cylinder, and both end surfaces thereof have the same outer diameter as the outer cylinder but a larger inner diameter than the metal tube 2 It is composed of two hollow discs and an inner cylinder having an outer diameter slightly larger than the inner diameter of the disc, and the induction heating coil 2 is provided on the inner surface of the inner cylinder. A refrigerant distribution chamber 3d is provided in a space surrounded by an inner cylinder, an outer cylinder, and two discs, and a nozzle having a refrigerant injection hole is provided from the inner cylinder toward the gap between the turns of the induction heating coil 2. A plurality of chambers 3b are arranged so that the metal tubes can be forcibly and uniformly cooled in the circumferential direction. Further, a plurality of refrigerant introduction ports 3c are formed on the outer peripheral surface of the case 3a, and the refrigerant 4 is fed from a refrigerant supply device (not shown) to the refrigerant introduction port 3c.
c, Passes through the nozzle 3b through the refrigerant distribution chamber 3d, and is uniformly jetted to the outer peripheral surface of the metal tube 6 in the circumferential direction. In this way, the metal tube 6 is forcibly and uniformly cooled in the circumferential direction by the refrigerant 4.

これによって金属管6にはその縦走方向における各部に
誘導加熱コイル2による加熱と、冷媒4による強制冷却
が短い縦走距離の間で多数回交互に加えられることとな
る。
As a result, the metal tube 6 is subjected to the heating by the induction heating coil 2 and the forced cooling by the refrigerant 4 at each portion in the longitudinal direction alternately in a large number of times within a short longitudinal distance.

なお実施に使用した金属管は材質SUS304,外径15.9mm,
厚肉側内厚1.2 mm,薄肉側肉厚1.0 mm,長さ100 mmのも
のを使用し、誘導加熱用高周波発送装置は15kW 75kHzの
高周波出力を印加できるものを使用した。さらに冷媒は
空気を利用した。
The metal tube used for the test was made of SUS304, the outer diameter was 15.9 mm,
The thick side inner thickness was 1.2 mm, the thin side wall thickness was 1.0 mm, and the length was 100 mm. The induction heating high-frequency dispatcher was capable of applying a high-frequency output of 15 kW 75 kHz. Further, air was used as the refrigerant.

実験方法は金属管6を誘導加熱装置1内に装入し、所定
の高周波出力を印加し、一定時間加熱後冷却した。
In the experimental method, the metal tube 6 was loaded into the induction heating device 1, a predetermined high frequency output was applied, and after heating for a certain period of time, it was cooled.

第3図及び第4図は以上の効果を実証すべく行った実験
の結果を表わすグラフであり、縦軸には温度を、また横
軸には時間をとった。
FIG. 3 and FIG. 4 are graphs showing the results of experiments conducted to verify the above effects, in which the vertical axis represents temperature and the horizontal axis represents time.

第3図は加熱と強制冷却とを同時的に行い、所定時間経
過後に強制冷却を行ったものであり、第4図は第3図と
同じ時間加熱のみを行った後、自然冷却を行ったもので
ある。図中実線は厚肉部の温度変化、破線は薄肉部の温
度変化を表わす。第3図と第4図との比較から明らかな
如く、加熱に続く強制冷却により薄肉部の温度降下が促
進されている。
In FIG. 3, heating and forced cooling are performed simultaneously, and forced cooling is performed after a predetermined time has elapsed. In FIG. 4, only heating is performed for the same time as in FIG. 3, and then natural cooling is performed. It is a thing. In the figure, the solid line shows the temperature change in the thick portion, and the broken line shows the temperature change in the thin portion. As is apparent from the comparison between FIG. 3 and FIG. 4, the temperature drop in the thin portion is promoted by the forced cooling following the heating.

