JPH06320011A - Photocatalyst for removal of heavy metal ion in solution and device for removing heavy metal ion in solution - Google Patents

Photocatalyst for removal of heavy metal ion in solution and device for removing heavy metal ion in solution

Info

Publication number
JPH06320011A
JPH06320011A JP5136766A JP13676693A JPH06320011A JP H06320011 A JPH06320011 A JP H06320011A JP 5136766 A JP5136766 A JP 5136766A JP 13676693 A JP13676693 A JP 13676693A JP H06320011 A JPH06320011 A JP H06320011A
Authority
JP
Japan
Prior art keywords
titanium oxide
heavy metal
metal ions
photocatalyst
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5136766A
Other languages
Japanese (ja)
Other versions
JP3502414B2 (en
Inventor
Ryuji Masuda
竜司 増田
Koichi Kawashima
孝一 川島
Wataru Takahashi
渉 高橋
Masayuki Murabayashi
眞行 村林
Kiminori Ito
公紀 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP13676693A priority Critical patent/JP3502414B2/en
Publication of JPH06320011A publication Critical patent/JPH06320011A/en
Application granted granted Critical
Publication of JP3502414B2 publication Critical patent/JP3502414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To obtain a photocatalyst for removal of heavy metal ions in a soln. having high efficiency and easy to handle by dipping a woven fabric of glass fibers in a soln. prepd. by dissolving a precursor of titanium oxide and an org. resin, drying the fabric and forming an Si-O-Ti bonded layer by firing between each of the glass fibers and the resulting titanium oxide. CONSTITUTION:A woven fabric of glass fibers A is dipped in a soln. prepd. by dissolving a precursor convertible into titanium oxide by heating and an org. resin in compatible solvents, the fabric is dried and an Si-O-Ti bonded layer C is formed by firing between each of the glass fibers A and the resulting thin titanium oxide film B coating the fabric to obtain the objective photocatalyst for removal of heavy metal ions in a soln. In this case, a dehydration condensation reaction proceeds, the Si-O-Ti bonded layer C is formed at a relatively low temp. and a tough titanium oxide film can be obtd. because only the surface of the fabric is locally heated by the heat of combustion generated by an oxidation degradation reaction of the org. resin and that of org. residues constituting the precursor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光を照射することによ
り液中に存在する水銀、鉛、カドミウム、砒素、銅、マ
ンガン、6価クロム等の重金属イオンを吸着して除去す
る、即ち、重金属イオンを還元して重金属として光触媒
の表面に析出させて除去する液中重金属イオン除去用光
触媒とそれを利用した液中重金属イオン除去装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention adsorbs and removes heavy metal ions such as mercury, lead, cadmium, arsenic, copper, manganese, and hexavalent chromium existing in a liquid by irradiating light, that is, The present invention relates to a photocatalyst for removing heavy metal ions in a liquid, which removes heavy metal ions as heavy metals by depositing them on the surface of the photocatalyst, and a device for removing heavy metal ions in a liquid using the photocatalyst.

【0002】[0002]

