JPH06322479A - Good workability hot dip plated high strength steel sheet excellent in fatigue property and local deformability and its production - Google Patents

Good workability hot dip plated high strength steel sheet excellent in fatigue property and local deformability and its production

Info

Publication number
JPH06322479A
JPH06322479A JP11336793A JP11336793A JPH06322479A JP H06322479 A JPH06322479 A JP H06322479A JP 11336793 A JP11336793 A JP 11336793A JP 11336793 A JP11336793 A JP 11336793A JP H06322479 A JPH06322479 A JP H06322479A
Authority
JP
Japan
Prior art keywords
steel sheet
less
weight
hot
local deformability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11336793A
Other languages
Japanese (ja)
Inventor
Manabu Takahashi
学 高橋
Giichi Matsumura
義一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11336793A priority Critical patent/JPH06322479A/en
Publication of JPH06322479A publication Critical patent/JPH06322479A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain a good workability hot dip plated high strength steel sheet excellent in fatigue durability and local deformability by forming a steel sheet having a specified compsn. constituted of C, Mn, Si, V, Ti, Nb and Fe into a specified microstructure. CONSTITUTION:The hot dip plated high strength steel sheet excellent in characteristics has a compsn. contg., by weight, <=0.06% C, 0.2 to 3.0% Mn and <=1.5% Si, furthermore contg. total 0.005 to 0.3% of one or more kinds of alloy elements among <=0.2% V, <=0.2% Ti and <=0.1% Nb and moreover contg., at need, total <=4.0% of one or more kinds of alloy elements among <=2.0% Cu, <=1.0% Mo and <=1.5% Cr or one or two kinds of <=0.01% Ca and <=0.1% rare elements, and the balance Fe with inevitable impurities, and the main phase of the microstructure of the steel sheet finally obtd. is constituted of ferrite or bainite, and, as to iron carbides in grain boundaries, the occupying volume rate is regulated to <=0.1% and the maximum grain size is regulated to <=1mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車等の構造物に用い
られ、構造の軽量化、省エネルギー、安全性の向上に貢
献することのできる溶融めっき高強度鋼板とその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-dip galvanized high-strength steel sheet which is used for a structure such as an automobile and can contribute to weight reduction of the structure, energy saving, and improvement of safety, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】鋼材の高強度化は、Si、Mn等の合
金元素によるフェライトマトリックスの固溶強化、N
b、Ti、V等の微細析出物によるフェライトマトリッ
クスの析出強化、パーライト、ベイナイト、マルテン
サイト等の低温変態生成物を利用した組織強化、フェ
ライト粒径の微細化による細粒強化、冷間加工による
加工強化等があり、各々の特徴を生かした製品が市場に
供給されている。
2. Description of the Related Art Strengthening of steel is achieved by solid solution strengthening of a ferrite matrix by alloying elements such as Si and Mn, N
Precipitation strengthening of ferrite matrix by fine precipitates of b, Ti, V, etc., structure strengthening using low temperature transformation products such as pearlite, bainite, martensite, fine grain strengthening by refining ferrite grain size, cold working There are processing enhancements, etc., and products that make the most of each characteristic are supplied to the market.

【0003】高強度鋼板を自動車等の構造物に適用し、
軽量化、省エネルギー、安全性の向上等を目指す場合に
は、鋼板の強度上昇と共に、(1)鋼板の種々の加工性
能(例えば深絞り成形性、張り出し成形性、バーリング
加工性等)の向上、(2)溶接性と耐熱軟化性の保持、
向上、(3)耐久性(例えば疲労耐久性や腐食耐久性)
の保持、向上などが要求され、使用部位によって異なっ
た特性の組み合わせが要求される。例えば自動車用のロ
ードホイールディスクに高強度鋼板が適用される場合に
は、高いプレス成形性(特に延性)と疲労耐久性に優れ
た鋼板が要求されている。
Applying high-strength steel plates to structures such as automobiles,
In order to reduce weight, save energy, improve safety, etc., in addition to increasing the strength of the steel sheet, (1) improvement of various processing performances of the steel sheet (for example, deep drawing formability, overhang formability, burring formability, etc.), (2) Maintaining weldability and heat softening resistance,
Improvement, (3) Durability (for example, fatigue durability and corrosion durability)
Are required to be maintained and improved, and combinations of different properties are required depending on the site of use. For example, when a high-strength steel plate is applied to a road wheel disc for an automobile, a steel plate having high press formability (especially ductility) and excellent fatigue durability is required.

【0004】このような要求に応えるものとしてフェラ
イト/マルテンサイト2相組織鋼板(いわゆるDual
Phase:DP鋼板)が提案されている(例えば特
公昭56−18051号公報や特公昭59−45735
号公報)。このDP鋼板は他の種々の強化機構により強
化された高強度鋼板に比べて疲労耐久性に優れており、
ロードホイールディスクの薄肉化(軽量化)や耐久性向
上に貢献している。また複雑な成形加工が要求される部
位では、均一変形能の向上が要求され、このために室温
で残留オーステナイトを含む高延性高強度鋼板(特開昭
63−4017号公報)が提案されている。また、自動
車の足廻り部品等で問題となる穴広げ性に代表される局
部変形能を向上させた鋼板としてSi添加型の高延性高
強度鋼板(特開昭61−19733号公報等)が提案さ
れており、自動車等の構造物に適用する際に重要となる
溶接(スポット溶接、バット溶接、アーク溶接等)性、
耐熱軟化特性と加工性を兼ね備えた鋼板としては析出強
化型の低合金高強度鋼板(HSLA鋼板)が広く用いら
れている。
To meet such demands, a ferrite / martensite dual-phase steel sheet (so-called Dual) is used.
Phase: DP steel plate has been proposed (for example, Japanese Patent Publication No. Sho 56-18051 and Japanese Patent Publication No. 59-45735).
Issue). This DP steel sheet is superior in fatigue durability to high strength steel sheets strengthened by various other strengthening mechanisms,
It contributes to making the road wheel disc thinner (lighter) and improving durability. Further, in regions where complicated forming is required, improvement in uniform deformability is required, and for this reason, a high ductility and high strength steel sheet containing retained austenite at room temperature (Japanese Patent Laid-Open No. 63-4017) is proposed. . Further, as a steel sheet having improved local deformability represented by hole expandability which is a problem in undercarriage parts of automobiles, a Si-added high ductility and high strength steel sheet (Japanese Patent Laid-Open No. 61-19733 etc.) is proposed. Welding (spot welding, butt welding, arc welding, etc.), which is important when applied to structures such as automobiles,
As a steel sheet having both heat-resistant softening characteristics and workability, a precipitation strengthening type low alloy high strength steel sheet (HSLA steel sheet) is widely used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述し
たような穴広げ加工に代表される局部変形能に優れたS
i添加型の高延性高強度鋼板や溶接性、耐熱軟化特性お
よび穴広げ加工性に優れた析出強化高強度鋼板は、DP
鋼に比べて疲労耐久性に劣り、疲労耐久性が要求される
部位には使用されていない。一方、疲労耐久性に優れる
DP鋼板は穴広げ加工性が他の高強度鋼板に比べて大き
く劣ることから、利用部位が制限されている。
However, S which is excellent in the local deformability represented by the hole expanding process as described above.
i addition type high ductility high strength steel plate and precipitation strengthened high strength steel plate excellent in weldability, heat resistance softening property and hole expanding workability are DP
It is inferior in fatigue durability to steel and is not used in parts where fatigue durability is required. On the other hand, the DP steel sheet, which is excellent in fatigue durability, is significantly inferior in hole expanding workability to other high strength steel sheets, and therefore its use site is limited.