さらに第3図の如く加熱と強制冷却とを同時的に行った
場合は、薄肉部と厚肉部との温度逆転が発生し、加熱終
了後の温度差は、第4図とは逆に厚肉部の温度が薄肉部
の温度より80℃高くなっている。従ってこの温度差を0
℃になるように強制冷却の風量,風速等を適宜に設定す
れば、偏熱を低減する誘導加熱が可能となることが判明
した。
Further, when heating and forced cooling are simultaneously performed as shown in FIG. 3, temperature reversal between the thin portion and the thick portion occurs, and the temperature difference after heating is the same as in FIG. The temperature of the meat part is 80 ℃ higher than the temperature of the thin part. Therefore, this temperature difference is 0
It was found that induction heating that reduces unbalanced heat can be achieved by appropriately setting the forced cooling air volume, wind speed, etc. so that the temperature becomes ℃.

〔実施例2〕 第5図は第2の実施例を示す配置図である。金属管6は
図示しない搬送装置により白抜矢符に示す方向に、加熱
コイル2とその下流側に配置された冷媒噴射器3とを3
台タンデムに配置した誘導加熱器1,1,1内を縦走す
る。誘導加熱コイル2は前述の実施例のものと同一構造
であり、冷媒噴射器3は円筒状をなし、冷媒4は前述の
実施例のようにケースに形成された冷媒導入口より導入
され、冷媒分配室を経てノズルから金属管6へ向けて噴
射される。従って金属管6は搬送速度と誘導加熱器1の
配置とにより定められるサイクルタイムで加熱と強制冷
却とを交互的に繰返される。
[Embodiment 2] FIG. 5 is a layout view showing a second embodiment. The metal tube 6 is provided with a heating device 2 and a refrigerant injector 3 arranged on the downstream side thereof in a direction indicated by an outline arrow by a transfer device (not shown).
Traverse in the induction heaters 1, 1, 1 arranged in a stand tandem. The induction heating coil 2 has the same structure as that of the above-described embodiment, the refrigerant injector 3 has a cylindrical shape, and the refrigerant 4 is introduced from the refrigerant inlet port formed in the case as in the above-mentioned embodiment, It is jetted from the nozzle toward the metal tube 6 through the distribution chamber. Therefore, the metal tube 6 is alternately heated and forcibly cooled at a cycle time determined by the transport speed and the arrangement of the induction heater 1.

第6図は加熱と強制冷却とを各々3回ずつ交互的に行っ
た結果を示すグラフであり、縦軸に温度を、また横軸に
は時間をとっている。但し本実施例では加熱中の強制冷
却は行なわなかった。
FIG. 6 is a graph showing the results of alternately performing heating and forced cooling three times, with the vertical axis representing temperature and the horizontal axis representing time. However, in this example, forced cooling was not performed during heating.

なお比較の対象として加熱と自然冷却とを上記同一サイ
クルタイムでも行った(図示せず)。
As a comparison target, heating and natural cooling were also performed at the same cycle time (not shown).

結果は自然冷却を行った場合は、厚肉部の薄肉部とで偏
熱が30℃あったが、加熱と強制冷却とを交互的に行った
本実施例においては偏熱は5℃しかなかった。
As a result, when the natural cooling was performed, the uneven heat was 30 ° C. between the thick part and the thin part, but in this example in which heating and forced cooling were alternately performed, the uneven heat was only 5 ° C. It was

なお、以上2つの実施例では強制冷却を金属等6の外面
より行っているが、内面より冷却してもよい。内面より
の冷却法としては、例えば周知の内面からの焼入れ用冷
媒ヘッドを用いればよい。また内外面同時に冷却しても
よい。
In the above two embodiments, the forced cooling is performed from the outer surface of the metal 6 or the like, but the inner surface may be cooled. As a cooling method from the inner surface, for example, a well-known quenching cooling head from the inner surface may be used. The inner and outer surfaces may be cooled at the same time.