【従来の技術】従来、光触媒を利用して液中の重金属イ
オンを除去する方法としては、酸化チタン粉体を液中に
分散させてこれに重金属イオンを含む溶液を流し込み、
光を照射して吸着除去する方法や、ガラス棒やガラス球
にCVD法やゾルゲル法で酸化チタン膜を被覆したもの
を液中に配置し、これに重金属イオンを含む溶液を流
し、光を照射して吸着除去する方法が知られている。ま
た、重金属イオンの吸着効率を高めるために、白金、パ
ラジウム、ロジウム、金、銀、ルテニウム等の貴金属を
酸化チタンに担持させて光触媒機能を向上させようとす
る方法がとられている。
2. Description of the Related Art Conventionally, as a method of removing heavy metal ions in a liquid using a photocatalyst, titanium oxide powder is dispersed in the liquid and a solution containing heavy metal ions is poured into the liquid.
A method of irradiating light to adsorb and remove it, or a glass rod or glass sphere coated with a titanium oxide film by the CVD method or sol-gel method is placed in the liquid, and a solution containing heavy metal ions is flown into this to irradiate the light. Then, a method of adsorbing and removing is known. Further, in order to improve the adsorption efficiency of heavy metal ions, a method has been adopted in which a precious metal such as platinum, palladium, rhodium, gold, silver and ruthenium is supported on titanium oxide to improve the photocatalytic function.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の酸化チタン粉体を液中に分散させる方法は、粉体と
液体を分離するために、下流側に濾過膜を設ける必要が
あり、そのために圧力損失が高くなる。また、粉体を液
中に分散させると光が最外層のみで吸収され、照射光が
内部まで透過しにくくなり、吸着効率が小さくなるとい
う欠点を有する。また、前記従来の酸化チタン膜を被覆
したガラス棒やガラス球を用いる方法は、粉体を回収す
る濾過膜の設置は必要なく、光も透過するが、水や気相
との接触界面が少なくなり吸着効率が悪いという欠点を
有する。更に、従来法であるCVD法やゾルゲル法で酸
化チタン膜を被覆した場合には、基材であるガラス繊維
上に酸化チタンがガラス繊維との間にSi−O−Ti結
合層を介在することなく単独で存在するため、長時間の
使用の結果、膜の脱落等の問題があった。本発明は、こ
れら従来技術の欠点を解消し、高効率で使いやすい液中
重金属イオン除去用光触媒とこれを利用した液中重金属
イオン除去装置を提供することを目的としている。
However, in the conventional method of dispersing the titanium oxide powder in the liquid, it is necessary to provide a filtration membrane on the downstream side in order to separate the powder and the liquid. High pressure loss. In addition, when the powder is dispersed in the liquid, light is absorbed only in the outermost layer, and it becomes difficult for the irradiation light to penetrate to the inside, so that the adsorption efficiency is reduced. Further, the conventional method using a glass rod or a glass sphere coated with a titanium oxide film does not require the installation of a filtration film for collecting powder and allows light to pass through, but has a small contact interface with water or a gas phase. However, it has the disadvantage of poor adsorption efficiency. Furthermore, when the titanium oxide film is coated by the conventional CVD method or sol-gel method, the titanium oxide should intervene the Si—O—Ti bonding layer between the glass fiber and the glass fiber as the base material. Since it is not present and is present alone, there is a problem that the film may come off as a result of long-term use. An object of the present invention is to provide a photocatalyst for removing heavy metal ions in liquid, which is highly efficient and easy to use, and a device for removing heavy metal ions in liquid, which uses the photocatalyst for eliminating these drawbacks of the prior art.

【0004】[0004]

【課題を解決するための手段】本発明者等は、前記欠点
を解決するため鋭意検討の結果、加熱により酸化チタン
になる前駆体と有機物樹脂とを相溶性のある溶媒に溶解
してなる溶液にガラス繊維からなる織布を浸漬した後、
乾燥、焼成することにより、従来品の不具合を解消し得
ることを知見し、本発明を完成させた。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned drawbacks, the present inventors have found that a solution obtained by dissolving a precursor that becomes titanium oxide by heating and an organic resin in a compatible solvent. After immersing the woven fabric made of glass fiber in
The present invention has been completed by finding that the defects of conventional products can be eliminated by drying and firing.