【0006】このように、自動車等の構造物の中で重要
な保安部品として位置づけされる部位では、一般的に疲
労耐久性の向上と穴広げ性に代表される局部変形能の向
上の両立が要求されるにも関わらず、現在のところこの
両方を同時に満足する鋼板及びその製造方法は提示され
ていない。従って本発明の目的は疲労耐久性と穴広げ性
を共に満足する溶融めっき高強度鋼板及びその製造方法
を提供する事にある。
[0006] As described above, in a portion positioned as an important safety component in a structure such as an automobile, it is generally possible to improve both fatigue durability and local deformability represented by hole expandability. Despite the demand, at present, a steel sheet satisfying both of them and a manufacturing method thereof have not been presented yet. Therefore, an object of the present invention is to provide a hot-dip galvanized high-strength steel sheet that satisfies both fatigue durability and hole expandability, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは種々の実験
的検討を通じて、疲労強度や局部変形能の支配要因を基
礎的に調査した結果、主相組織をフェライトもしくはベ
イナイトとし、粒界に存在する鉄炭化物の量とサイズを
制御した溶融めっき鋼板が、従来困難とされてきた高疲
労強度と良好な穴広げ加工性(局部変形能)を両立させ
ることが可能であることを見出した。
Means for Solving the Problems The inventors of the present invention have fundamentally investigated the controlling factors of fatigue strength and local deformability through various experimental investigations. As a result, the main phase structure is ferrite or bainite and It was found that a hot-dip galvanized steel sheet in which the amount and size of iron carbide present is controlled can achieve both high fatigue strength and favorable hole expanding workability (local deformability), which have been difficult in the past.

【0008】すなわち、本発明の要旨とするところは下
記のとおりである。 (1) C:0.06重量%以下、Mn:0.2〜3.
0重量%、Si:1.5重量%以下を含有し、さらに
V:0.2重量%以下、Ti:0.2重量%以下、N
b:0.1重量%以下の範囲でこれらの中の1種もしく
は2種以上の合金元素を合計で0.005〜0.3重量
%含み、残部Feおよび不可避的不純物からなり、最終
的に得られる鋼板のミクロ組織の主相がフェライトもし
くはベイナイトであり、粒界における鉄炭化物の占有率
が0.1%以下で、かつこの鉄炭化物の最大粒子径が1
μm以下であることを特徴とする疲労特性と局部変形能
に優れた良加工性溶融めっき高強度鋼板。
That is, the gist of the present invention is as follows. (1) C: 0.06% by weight or less, Mn: 0.2 to 3.
0% by weight, Si: 1.5% by weight or less, V: 0.2% by weight or less, Ti: 0.2% by weight or less, N
b: 0.005 to 0.3% by weight of one or more alloying elements in total in the range of 0.1% by weight or less, and the balance Fe and inevitable impurities, and finally The main phase of the microstructure of the obtained steel sheet is ferrite or bainite, the occupation ratio of iron carbide in the grain boundary is 0.1% or less, and the maximum particle diameter of this iron carbide is 1
Good workability hot-dip galvanized high-strength steel sheet excellent in fatigue characteristics and local deformability, which is characterized by being less than μm.

【0009】(2) Cu:2.0重量%以下、Mo:
1.0重量%以下、Cr:1.5重量%以下の範囲でこ
れらの中の1種もしくは2種以上の合金元素を合計で
4.0重量%以下含むことを特徴とする前項1記載の疲
労特性と局部変形能に優れた良加工性溶融めっき高強度
鋼板。 (3) Ca:0.01重量%以下もしくは希土類元素
(REM):0.1重量%以下の範囲でこれらの中の1
種もしくは2種を含有することを特徴とする前項1ある
いは2記載の疲労特性と局部変形能に優れた良加工性溶
融めっき高強度鋼板。
(2) Cu: 2.0 wt% or less, Mo:
1% or more of these alloying elements in a total amount of not more than 1.0% by weight and Cr: not more than 1.5% by weight, in total, not more than 4.0% by weight. Good workability hot-dip galvanized high strength steel sheet with excellent fatigue properties and local deformability. (3) Ca: 0.01% by weight or less or rare earth element (REM): 0.1% by weight or less
A high workability hot-dip galvanized steel sheet excellent in fatigue characteristics and local deformability according to the above item 1 or 2, characterized by containing two or more kinds.

【0010】(4) ミクロ組織中のマルテンサイトと
パーライトの面積率の合計が4%未満であることを特徴
とする前項1、2、3のいずれかに記載の疲労特性と局
部変形能に優れた良加工性溶融めっき高強度鋼板。 (5) λ×σ0.8 ≧50かつσw/σ≧0.6を同時
に満足することを特徴とする前項1、2、3、4のいず
れかに記載の疲労特性と局部変形能に優れた良加工性溶
融めっき高強度鋼板。
(4) The fatigue characteristics and local deformability according to any one of the above items 1, 2 and 3 are excellent in that the total area ratio of martensite and pearlite in the microstructure is less than 4%. Good workability Hot-dip galvanized high strength steel sheet. (5) Good fatigue resistance and local deformability as set forth in any one of the above items 1, 2, 3 and 4, characterized in that λ × σ 0.8 ≧ 50 and σw / σ ≧ 0.6 are simultaneously satisfied. Workability Hot-dip galvanized high strength steel sheet.

【0011】(6) 鋼板に溶融めっきを施すにあた
り、溶融めっき工程の最高加熱温度(ST(℃)と呼
ぶ)が熱延時の巻取温度(CT(℃)と呼ぶ)およびV
とCの添加量の重量比V/Cで規定される式(A)もし
くはCTおよびTi+NbとC添加量の重量比(Ti+
Nb)/Cで規定される式(B)の範囲の少なくともい
ずれか一方を満足することを特徴とする前項1、2、
3、4、5のいずれかに記載の疲労特性と局部変形能に
優れた良加工性溶融めっき高強度鋼板の製造方法。
(6) When hot-dip coating a steel sheet, the maximum heating temperature (called ST (° C.)) in the hot-dip plating process is the winding temperature during hot rolling (called CT (° C.)) and V.
Formula (A) defined by the weight ratio V / C of C and C, or CT and the weight ratio of Ti + Nb and C (Ti +
Nb) / C satisfying at least one of the ranges of the formula (B),
3. A method for producing a good workability hot-dip galvanized high-strength steel sheet having excellent fatigue properties and local deformability according to any one of 3, 4, and 5.