第7図は本発明の制御方法の一例を示すブロック図であ
る。金属管6は冷媒噴射器を有する誘導熱装置A内を金
属管搬送装置Fにより白抜矢符に示す方向に縦走され、
加熱及び冷却される。そして下流側の測温装置Gにより
所定時間毎に計測が行なわれ、そのデータが情報処理装
置Eに入力される。
FIG. 7 is a block diagram showing an example of the control method of the present invention. The metal tube 6 is vertically traversed in the induction heating device A having a refrigerant injector by the metal pipe carrier F in the direction indicated by the white arrow.
Heated and cooled. Then, the temperature-measuring device G on the downstream side measures each predetermined time, and the data is input to the information processing device E.

なお縦走のとき加熱コイルと金属管6との偏芯及び曲り
対策のため金属管6を回転させる場合は、情報処理装置
Eに入力された同一肉厚傾向部分の測温値の平均を情報
処理装置Eにて算出し、それを測温値として使用する。
When the metal tube 6 is rotated to prevent eccentricity and bending between the heating coil and the metal tube 6 during vertical running, the average of the temperature measurement values of the same thickness tendency portion input to the information processing device E is processed. It is calculated by the device E and used as a temperature measurement value.

このようにして入力された測温値が設定温度と差があれ
ば電力制御装置C又は速度制御装置Dにフィードバック
をかけ、誘導加熱装置Aの出力又は金属管搬送装置Fの
速度を調整する。
If the temperature measurement value input in this way has a difference from the set temperature, the power control device C or the speed control device D is fed back to adjust the output of the induction heating device A or the speed of the metal pipe transport device F.

第8図は所要加熱温度より加熱に要する高周波出力kW
を算出するためのグラフであり、縦軸に温度を、また横
軸には高周波出力を縦走速度で除した数値をとってい
る。またa,b,cは金属管断面積を表わし、a<b<
cである。
Fig. 8 shows the high-frequency output kW required for heating from the required heating temperature.
Is a graph for calculating the temperature, and the vertical axis represents the temperature, and the horizontal axis represents the high frequency output divided by the longitudinal speed. Also, a, b, and c represent the cross-sectional area of the metal pipe, and a <b <
c.

第8図に示すように所要加熱温度と管断面積b(本実
施例ではbとした)とが定められると、高周波出力kWと
縦走速度Vとの比の値kW/Vが決定する。縦走速度Vは
通常予め管の寸法、材質等により定められているので、
これより所要加熱温度に対する所要高周波出力kWが決
定する(第8図矢符参照)。
As shown in FIG. 8, when the required heating temperature and the pipe cross-sectional area b (b in this embodiment) are determined, the value kW / V of the ratio between the high frequency output kW and the longitudinal running speed V is determined. Since the vertical running speed V is usually determined in advance by the size of pipe, material, etc.,
From this, the required high-frequency output kW for the required heating temperature is determined (see the arrow in Fig. 8).

第9図は縦軸を薄肉部温度θ1 と厚肉部温度θ2 との差
即ち偏熱Δθ(Δθ=θ1 −θ2 )とし、横軸を冷却量
Arを縦走速度Vで除した数値Ar/Vとした最適冷却
量を求めるためのグラフである。また金属管断面積a,
b,cは前述と同様でa<b<cである。第9図に示す
ように誘導加熱装置A出側での温度差Δθは冷却量Ar
と縦走速度Vとの比の値Ar/Vの関数であり、測温装
置GにてΔθを測定し零(0)となるように情報処理装
置Eを介して冷却制御装置Bにて冷却量Arを制御すれ
ば、偏熱Δθをより少なくできる。
In FIG. 9, the vertical axis represents the difference between the thin wall portion temperature θ 1 and the thick wall portion temperature θ 2 , that is, the uneven heat Δθ (Δθ = θ 1 −θ 2 ), and the horizontal axis represents the cooling amount Ar divided by the vertical running speed V. 7 is a graph for obtaining an optimum cooling amount with a numerical value Ar / V. In addition, the cross-sectional area a of the metal pipe a,
b and c are the same as described above, and a <b <c. As shown in FIG. 9, the temperature difference Δθ on the outlet side of the induction heating device A is the cooling amount Ar.
Is a function of the value Ar / V of the ratio between the vertical running speed V and the longitudinal speed V, and the cooling amount is measured by the cooling control device B via the information processing device E so that Δθ is measured by the temperature measuring device G and becomes zero (0). If Ar is controlled, the unbalanced heat Δθ can be further reduced.