【0005】即ち、本発明の液中重金属イオン除去用光
触媒はガラス繊維からなる織布に酸化チタンを被覆した
液中重金属イオン除去用光触媒であって、前記ガラス繊
維からなる織布を、加熱により酸化チタンになる前駆体
と有機物樹脂とを相溶性のある溶媒に溶解してなる溶液
に浸漬した後、乾燥、焼成することにより前記ガラス繊
維と前記酸化チタンの間にSi−O−Ti結合層を形成
したことを特徴とする。
That is, the photocatalyst for removing heavy metal ions in liquid of the present invention is a photocatalyst for removing heavy metal ions in liquid, which is obtained by coating a woven cloth made of glass fiber with titanium oxide, and the woven cloth made of glass fiber is heated by heating. A Si-O-Ti bonding layer is formed between the glass fiber and the titanium oxide by immersing in a solution prepared by dissolving a precursor of titanium oxide and an organic resin in a compatible solvent, followed by drying and firing. Is formed.

【0006】前記ガラス繊維からなる織布の目付け(g
/m2 )は、いくらのものでも構わないが、取扱い性や
吸着効率の関係から、通常100〜900g/m2 のも
のを用いる。また、織布を構成するガラス繊維の種類と
しては、石英ガラス、高石英ガラス、Eガラス、Cガラ
ス、Sガラス、Aガラス等、光を透すならばどのような
組成でも構わないが、経済性からEガラス繊維が好まし
い。また、ガラス繊維の平均繊維径は、特に限定される
ものではないが、製造可能でしかも液体との接触面積を
確保して効率を得るため5〜20ミクロンが好ましい。
また、織布の織り方は平織、綾織、朱子織など、どのよ
うな織り方でも構わないが、光透過性の観点から平織が
好ましい。また、打込み密度、厚さ、引張強度は特に限
定されるものではないが、液体に対する強度の観点か
ら、各々タテ、ヨコ共に10〜80本/25mm、0.
01〜2.0mm、5kgf/25mm巾以上が好まし
い。
Fabric weight of the above-mentioned glass fiber (g
/ M 2 ) may be anything, but in view of handleability and adsorption efficiency, usually 100 to 900 g / m 2 is used. Further, as the kind of glass fiber constituting the woven cloth, any composition may be used, such as quartz glass, high quartz glass, E glass, C glass, S glass, A glass, etc., as long as it allows light to pass through. E glass fiber is preferable from the viewpoint of the property. The average fiber diameter of the glass fibers is not particularly limited, but is preferably 5 to 20 μm in order to be manufacturable and to secure the contact area with the liquid to obtain efficiency.
The weave may be any weave, such as plain weave, twill weave and satin weave, but plain weave is preferred from the viewpoint of light transmission. Further, the implantation density, the thickness, and the tensile strength are not particularly limited, but from the viewpoint of strength against liquid, both vertical and horizontal are 10 to 80 pieces / 25 mm, 0.
The width is preferably 01 to 2.0 mm and 5 kgf / 25 mm or more.

【0007】また、前記加熱により酸化チタンとなる前
駆体としては、チタンアルコキシド、チタン塩化物、チ
タン硫化物、チタン酢酸塩等が使用できるが、有機物樹
脂との相溶性の関係から、アルコール類を相溶性溶媒と
する場合はチタンアルコキシド、水を相溶性溶媒とする
場合はチタン塩化物を選択することが好ましい。しか
し、前記前駆体と有機物樹脂が相溶する場合はどのよう
な組み合わせを選択しても構わない。
As the precursor which becomes titanium oxide by the heating, titanium alkoxide, titanium chloride, titanium sulfide, titanium acetate, etc. can be used, but alcohols are used because of their compatibility with organic resin. When a compatible solvent is used, titanium alkoxide is preferably selected, and when water is used as a compatible solvent, titanium chloride is preferably selected. However, if the precursor and the organic resin are compatible with each other, any combination may be selected.

【0008】また、前記有機物樹脂はアクリル系、オレ
フィン系等が一般的であるが、製造工程中の焼成工程で
酸化分解することが必要であるため、分解温度が200
℃以上且つ焼成温度以下の樹脂で、更に該酸化チタン前
駆体との相溶性があれば良く、モノマーの種類や分子量
によって特に限定されるものではない。
The organic resin is generally an acrylic resin, an olefin resin or the like, but the decomposition temperature is 200 because it needs to be oxidized and decomposed in the firing step in the manufacturing process.
It is only necessary that the resin has a temperature of not less than ° C and not more than the firing temperature and has compatibility with the titanium oxide precursor, and is not particularly limited depending on the type and molecular weight of the monomer.