【0012】[0012]

【数3】 [Equation 3]

【0013】[0013]

【数4】 [Equation 4]

【0014】[0014]

【作用】高強度鋼板の疲労強度は、通常、鋼板の強度と
共に上昇し、鋼板の破断強度のおおよそ1/2程度の大
きさを持つと言われている。しかしながらこの疲労強度
は鋼板のミクロ組織により変化することがこれまでに報
告されており(例えば「材料」第38巻 第429号
15〜21頁)、鋼板のミクロ組織の最適化が重要であ
る。一般に鋼板の強度が50kgf/mm2 を超える
と、鋼板の疲労強度/鋼板強度の比は小さくなり、疲労
強度増加に及ぼす強度上昇の効果は小さくなる。本発明
者らはNb等を添加して強化した低合金高強度鋼板(H
SLA鋼)を用い、繰り返し応力下の疲労亀裂の発生を
詳細に調査した結果、粒界に存在する塊状もしくは板状
の鉄炭化物起因で疲労亀裂が発生し、またこれら硬質の
粒界鉄炭化物が亀裂の伝播阻止に寄与していないことを
見出し、これらが鋼板の強度上昇に見合うだけの疲労強
度の上昇を妨げていることを見出した。図1に、上記知
見の実験結果を示す。従って、粗大な粒界鉄炭化物を減
少させることが、鋼板のミクロ組織を最適化することと
同様、鋼板の疲労強度を向上させるのに有効である。ま
た、鋼板の疲労強度を高めるためには鋼板中の鉄炭化物
面積率(fv)を下げることよりも粒界の炭化物占積率
を低下させることがより重要である。鋼板の疲労強度は
フェライトマトリックスの強度および粒径に大きく依存
し、フェライト粒界に存在する鉄炭化物の量とサイズを
制御することで、固溶強化、析出強化、細粒化強化など
による鋼板の強化が鋼板の疲労強度向上に効果的に働
く。
The fatigue strength of a high-strength steel sheet is generally said to increase with the strength of the steel sheet, and has a magnitude about 1/2 of the breaking strength of the steel sheet. However, it has been reported so far that this fatigue strength changes depending on the microstructure of the steel sheet (for example, "Materials" Vol. 38, No. 429).
15 to 21), it is important to optimize the microstructure of the steel sheet. Generally, when the strength of the steel sheet exceeds 50 kgf / mm 2 , the ratio of the fatigue strength / steel strength of the steel sheet becomes small, and the effect of increasing the strength on the fatigue strength increase becomes small. The present inventors have added a low alloy high strength steel plate (H
As a result of a detailed investigation of the occurrence of fatigue cracks under repeated stress using SLA steel), fatigue cracks are generated due to lumpy or plate-shaped iron carbide existing at grain boundaries, and these hard grain boundary iron carbides are It was found that they did not contribute to the prevention of crack propagation, and that they hinder the increase in fatigue strength commensurate with the increase in strength of the steel sheet. FIG. 1 shows the experimental results of the above findings. Therefore, reducing coarse grain boundary iron carbide is effective for improving the fatigue strength of the steel sheet as well as optimizing the microstructure of the steel sheet. Further, in order to increase the fatigue strength of the steel sheet, it is more important to lower the carbide space factor at the grain boundary than to lower the iron carbide area ratio (fv) in the steel sheet. The fatigue strength of a steel sheet depends largely on the strength and grain size of the ferrite matrix. Strengthening effectively works to improve the fatigue strength of steel sheets.

【0015】鋼板の局部変形能に関しても、鋼板のマト
リックスをフェライトもしくはベイナイトとした場合の
穴広げ加工性は粒界に存在する鉄炭化物の量やサイズに
よって変化する。図2にその実験結果を示す。的確な鋼
板化学成分の選択と製造条件の選択によって粒界鉄炭化
物を制御した鋼板は極めて良好な穴広げ加工性を有する
ことが判明した。
Regarding the local deformability of the steel sheet, the hole expanding workability when the matrix of the steel sheet is ferrite or bainite varies depending on the amount and size of iron carbide existing at the grain boundaries. The experimental results are shown in FIG. It was found that the steel sheet in which the grain boundary iron carbide was controlled by selecting the appropriate chemical composition of steel sheet and the manufacturing condition had extremely good hole expanding workability.

【0016】このように鋼板の疲労強度および穴広げ加
工性に代表される局部変形能が粒界に存在する鉄炭化物
によって変化することから、これを制御することによ
り、従来困難であった上記2つの特性を両立させること
が可能であることが判明した。以下に本発明の構成要素
について詳細に述べる。 粒界鉄炭化物:鋼板中の固溶炭素量が熱延工程の最終段
階でのフェライト中の平衡固溶炭素量を上回る場合に
は、余剰炭素は、最終ミクロ組織がフェライトを主相と
する場合にはフェライト粒界または粒内に、またベイナ
イトを主相とする場合にはベイナイトのパケット(Sh
eaf)間、ベイナイトとフェライトの界面またはパケ
ット内に鉄炭化物として析出する。この他に例えば熱間
圧延によって鋼帯を製造する場合に、最終工程の巻取処
理をベイナイト変態温度領域の低温側(350℃以下で
マルテンサイト変態開始温度Ms以上)で行う場合には
ベイナイト中のフェライト粒内に鉄炭化物を含む場合が
ある。また熱処理によって製造した鋼の場合には上記粒
やパケット内、粒界共に鉄炭化物を含む場合がある。鋼
板の最終的なミクロ組織がフェライトもしくはベイナイ
トを主相とする場合には、粒界(ベイナイトパケット
間、ベイナイトとフェライトの界面およびフェライト粒
界をさす)に存在する鉄炭化物の存在量とサイズによっ
て鋼板の局部変形能が変化する。
As described above, since the local deformability represented by the fatigue strength and the hole expanding workability of the steel sheet is changed by the iron carbide existing in the grain boundary, it is difficult to control the above-mentioned 2 by the control. It has been found that it is possible to combine the two characteristics. The components of the present invention will be described in detail below. Grain boundary iron carbide: When the amount of solute carbon in the steel sheet exceeds the amount of equilibrium solute carbon in ferrite at the final stage of the hot rolling process, excess carbon is when the final microstructure has ferrite as the main phase. In the ferrite grain boundaries or in the grains, and when bainite is the main phase, bainite packets (Sh
During eaf), it precipitates as iron carbide at the interface between bainite and ferrite or in the packet. In addition to this, for example, in the case where a steel strip is manufactured by hot rolling, when the winding process in the final step is performed on the low temperature side of the bainite transformation temperature region (350 ° C. or lower and martensite transformation start temperature Ms or higher), bainite There is a case where iron carbide is included in the ferrite grains. Further, in the case of steel manufactured by heat treatment, iron carbide may be contained in the above grains, packets, and grain boundaries. When the final microstructure of the steel sheet has ferrite or bainite as the main phase, it depends on the amount and size of iron carbide present at grain boundaries (between bainite packets, the interface between bainite and ferrite, and ferrite grain boundaries). The local deformability of the steel plate changes.