また測温と同時的に厚み計Hにて肉厚測定とを行い、薄
肉部温度θ1 が厚肉部温度θ2 より高いとき(θ1 >θ
2 )冷却量Arを増加させ、その逆のとき(θ1 >θ
2 )冷却量Aγを減少させるとさらに偏熱Δθを少なく
できる。
Further, the thickness is measured with the thickness gauge H at the same time as the temperature measurement, and when the thin portion temperature θ 1 is higher than the thick portion temperature θ 21 > θ
2 ) When the cooling amount Ar is increased and vice versa (θ 1 > θ
2 ) If the cooling amount Aγ is reduced, the unbalanced heat Δθ can be further reduced.

なお本実施例では冷媒として空気を使用したが、本発明
はこれに限るものではなく、不活性ガス及びミスト等を
使用してもよい。
Although air is used as the refrigerant in the present embodiment, the present invention is not limited to this, and an inert gas, mist or the like may be used.

また、測温装置Gと厚み計Hとの設置場所は必ずしも図
示例の如く誘導加熱装置Aの下流側に設ける必要はな
く、コイルとコイルとの間に設置し、制御の応答性を早
めるようにすることも可能である。
Further, the temperature measuring device G and the thickness meter H do not necessarily have to be installed on the downstream side of the induction heating device A as in the illustrated example, but they are installed between the coils to speed up the control response. It is also possible to

〔効果〕〔effect〕

第1の本発明にあっては、検出した金属管の温度に基づ
き誘導加熱出力,冷媒量を制御して金属管におけるその
縦走方向の各部に対し、適正な加熱と強制冷却とを交互
に行なうこととしているから、偏肉が存在する金属管の
偏熱を低減して得て均等な加熱を実現出来ることとな
る。
In the first aspect of the present invention, the induction heating output and the amount of the refrigerant are controlled based on the detected temperature of the metal tube, and appropriate heating and forced cooling are alternately performed on each part of the metal tube in the longitudinal direction. Therefore, it is possible to achieve uniform heating by reducing the uneven heat distribution of the metal pipe having uneven thickness.

また第2の本発明にあっては、複数の誘導加熱コイル
と、各誘導加熱コイルの間を通じて金属管に冷媒を噴射
する冷媒噴射器とを組合せることで、前記第1の発明の
効果に加えて、設置が小型化出来ると共に、短時間加熱
で効果的に均等加熱が可能となり、スケールロスの低
減,誘導加熱コイル自体の冷却を図れる効果がある。
In addition, in the second aspect of the present invention, by combining a plurality of induction heating coils and a refrigerant injector that injects a refrigerant into the metal pipe through each induction heating coil, the effects of the first aspect of the invention can be obtained. In addition, the installation can be downsized, and uniform heating can be effectively performed in a short time, which has the effects of reducing scale loss and cooling the induction heating coil itself.