【0009】このようにして選定された有機物樹脂と酸
化チタン前駆体の溶液に、前記織布を浸漬した後乾燥す
る。乾燥温度は相溶性溶媒の沸点により異なるが、40
〜150℃の範囲で行うのが好ましい。次に、乾燥膜を
焼成することにより、有機物樹脂や酸化チタンの前駆体
を構成している有機残基を取り除く。この焼成で酸化チ
タン前駆体は酸化チタンに変化し、有機物樹脂は酸化分
解されたSi−O−Ti結合を有する薄膜が得られる。
The woven fabric is dipped in a solution of the organic resin and the titanium oxide precursor thus selected, and then dried. The drying temperature depends on the boiling point of the compatible solvent.
It is preferably carried out in the range of up to 150 ° C. Next, the dried film is baked to remove the organic residues constituting the organic resin and the titanium oxide precursor. By this firing, the titanium oxide precursor is changed to titanium oxide, and the organic resin is a thin film having oxidatively decomposed Si-O-Ti bonds.

【0010】被覆する酸化チタン膜の厚さは、膜の接着
性や光透過性から1μm以下が好ましい。1μmを越え
ると膜の剥離が生じ、水の濁りや吸着効率の低下が生じ
る。また、光の透過性も悪くなり、織布内部まで光が到
達しにくくなり吸着効率的にも好ましくない。また、酸
化チタンの厚さは、溶液の酸化チタン前駆体の濃度を調
整するか、前記作製工程を繰り返すことにより変化させ
ることが可能である。
The thickness of the titanium oxide film to be coated is preferably 1 μm or less in view of the adhesiveness and light transmittance of the film. If it exceeds 1 μm, peeling of the film occurs, resulting in turbidity of water and deterioration of adsorption efficiency. In addition, the light transmittance also deteriorates, and it becomes difficult for light to reach the inside of the woven fabric, which is also undesirable in terms of adsorption efficiency. In addition, the thickness of titanium oxide can be changed by adjusting the concentration of the titanium oxide precursor in the solution or by repeating the above production process.

【0011】また、織布全体から考えると、被覆した酸
化チタン膜の織布全体に対する量の比率は40wt%以
下が好ましい。この場合も40wt%を越えると光の透
過性が悪くなり、酸化チタンの剥離も生ずるため好まし
くない。
Considering the entire woven fabric, the ratio of the amount of the coated titanium oxide film to the entire woven fabric is preferably 40 wt% or less. Also in this case, if it exceeds 40 wt%, the light transmittance is deteriorated and the titanium oxide is also peeled off, which is not preferable.

【0012】尚、予め貴金属が担持されている光触媒を
重金属イオンの除去に利用した場合、貴金属イオンは還
元されて原子となって酸化チタンの表面に析出され、重
金属イオンも同じ還元作用を利用して重金属として吸着
除去するため、酸化チタンの吸着量に限界があり、貴金
属イオンの付着量だけ重金属イオンの吸着量が減少して
触媒機能が低下するので、貴金属の担持は好ましくな
い。
When a photocatalyst on which a noble metal is supported in advance is used to remove heavy metal ions, the noble metal ions are reduced to form atoms and are deposited on the surface of titanium oxide, and the heavy metal ions also use the same reducing action. Since it is adsorbed and removed as heavy metal, the amount of adsorbed titanium oxide is limited, and the adsorbed amount of heavy metal ions is reduced by the adhering amount of noble metal ions to lower the catalytic function.