【0017】種々の成分の鋼を加工熱処理により熱延鋼
板として局部変形能の代表である穴広げ加工性を調査す
ると、鋼板の強度σ(kgf/mm2 )と穴広げ加工性
(円錐ポンチを用いたバリ外の穴広げ試験で得られる最
終穴径と初期穴径との比λ)の間には負の相関が認めら
れ、σを上げるとλは一般的には減少する。この時通常
の高強度鋼板(析出強化高強度鋼板等)は強度と穴広げ
加工性のバランスを表すλ×σ0.8 の値が高々50未満
である。これらの高強度鋼板の粒界鉄炭化物を調査する
と、一般に鉄炭化物の粒界占有率が0.1%を超えてお
り、粒界でのこれら鉄炭化物粒子の連結が甚だしい。良
好な穴広げ加工性と鋼板強度のバランスを得るためにλ
×σ0.8 の値を50以上にするには、図2に示すよう
に、粒界の鉄炭化物占有率を0.1%以下に制限するこ
とが必要である。従って本発明では鉄炭化物による粒界
の占有率を0.1%以下に規定する。
When the hole expanding workability, which is a representative of local deformability as a hot rolled steel sheet by thermo-mechanical processing of steels of various components, is investigated, the strength σ (kgf / mm 2 ) of the steel sheet and the hole expanding workability (conical punch There is a negative correlation between the final hole diameter and the initial hole diameter ratio λ) obtained in the hole expansion test outside the burr used, and when σ is increased, λ generally decreases. At this time, an ordinary high-strength steel sheet (precipitation-strengthened high-strength steel sheet, etc.) has a value of λ × σ 0.8 , which represents a balance between strength and hole expanding workability, at most less than 50. When the grain boundary iron carbide of these high-strength steel sheets is investigated, the grain boundary occupancy rate of the iron carbide generally exceeds 0.1%, and the connection of these iron carbide particles at the grain boundaries is remarkable. In order to obtain a good balance between hole expanding workability and steel plate strength, λ
In order to set the value of × σ 0.8 to 50 or more, it is necessary to limit the iron carbide occupancy rate of grain boundaries to 0.1% or less as shown in FIG. Therefore, in the present invention, the occupation rate of the grain boundary by the iron carbide is specified to be 0.1% or less.

【0018】粒界の鉄炭化物占有率が0.1%以下であ
っても鉄炭化物の連結が甚だしい場合には、λ×σ0.8
≧50を満足する穴広げ加工性の良好な鋼板となり得な
い。粒界に存在する鉄炭化物の最大粒子径(測定は2次
元の切断面上に現れる粒界上の鉄炭化物占有最大長さと
して行われる)が1μmを超えるとλ×σ0.8 の値が5
0以上とならない。従って良好な穴広げ性を得るため
に、本発明では粒界の鉄炭化物占有率を0.1%以下に
規定すると同時にそれら鉄炭化物の中の最大粒子径を1
μm以下とする。
Even if the iron carbide occupancy rate at the grain boundary is 0.1% or less, if the connection of the iron carbide is great, λ × σ 0.8
It cannot be a steel sheet with good hole expanding workability that satisfies ≧ 50. When the maximum particle size of iron carbide existing at the grain boundary (measurement is performed as the maximum occupied length of iron carbide on the grain boundary appearing on the two-dimensional cut surface) exceeds 1 μm, the value of λ × σ 0.8 is 5
It does not exceed 0. Therefore, in order to obtain good hole expandability, in the present invention, the iron carbide occupancy rate of grain boundaries is specified to be 0.1% or less, and at the same time, the maximum particle diameter in these iron carbides is 1%.
μm or less.

【0019】疲労強度σwは106 サイクルの平面曲げ
繰り返し応力負荷の疲労試験で破断しない応力の下限値
として定義し、鋼板の強度σとの比をもって特性の優劣
を判定する。鋼板の疲労強度σwは鋼板の強度σと共に
上昇する傾向にあるが、比σw/σは一般的には0.5
〜0.6程度の範囲で変化する。鋼板の最終的な組織の
主相をフェライトもしくはベイナイトとした場合に、粒
界の鉄炭化物占有率が0.1%を超えると通常の高強度
鋼板(析出強化高強度鋼板等)同様σw/σは0.5〜
0.6の間の値を取り、十分な疲労強度は得られない。
一方粒界の鉄炭化物占有率0.1%以下でかつこれら鉄
炭化物の最大粒子径が1μmを超えない場合にはσw/
σの値が0.6以上となり、現在使われている鋼板のな
かで最も安定して高い疲労強度を示すと考えられるDP
鋼の疲労強度のレベルと同一もしくはそれ以上となる。
従って鋼板の疲労強度を高め、σw/σの値を0.6以
上とするためにも、本発明では粒界の鉄炭化物占有率を
0.1%以下に規定し、かつそれら鉄炭化物の最大径
(最大長さ)を1μm以下と規定する。
The fatigue strength σw is defined as the lower limit value of the stress that does not break in the fatigue test under the plane bending cyclic stress load of 10 6 cycles, and the superiority or inferiority of the characteristics is judged by the ratio with the strength σ of the steel sheet. The fatigue strength σw of the steel sheet tends to increase with the strength σ of the steel sheet, but the ratio σw / σ is generally 0.5.
It changes in the range of about 0.6. When the main phase of the final structure of the steel sheet is ferrite or bainite and the iron carbide occupancy rate at the grain boundaries exceeds 0.1%, σw / σ is the same as for ordinary high strength steel sheets (precipitation strengthened high strength steel sheets, etc.) Is from 0.5
A value between 0.6 is taken and sufficient fatigue strength cannot be obtained.
On the other hand, when the iron carbide occupancy rate of the grain boundaries is 0.1% or less and the maximum particle size of these iron carbides does not exceed 1 μm, σw /
The value of σ is 0.6 or more, and DP is considered to show the most stable and high fatigue strength of steel sheets currently used.
It is equal to or higher than the fatigue strength level of steel.
Therefore, in order to increase the fatigue strength of the steel sheet and set the value of σw / σ to be 0.6 or more, the present invention defines the iron carbide occupancy rate at the grain boundary to be 0.1% or less, and the maximum value of those iron carbides. The diameter (maximum length) is defined as 1 μm or less.

【0020】以上のことから、局部変形能の代表である
穴広げ加工性に優れ(λ×σ0.8 ≧50)、同時に高い
疲労強度(σw/σ≧0.6)を有する鋼板として、主
相がフェライトもしくはベイナイトであり、粒界の鉄炭
化物占有率が0.1%以下でかつこれら鉄炭化物の最大
粒子径が1μm以下の鋼板を本発明の範囲とする。また
鋼板の疲労強度をさらに高め、σw/σ≧0.65にす
るためには、望ましくは粒界に存在する鉄炭化物の最大
粒子径を0.4μm以下に規定する必要がある。
From the above, as a steel sheet having excellent hole expanding workability (λ × σ 0.8 ≧ 50), which is a representative of local deformability, and at the same time having high fatigue strength (σw / σ ≧ 0.6), the main phase Is a ferrite or bainite, and the range of the present invention is a steel sheet in which the iron carbide occupancy of grain boundaries is 0.1% or less and the maximum particle size of these iron carbides is 1 μm or less. Further, in order to further increase the fatigue strength of the steel sheet and satisfy σw / σ ≧ 0.65, it is desirable that the maximum particle size of the iron carbide existing at the grain boundaries be specified to 0.4 μm or less.