更に第3の本発明にあっては、前記第1の効果に加えて
金属管の縦走方向において金属管の温度に基づいて出力
を制御される誘導加熱コイルと、その下流側にあって金
属管温度に基づいて冷媒量を制御される冷媒噴射器とを
交互に多段に備えるから、既存設備を利用して製管ライ
ンにそのまま適用出来て設備コストが安価に済む等、優
れた効果を奏する。
Furthermore, in the third aspect of the present invention, in addition to the first effect, an induction heating coil whose output is controlled based on the temperature of the metal pipe in the longitudinal direction of the metal pipe, and a metal pipe located downstream thereof Since a plurality of refrigerant injectors whose refrigerant amount is controlled based on the temperature are provided alternately, the existing equipment can be applied to the pipe manufacturing line as it is, and the equipment cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の原理を説明する図面、第2図は加熱と
強制冷却とを同時的に行える本発明の実施例の模式的断
面図、第3図,第4図は強制冷却を行った場合の効果を
示すグラフ、第5図は加熱と強制冷却とを交互的に行え
る本発明の第2の実施例を示す配置図、第6図は第2の
実施例の効果を示すグラフ、第7図は本発明の制御方法
を示すブロック図、第8図は高周波出力を求めるための
グラフ、第9図は最適冷却量を求めるためのグラフであ
る。 1……誘導加熱器、2……誘導加熱コイル、3……冷媒
噴射器、4……冷媒、6……金属管
FIG. 1 is a drawing for explaining the principle of the present invention, FIG. 2 is a schematic sectional view of an embodiment of the present invention in which heating and forced cooling can be performed simultaneously, and FIGS. 3 and 4 perform forced cooling. FIG. 5 is a layout diagram showing the second embodiment of the present invention in which heating and forced cooling can be performed alternately, and FIG. 6 is a graph showing the effect of the second embodiment. FIG. 7 is a block diagram showing a control method of the present invention, FIG. 8 is a graph for obtaining a high frequency output, and FIG. 9 is a graph for obtaining an optimum cooling amount. 1 ... Induction heater, 2 ... Induction heating coil, 3 ... Refrigerant injector, 4 ... Refrigerant, 6 ... Metal tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金属管を縦走させつつ金属管に対する誘導
加熱と、強制冷却とを交互に施す過程で、金属管の温度
を検出し、検出温度に基づき金属管の偏熱を低減すべ
く、金属管に対する誘導加熱出力,金属管に噴射される
冷媒量を制御することを特徴とする金属管の誘導加熱方
法。
1. A temperature of a metal tube is detected in the process of alternately performing induction heating and forced cooling of the metal tube while the metal tube is running longitudinally, and the uneven heat of the metal tube is reduced based on the detected temperature. An induction heating method for a metal tube, comprising controlling an induction heating output for the metal tube and an amount of a refrigerant injected into the metal tube.
【請求項2】金属管の縦送方向に所定の間隙を隔てて配
設され、夫々その搬送域を囲繞する複数の環状の誘導加
熱コイルと各誘導加熱コイル間を通じて金属管表面に冷
媒を噴射する冷媒噴射器とを有する少なくとも1個の誘
導加熱器と、該誘導加熱器の出側で測定した金属管の温
度に基づき金属管の偏熱を低減すべく前記誘導加熱コイ
ル出力,冷媒噴射器からの金属管に噴射される冷媒量を
制御する制御装置とを備えることを特徴とする金属管の
誘導加熱装置。
2. A refrigerant is jetted onto the surface of a metal pipe through a plurality of annular induction heating coils which are arranged with a predetermined gap in the longitudinal direction of the metal pipe and surround each of the carrying regions, and the induction heating coils. At least one induction heater having a refrigerant injector, and the induction heating coil output and the refrigerant injector for reducing the unbalanced heat of the metal tube based on the temperature of the metal tube measured at the outlet side of the induction heater. And a control device for controlling the amount of the refrigerant injected from the metal pipe into the metal pipe.
【請求項3】金属管の縦走方向に沿って、交互に複数組
配設された金属管の搬送域を囲繞する環状の誘導加熱コ
イル及び誘導加熱コイルよりも金属管の縦走方向の下流
側に位置し、金属管に冷媒を噴射する冷媒噴射器と、金
属管の温度を検出し、検出温度に基づき誘導加熱コイル
出力、前記冷媒噴射器からの金属管に噴射される冷媒量
を制御する制御装置とを備えることを特徴とする金属管
の誘導加熱装置。
3. An annular induction heating coil surrounding a plurality of sets of metal pipes arranged alternately along the longitudinal direction of the metal pipe, and downstream of the induction heating coil in the longitudinal direction of the metal pipe from the induction heating coil. A refrigerant injector that is located and injects a refrigerant into a metal tube, and controls the temperature of the metal tube, and controls the output of the induction heating coil based on the detected temperature and the amount of refrigerant injected from the refrigerant injector into the metal tube. An induction heating device for a metal tube, comprising:
JP62266031A 1987-10-20 1987-10-20 Method and device for induction heating of metal tube Expired - Lifetime JPH0632285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62266031A JPH0632285B2 (en) 1987-10-20 1987-10-20 Method and device for induction heating of metal tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266031A JPH0632285B2 (en) 1987-10-20 1987-10-20 Method and device for induction heating of metal tube