【0021】C:Cは粒界の鉄炭化物の源となることか
ら極力低下させることが必要である。Cの含有量が多す
ぎると、粒界鉄炭化物の量とサイズを本発明の範囲内と
なるように調整するためのV,Ti,Nbの添加量が必
要以上に増え、経済的なデメリットを招くのみならず顕
著な延性の低下を招く。このために上限を0.06重量
%とする。
C: C serves as a source of iron carbide at grain boundaries, and therefore it is necessary to reduce it as much as possible. When the content of C is too large, the amount of V, Ti, and Nb added for adjusting the amount and size of the grain boundary iron carbide to be within the range of the present invention is increased more than necessary, which is an economical demerit. Not only that, but the ductility is remarkably reduced. Therefore, the upper limit is 0.06% by weight.

【0022】V、Ti、Nb:V、Ti、Nbは析出強
化により鋼板の強度を上げるために有効な元素であると
同時に鋼板中のC原子を合金炭化物の形で固定し、加工
性、疲労特性に有害な粒界の鉄炭化物量とサイズを減少
させる機能を有する。またこれらの元素は各種の溶接に
よりオーステナイト化した領域のオーステナイト粒の粗
大化を防ぎ、溶接熱影響部の軟化を抑制する。またオー
ステナイト化しない領域においてもこれらの元素の炭窒
化物と固溶原子の存在により転位の回復を著しく抑制す
ることによって溶接熱影響部の軟化を抑制するのに有効
である。この目的のためには、Vについては0.2重量
%、Tiについては0.2重量%、Nbについては0.
1重量%を超えて添加してもその効果が飽和することか
ら、これらの値をNb、Ti、V添加量の上限とした。
V, Ti, Nb: V, Ti, and Nb are effective elements for increasing the strength of the steel sheet by precipitation strengthening, and at the same time, fix C atoms in the steel sheet in the form of alloy carbide to improve workability and fatigue. It has the function of reducing the amount and size of iron carbide at grain boundaries, which is harmful to the properties. Further, these elements prevent coarsening of austenite grains in a region austenitized by various kinds of welding, and suppress softening of a weld heat affected zone. In addition, even in the region where austenite does not occur, the presence of carbonitrides of these elements and solid solution atoms remarkably suppresses the recovery of dislocations, which is effective in suppressing the softening of the weld heat affected zone. For this purpose, 0.2% by weight for V, 0.2% by weight for Ti and 0.
Since the effect is saturated even if added in excess of 1% by weight, these values were made the upper limits of the amounts of Nb, Ti and V added.

【0023】Vは溶接入熱によって溶解した後の急冷中
に再析出することによって溶接部近傍の硬度を上昇させ
ることができる。しかしながら多量の添加は溶接部近傍
の不必要な硬度上昇を招き、脆化が進むことからも最大
の添加量を0.2重量%と規定している。これらの合金
元素の1種もしくは2種以上の添加の合計が0.005
重量%未満では強度上昇、粒界の鉄炭化物量とサイズの
減少に顕著な効果をもたらさないので、合計量の下限を
0.005重量%とした。またこれらの添加量の合計が
0.3重量%を超えるとこれらの元素の効果が飽和し、
経済的にも不利益をもたらすので合計量の上限を0.3
重量%とした。
V can be increased in hardness in the vicinity of the welded portion by re-precipitating during the rapid cooling after being melted by the heat input of welding. However, a large amount of addition causes an unnecessary increase in hardness in the vicinity of the welded part and promotes embrittlement, so the maximum addition amount is specified as 0.2% by weight. The total amount of one or more of these alloy elements added is 0.005.
If it is less than 10% by weight, the strength is not increased and the amount of iron carbide in the grain boundary and the size are not significantly reduced, so the lower limit of the total amount is set to 0.005% by weight. Further, when the total amount of these elements added exceeds 0.3% by weight, the effects of these elements are saturated,
The total amount is capped at 0.3 because it brings economic disadvantages.
It was set to% by weight.

【0024】Mn、Si、Cu、Mo、Cr、Ni:こ
れらの合金元素はフェライトマトリックス中に固溶する
ことによって鋼板の強度を上昇させることができる。M
nは固溶強化と共に鋼板の焼入れ性も高めるが、3.0
重量%を超えると溶接部の必要以上の硬化等により鋼板
の性能を劣化させるので上限を3.0重量%とする。ま
た0.2重量%未満のMn添加量で鋼板を高強度化する
ためには、他の合金元素を必要以上に添加する必要があ
り、経済的なデメリットを招く。従ってMn添加量の下
限を0.2重量%とする。
Mn, Si, Cu, Mo, Cr, Ni: These alloy elements can increase the strength of the steel sheet by forming a solid solution in the ferrite matrix. M
n enhances the hardenability of the steel sheet with solid solution strengthening, but 3.0
If the content exceeds 5% by weight, the performance of the steel sheet deteriorates due to excessive hardening of the welded portion, etc., so the upper limit is made 3.0% by weight. Further, in order to increase the strength of the steel sheet with the addition amount of Mn less than 0.2% by weight, it is necessary to add other alloying elements more than necessary, which causes an economic demerit. Therefore, the lower limit of the amount of Mn added is set to 0.2% by weight.

【0025】Siはフェライトマトリックスの固溶強化
と共に粒界の鉄炭化物を細粒化する働きがあるが、その
添加量が1.5重量%を超えると溶融めっき工程の条件
を最適化してもめっき不良が発生するので上限を1.5
重量%とした。Cuは固溶もしくは析出強化により鋼板
の強度を大きく上昇させることができる。しかしながら
その効果は2.0重量%超では飽和するので上限を2.
0重量%とした。またCuを添加する際にはスラブの表
面性状を良好に保つためにNiを添加してもよい。
Si has a function of refining the solid solution of the ferrite matrix and fine-graining the iron carbide at the grain boundaries. However, if the addition amount exceeds 1.5% by weight, the plating will be performed even if the conditions of the hot dip plating process are optimized. Since a defect occurs, the upper limit is 1.5
It was set to% by weight. Cu can significantly increase the strength of the steel sheet by solid solution or precipitation strengthening. However, the effect is saturated when it exceeds 2.0% by weight, so the upper limit is 2.
It was set to 0% by weight. Further, when Cu is added, Ni may be added in order to keep the surface properties of the slab in good condition.

【0026】MoはMnと同様の働きをすると同時に、
鋼板中のC原子を炭化物の形で固着し、粒界鉄炭化物の
量を減少させる働きがある。また溶接熱影響部の軟化防
止にも有効である。しかしながら、多量のMo添加は生
産コストの上昇を招き、さらに鋼板の焼入れ性を必要以
上に高めることから、添加量の上限を1.0重量%とし
た。
Mo has the same function as Mn, and at the same time,
It serves to fix C atoms in the steel sheet in the form of carbides and reduce the amount of intergranular iron carbides. It is also effective in preventing softening of the weld heat affected zone. However, the addition of a large amount of Mo causes an increase in production cost and further increases the hardenability of the steel sheet more than necessary. Therefore, the upper limit of the addition amount is set to 1.0% by weight.

【0027】CrはMoと同様の働きをするが、その効
果は1.5重量%超では飽和するために、上限値を1.
5重量%とした。Cu、Mo、Crの1種または2種以
上を添加する際に、その合計が4.0重量%を超えると
鋼板の強度が必要以上に高くなり、鋼板の加工性を著し
く劣化させることから、合計添加量の上限を4.0重量
%とした。
Cr has the same function as Mo, but its effect is saturated when it exceeds 1.5% by weight, so the upper limit is 1.
It was set to 5% by weight. When one or more of Cu, Mo and Cr are added, if the total amount exceeds 4.0% by weight, the strength of the steel sheet becomes unnecessarily high and the workability of the steel sheet is significantly deteriorated. The upper limit of the total amount added was set to 4.0% by weight.

【0028】これら以外の強化元素として一般に用いら
れているPは粒界に偏析して鋼板の疲労強度を劣化させ
るので、その含有量を0.01重量%以下に制限するこ
とが望ましい。 Ca、希土類元素(REM):Caまたは希土類元素
(REM)は硫化物の形態制御効果により、これらの介
在物を無害化し、成形性(特に局部変形能)を高める効
果を持つ。しかしながらこれらの元素の多量の添加は逆
に鋼板の清浄度を下げてしまうので、Caは0.01重
量%以下、希土類元素(REM)は0.1重量%以下と
規定し、これらの元素の1種もしくは2種の添加を行
う。またこのような有害な硫化物を減少させるためにS
の含有量を0.01重量%以下に制限することが望まし
い。
P, which is generally used as a strengthening element other than these, segregates at the grain boundaries and deteriorates the fatigue strength of the steel sheet, so its content is preferably limited to 0.01% by weight or less. Ca, rare earth element (REM): Ca or rare earth element (REM) has the effect of rendering these inclusions harmless and enhancing formability (particularly local deformability) due to the morphology control effect of sulfide. However, since the addition of a large amount of these elements adversely reduces the cleanliness of the steel sheet, it is specified that Ca is 0.01% by weight or less and rare earth element (REM) is 0.1% by weight or less. Add one or two kinds. Also, in order to reduce such harmful sulfides, S
It is desirable to limit the content of to 0.01 wt% or less.

【0029】硬質相:鋼板の局部変形能は鋼板の組織の
一様性に依存するが、本発明の対象とするような、粒界
の鉄炭化物を一定量以下に調整することを前提とした高
強度鋼板では、上記の如く固溶、析出によりフェライト
マトリックス自身を強化する必要があり、結果としてフ
ェライトとベイナイトが混在する場合でも両相の強度に
大きな差がなくなることが認められている。このとき鋼
板のミクロ組織は、フェライトもしくはベイナイトを主
相とする必要があるが、フェライトとベイナイトが混在
する場合でも特性劣化は小さい。これに対して、マルテ
ンサイトやパーライトの生成は局部変形能、疲労強度の
劣化をもたらすので、これらの相の面積率を4%以下と
することが必要で、望ましくは1%以下に調整する。
Hard phase: The local deformability of the steel sheet depends on the uniformity of the structure of the steel sheet, but it is premised on adjusting the iron carbide at grain boundaries to a certain amount or less, which is the object of the present invention. In the case of a high-strength steel sheet, it is necessary to strengthen the ferrite matrix itself by solid solution and precipitation as described above, and as a result, it is recognized that even if ferrite and bainite are mixed, there is no great difference in strength between the two phases. At this time, the microstructure of the steel sheet needs to have ferrite or bainite as the main phase, but the characteristic deterioration is small even when ferrite and bainite are mixed. On the other hand, since the production of martensite and pearlite causes deterioration of local deformability and fatigue strength, the area ratio of these phases needs to be 4% or less, and is preferably adjusted to 1% or less.

【0030】溶融めっき工程の製造条件:Cが0.06
重量%以下の範囲でV、Ti、Nbの中の1種もしくは
2種以上を添加した鋼を熱延もしくは冷延の後、溶融め
っき工程を経て最終製品を製造した際に、主な添加元素
がVの場合には、図3に示すように溶融めっき工程での
最高加熱温度STが750℃近傍に良好な穴広げ加工性
を示す領域がある。また、主な添加物がTiとNbのい
ずれかである場合には、溶融めっき工程の最高加熱温度
は低温ほど良好であることが判明している。しかしなが
らこれらの関係は、鋼板中の炭化物形成元素量とCの重
量比(V/Cもしくは(Ti+Nb)/Cのいずれか)
のみならず熱延工程の最終巻取温度CTにも依存する。
これらの関係を整理した結果、溶融めっき工程の最高加
熱温度STが下記の(A)もしくは(B)の少なくとも
いずれか一方を満足する時にのみ最終鋼板は本発明の範
囲内にある。
Manufacturing conditions in the hot dipping process: C is 0.06
Main additive element when the final product is manufactured through hot-rolling or cold-rolling steel containing one or more of V, Ti, and Nb added in the range of not more than wt% When V is V, as shown in FIG. 3, the maximum heating temperature ST in the hot dip plating step is near 750 ° C., and there is a region showing good hole expanding workability. Also, it has been found that when the main additive is either Ti or Nb, the lower the maximum heating temperature in the hot dip plating step, the better. However, these relationships are related to the weight ratio of the amount of carbide forming elements and C in the steel sheet (either V / C or (Ti + Nb) / C).
Not only depends on the final winding temperature CT of the hot rolling process.
As a result of arranging these relationships, the final steel sheet is within the scope of the present invention only when the maximum heating temperature ST in the hot dip plating step satisfies at least one of the following (A) and (B).

【0031】[0031]

【数5】 [Equation 5]

【0032】[0032]

【数6】 [Equation 6]

【0033】[0033]