Publications (2)

Publication Number Publication Date
JPH01107489A JPH01107489A (en) 1989-04-25
JPH0632285B2 true JPH0632285B2 (en) 1994-04-27

Family

ID=17425426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266031A Expired - Lifetime JPH0632285B2 (en) 1987-10-20 1987-10-20 Method and device for induction heating of metal tube

Country Status (1)

Country Link
JP (1) JPH0632285B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055712A (en) * 2001-08-10 2003-02-26 Denki Kogyo Co Ltd Method and apparatus for induction-hardening thin hollow part
JP5558305B2 (en) * 2010-10-06 2014-07-23 三菱電機株式会社 Induction heating apparatus and heated object

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146131U (en) * 1974-10-04 1976-04-05
JPS5288507A (en) * 1976-01-20 1977-07-25 Nippon Steel Corp Induction heater for steel
JPS52122940A (en) * 1976-04-08 1977-10-15 Mitsubishi Electric Corp Induction heating device
JPS5843191Y2 (en) * 1979-01-25 1983-09-29 三菱電機株式会社 induction heating device
JPH0222640Y2 (en) * 1984-10-24 1990-06-19

Also Published As

Publication number Publication date
JPH01107489A (en) 1989-04-25

Similar Documents

Publication Publication Date Title
US4093839A (en) Apparatus and method for inductively heating metallic tubing having an upset portion
US8529711B2 (en) Induction heat treatment method, induction heat treatment installation and induction-heat-treated product
EP3463814B1 (en) Method of magnetic induction welding a waterwall panel
US2556236A (en) Heat-treating method and product
CN115326873A (en) Circular tube surface natural convection heat transfer coefficient test analysis and evaluation method based on DBD discharge device
KR101333927B1 (en) Method for the heat treatment of extended steel products
JPH0632285B2 (en) Method and device for induction heating of metal tube
GB2127857A (en) Process for producing a grain-oriented electromagnetic steel strip or/sheet
JPS5817807B2 (en) Heat treatment method for piping
JP7299488B2 (en) Metal heat treatment method and heat treatment apparatus
JPS63137125A (en) Method for hardening crank shaft
JP6806104B2 (en) Quenching method and quenching equipment for steel pipes
JPH06128623A (en) Heating roll
US7011720B2 (en) Double-taper steel wire and continuous heat treating method and device therefor
JPS5819436A (en) Preheater for end of upset steel pipe
CN109943703A (en) For manufacturing the method and system of continuous pipe
JP7467579B2 (en) Induction furnace with rotating susceptor for high precision waveguide glass drawing
JP2002317227A (en) Heat treatment method for steel sheet and apparatus therefor
JP2004162137A (en) Device for induction-hardening crank shaft
CN111570580B (en) Heating device for large-diameter thick-wall pipe and heating method thereof
JPS6410571B2 (en)
JPH0533058A (en) Method for heat-treating steel pipe
JPS58223285A (en) Induction heating method for material
US4147569A (en) Method of heating of at least two elongated tubular metallic objects
SU1050136A1 (en) Method of induction heating of round billets