【実施例】表1に示す化学成分の鋼を1000℃から1
300℃の範囲に加熱し、各鋼のAr3 変態温度−30
℃以上の温度で熱延を完了し、その後種々の冷却速度で
所定の温度まで冷却して巻取った板厚2mmの熱延鋼板
を、溶融めっき工程でめっきした後、JIS5号引張試
験、穴広げ試験(打ち抜きクリアランス15%、打ち抜
きままバリ外、60度円錐ポンチ使用)、平面曲げ疲労
試験(両面研削材、応力比R=−1の両振り、25H
z)により特性を調査した。特性値の一覧を表2に示し
た。表2のCTは巻取温度(℃)、STは溶融めっき工
程での最高加熱温度(℃)、V2 はマルテンサイトとパ
ーライトの面積率の合計(%)、fv は鉄炭化物の面積
率(%)、fs は粒界の鉄炭化物による占有率、dは粒
界鉄炭化物の最大粒子径(μm)、TSは鋼板の破断強
度(kgf/mm2 )、Xは穴広げ加工性を表す指標で
X=λ×σ0.8 (λは穴広げ率=最終穴径/初期穴
径)、Yは疲労強度を表す指標でY=σw/σ(σwは
106 回での繰り返し疲労強度kgf/mm2 、σは鋼
板の強度TS)である。
EXAMPLE Steels having the chemical composition shown in Table 1 were heated from 1000 ° C. to 1
Heating to a range of 300 ° C, Ar 3 transformation temperature of each steel -30
After hot-rolling is completed at a temperature of ℃ or more, then the hot-rolled steel sheet with a thickness of 2 mm, which is cooled to a predetermined temperature at various cooling rates and wound, is plated in the hot dip plating process, and then subjected to JIS No. 5 tensile test and hole test. Spreading test (punching clearance 15%, as-punched outside burr, using 60-degree conical punch), plane bending fatigue test (double-sided abrasive, double swing with stress ratio R = -1, 25H
The properties were investigated according to z). Table 2 shows a list of characteristic values. In Table 2, CT is the winding temperature (° C), ST is the maximum heating temperature (° C) in the hot dipping process, V 2 is the total area ratio of martensite and pearlite (%), and f v is the area ratio of iron carbide. (%), F s is the occupancy rate of iron carbide in the grain boundary, d is the maximum grain size (μm) of the grain boundary iron carbide, TS is the breaking strength of the steel sheet (kgf / mm 2 ), and X is the hole expanding workability. The index is X = λ × σ 0.8 (λ is the hole expansion ratio = final hole diameter / initial hole diameter), and Y is the index representing the fatigue strength Y = σw / σ (σw is the fatigue strength after repeated 10 6 times kgf / Mm 2 , σ is the strength TS of the steel sheet.

【0034】表2より、本発明の鋼板は穴広げ加工性が
X≧50であるように非常に良好であり、かつY≧0.
60の高い疲労強度を有することがわかる。
From Table 2, the steel sheet of the present invention has very good hole expanding workability such that X ≧ 50, and Y ≧ 0.
It can be seen that it has a high fatigue strength of 60.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】※ A式MIN,A式MAXはA式で示さ
れるSTの上限および下限温度 ※ B式MAXはB式で示されるSTの上限温度 ※ *は対象成分の添加なし ※ A式,B式の列の○は条件範囲内、×は条件範囲
外、*は対象成分の添加なし ※ d(粒界鉄炭化物の最大粒子径)の列の?は測定不
能もしくは該当粒子なし ※ 表中*1はV/C,*2は(Ti+Nb)/C ※ 下線は本発明の範囲外
* Formula A MIN and Formula A MAX are the upper and lower limit temperatures of ST shown by Formula A * Formula B MAX is the upper limit temperature of ST shown by Formula B * * is the addition of the target component * Formula A, B In the formula column, ○ is within the condition range, × is outside the condition range, * is the addition of the target component * In the d (maximum particle size of grain boundary iron carbide) column? Is not measurable or there is no applicable particle. * 1 in the table is V / C, * 2 is (Ti + Nb) / C * The underline is outside the scope of the present invention.

【0039】[0039]

【表4】 [Table 4]

【0040】※ A式MIN,A式MAXはA式で示さ
れるSTの上限および下限温度 ※ B式MAXはB式で示されるSTの上限温度 ※ *は対象成分の添加なし ※ A式,B式の列の○は条件範囲内、×は条件範囲
外、*は対象成分の添加なし ※ d(粒界鉄炭化物の最大粒子径)の列の?は測定不
能もしくは該当粒子なし ※ 表中*1はV/C,*2は(Ti+Nb)/C ※ 下線は本発明の範囲外
* A-type MIN and A-type MAX are the upper and lower limit temperatures of ST shown by A-type * B-type MAX is the upper limit temperature of ST shown by B-type * * is the addition of the target component * A-type and B-type In the formula column, ○ is within the condition range, × is outside the condition range, * is the addition of the target component * In the d (maximum particle size of grain boundary iron carbide) column? Is not measurable or there is no applicable particle. * 1 in the table is V / C, * 2 is (Ti + Nb) / C * The underline is outside the scope of the present invention.

【0041】[0041]

【発明の効果】以上述べたように、本発明は自動車等の
構造物の中で特に疲労強度と穴拡げ性に代表される局部
変形能に優れた50〜100kgf/mm2 溶融めっき
高強度鋼板とその製造方法を提供するもので、これらの
鋼板を用いることによって自動車等の構造物の軽量化、
省エネルギーおよび安全性の向上に大きく貢献すること
ができる。
INDUSTRIAL APPLICABILITY As described above, the present invention is a 50 to 100 kgf / mm 2 hot-dip galvanized high-strength steel sheet excellent in local deformability represented by fatigue strength and hole expandability in structures such as automobiles. And the manufacturing method thereof, by using these steel plates, weight reduction of structures such as automobiles,
It can greatly contribute to energy saving and improvement of safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶融めっき鋼板の疲労強度とフェライト粒界の
鉄炭化物の占有率およびこれら鉄炭化物の最大粒子径と
の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a fatigue strength of a hot-dip plated steel sheet, an occupation rate of iron carbide in a ferrite grain boundary, and a maximum particle diameter of these iron carbides.

【図2】溶融めっき鋼板の穴広げ加工性とフェライト粒
界の鉄炭化物の占有率およびこれら鉄炭化物の最大粒子
径との関係を示す図である。
FIG. 2 is a diagram showing a relationship between hole expanding workability of a hot-dip plated steel sheet, an occupation rate of iron carbide in a ferrite grain boundary, and a maximum particle diameter of these iron carbides.

【図3】Vを添加した溶融めっき鋼板の穴広げ加工性に
及ぼす溶融めっき工程の最大加熱温度とV/Cの効果を
示す図である。
FIG. 3 is a diagram showing the effects of the maximum heating temperature and V / C in the hot dip plating step on the hole expanding workability of the hot dip plated steel sheet containing V.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C23C 2/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C23C 2/06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 C:0.06重量%以下、Mn:0.2
〜3.0重量%、Si:1.5重量%以下を含有し、さ
らにV:0.2重量%以下、Ti:0.2重量%以下、
Nb:0.1重量%以下の範囲でこれらの中の1種もし
くは2種以上の合金元素を合計で0.005〜0.3重
量%含み、残部Feおよび不可避的不純物からなり、最
終的に得られる鋼板のミクロ組織の主相がフェライトも
しくはベイナイトであり、粒界における鉄炭化物の占有
率が0.1%以下で、かつこの鉄炭化物の最大粒子径が
1μm以下であることを特徴とする疲労特性と局部変形
能に優れた良加工性溶融めっき高強度鋼板。
1. C: 0.06 wt% or less, Mn: 0.2
-3.0 wt%, Si: 1.5 wt% or less, V: 0.2 wt% or less, Ti: 0.2 wt% or less,
Nb: 0.005 to 0.3% by weight in total of one or more alloying elements among these in a range of 0.1% by weight or less, and the balance Fe and unavoidable impurities. The main phase of the microstructure of the obtained steel sheet is ferrite or bainite, the occupation ratio of iron carbide in the grain boundaries is 0.1% or less, and the maximum particle diameter of the iron carbide is 1 μm or less. Good workability hot-dip galvanized high strength steel sheet with excellent fatigue properties and local deformability.
【請求項2】 Cu:2.0重量%以下、Mo:1.0
重量%以下、Cr:1.5重量%以下の範囲でこれらの
中の1種もしくは2種以上の合金元素を合計で4.0重
量%以下含むことを特徴とする請求項1記載の疲労特性
と局部変形能に優れた良加工性溶融めっき高強度鋼板。
2. Cu: 2.0% by weight or less, Mo: 1.0
The fatigue property according to claim 1, wherein one or more alloying elements among them are contained in a total amount of 4.0% by weight or less in the range of less than 1.5% by weight and Cr: 1.5% by weight or less. Good workability hot-dip galvanized steel sheet with excellent local deformability.
【請求項3】 Ca:0.01重量%以下もしくは希土
類元素(REM):0.1重量%以下の範囲でこれらの
中の1種もしくは2種を含有することを特徴とする請求
項1あるいは2記載の疲労特性と局部変形能に優れた良
加工性溶融めっき高強度鋼板。
3. One or two of Ca: 0.01% by weight or less or a rare earth element (REM): 0.1% by weight or less is contained. Good workability hot-dip galvanized high-strength steel sheet having excellent fatigue properties and local deformability described in 2.
【請求項4】 ミクロ組織中のマルテンサイトとパーラ
イトの面積率の合計が4%未満であることを特徴とする
請求項1、2、3のいずれかに記載の疲労特性と局部変
形能に優れた良加工性溶融めっき高強度鋼板。
4. The fatigue property and the local deformability according to claim 1, wherein the total area ratio of martensite and pearlite in the microstructure is less than 4%. Good workability Hot-dip galvanized high strength steel sheet.
【請求項5】 λ×σ0.8 ≧50かつσw/σ≧0.6
を同時に満足することを特徴とする請求項1、2、3、
4のいずれかに記載の疲労特性と局部変形能に優れた良
加工性溶融めっき高強度鋼板。
5. λ × σ 0.8 ≧ 50 and σw / σ ≧ 0.6
And satisfying at the same time,
Good workability hot-dip galvanized high-strength steel sheet having excellent fatigue properties and local deformability according to any one of 4 above.
【請求項6】 鋼板に溶融めっきを施すにあたり、溶融
めっき工程の最高加熱温度(ST(℃)と呼ぶ)が熱延
時の巻取温度(CT(℃)と呼ぶ)およびVとCの添加
量の重量比V/Cで規定される式(A)もしくはCTお
よびTi+NbとC添加量の重量比(Ti+Nb)/C
で規定される式(B)の範囲の少なくともいずれか一方
を満足することを特徴とする請求項1、2、3、4、5
のいずれかに記載の疲労特性と局部変形能に優れた良加
工性溶融めっき高強度鋼板の製造方法。 【数1】 【数2】
6. When hot-dip coating a steel sheet, the maximum heating temperature (called ST (° C.)) in the hot-dip galvanizing step is the coiling temperature during hot rolling (called CT (° C.)) and the addition amounts of V and C. (A) or CT and the weight ratio of Ti + Nb and the amount of C added (Ti + Nb) / C
6. At least one of the ranges of the formula (B) defined by is satisfied.
5. A method for producing a good workability hot-dip galvanized high-strength steel sheet having excellent fatigue properties and local deformability according to any one of 1. [Equation 1] [Equation 2]
JP11336793A 1993-05-14 1993-05-14 Good workability hot dip plated high strength steel sheet excellent in fatigue property and local deformability and its production Withdrawn JPH06322479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11336793A JPH06322479A (en) 1993-05-14 1993-05-14 Good workability hot dip plated high strength steel sheet excellent in fatigue property and local deformability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11336793A JPH06322479A (en) 1993-05-14 1993-05-14 Good workability hot dip plated high strength steel sheet excellent in fatigue property and local deformability and its production

Publications (1)

Publication Number Publication Date
JPH06322479A true JPH06322479A (en) 1994-11-22

Family

ID=14610490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11336793A Withdrawn JPH06322479A (en) 1993-05-14 1993-05-14 Good workability hot dip plated high strength steel sheet excellent in fatigue property and local deformability and its production

Country Status (1)

Country Link
JP (1) JPH06322479A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170118929A (en) 2015-03-25 2017-10-25 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and method for manufacturing same
KR20180030110A (en) 2015-08-19 2018-03-21 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and production method for same
KR20180030109A (en) 2015-08-19 2018-03-21 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and production method for same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170118929A (en) 2015-03-25 2017-10-25 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and method for manufacturing same
US10655194B2 (en) 2015-03-25 2020-05-19 Jfe Steel Corporation High-strength steel sheet and method for producing the same
KR20180030110A (en) 2015-08-19 2018-03-21 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and production method for same
KR20180030109A (en) 2015-08-19 2018-03-21 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and production method for same

Similar Documents

Publication Publication Date Title
US8747577B2 (en) High yield ratio and high-strength thin steel sheet superior in weldability and ductility, high-yield ratio high-strength hot-dip galvanized thin steel sheet, high-yield ratio high-strength hot-dip galvannealed thin steel sheet, and methods of production of same
EP1808505B1 (en) Cold rolled high strength thin-gauge steel sheet excellent in elongation and hole expandibility
JP5786316B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
EP1443124B1 (en) Hot-dip galvanized steel sheet and method for producing the same
RU2666392C2 (en) Micro-alloyed high-strength multi-phase steel containing silicon with minimum tensile strength of 750 mpa improved properties and method for producing a strip from said steel
US20210301376A1 (en) High-tensile steel containing manganese, use of said steel for flexibly-rolled sheet-products, and production method and associated steel sheet-product
US20090223607A1 (en) Method for manufacturing a high strength steel sheet
US10626478B2 (en) Ultra high-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
EP2708613A1 (en) Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
US10640855B2 (en) High-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
KR101445465B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
KR102503990B1 (en) High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel
JPH075970B2 (en) High carbon steel sheet manufacturing method
CN111247258B (en) High-strength multi-phase steel and method for producing a steel strip from such a multi-phase steel
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
EP3849795A1 (en) A resistance spot welded joint comprising a zinc coated ahss steel sheet
CN113348255A (en) Cold rolled steel sheet
JPH06322479A (en) Good workability hot dip plated high strength steel sheet excellent in fatigue property and local deformability and its production
JPH06306533A (en) High-strength galvannealed hot rolled steel sheet excellent in formability and weldability and production thereof
JP3290695B2 (en) Good workability high-strength steel sheet excellent in fatigue characteristics and local deformability and its manufacturing method
JPH0557332B2 (en)
WO2023063288A1 (en) Cold-rolled steel sheet, method for manufacturing same, and welded joint
JPH101748A (en) High strength hot rolled steel plate excellent in chemical conversion treating property and workability
US20220298596A1 (en) Steel sheet having excellent uniform elongation and strain hardening rate, and method for producing same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801