【0013】また、本発明の液中重金属イオン除去装置
は重金属イオンを含む溶液を通過させる容器内に前記液
中重金属イオン除去用光触媒を配置すると共に該光触媒
に光を照射するための光源を備えたことを特徴とする。
前記装置は例えば、容器をプラスチック類、ホウ珪酸塩
ガラス或いは、石英ガラス等による透明容器に構成し
て、該容器の外部から光を照射するようにしてもよく、
或いは、該容器を特に透明容器にすることなく該容器内
に光源を配置するようにしてもよい。また、前記光源と
しては、低圧水銀灯やブラックライト蛍光灯等を用い
る。
Further, the apparatus for removing heavy metal ions in liquid of the present invention comprises a photocatalyst for removing heavy metal ions in liquid and a light source for irradiating the photocatalyst with light in a container through which a solution containing heavy metal ions passes. It is characterized by that.
In the above apparatus, for example, the container may be configured as a transparent container made of plastics, borosilicate glass, quartz glass or the like, and light may be irradiated from the outside of the container,
Alternatively, the light source may be arranged in the container without forming the container as a transparent container. As the light source, a low pressure mercury lamp, a black light fluorescent lamp, or the like is used.

【0014】[0014]

【作用】従来、知られているCVD法やゾルゲル法によ
り基材と薄膜の間にSi−O−Tiなる結合を形成せし
めようとした場合、600℃以上の高温が必要となる。
これは、本反応が基材表面のSi−OH基と薄膜のTi
−OH基の間の脱水縮合反応によるものであるためで、
一般にこの縮合反応は−OH基の自由度が大きくなる6
00℃以上で起こるとされている。このため、汎用性が
高く耐熱性の小さいAガラス、Cガラス、Eガラス等に
被覆することは不可能であり、被覆する基材が限定され
ていた。本発明において、Si−O−Ti結合の生成が
基材表面のSi−OH基と薄膜のTi−OH基の間の脱
水縮合反応によるものである点は前記CVD法やゾルゲ
ル法と同様である。しかしながら本発明では、有機物樹
脂および酸化チタン前駆体を構成している有機残基の酸
化分解反応により生成する燃焼熱により表面のみ局部的
に加熱できるので前記脱水縮合反応が進行し、比較的低
温でSi−O−Ti結合が形成される。このため、耐熱
性の小さいガラス等の基材を用いた場合でも、Si−O
−Ti結合を持つ層を有した薄膜を形成することが可能
となり、強固な酸化チタン膜を得ることができる。更
に、このSi−O−Ti結合の存在によって重金属イオ
ンの吸着が促進される。酸化チタン光触媒を用いた場
合、重金属イオンの吸着は、光析出反応によって起こ
る。即ち、光の照射により酸化チタンの基底状態にある
電子が伝導帯に励起され、重金属イオンが酸化チタンか
ら励起電子を受け取り重金属となって酸化チタン表面に
析出する。このとき、Si−O−Ti結合が存在すると
酸化チタン構造の乱れが生じ、酸化チタンの基底状態と
励起状態のエネルギーの差(バンドギャップ)は、小さ
くなる。即ち、酸化チタンの電子が励起される確率が高
くなるため、重金属イオンが重金属となって酸化チタン
表面に析出され易くなる。このため前記重金属イオンの
吸着を促進することができる。更に、該光触媒はフレキ
シブルであり、どのような形状の容器にも設置すること
ができる。
When a known CVD method or sol-gel method is used to form a bond of Si-O-Ti between the substrate and the thin film, a high temperature of 600 ° C or higher is required.
This is because the reaction is based on the Si-OH group on the substrate surface and the Ti
Because it is due to a dehydration condensation reaction between —OH groups,
Generally, this condensation reaction increases the degree of freedom of the —OH group 6
It is said to occur above 00 ° C. For this reason, it is impossible to coat A glass, C glass, E glass and the like, which have high versatility and low heat resistance, and the substrates to be coated have been limited. In the present invention, the formation of the Si—O—Ti bond is due to the dehydration condensation reaction between the Si—OH group on the surface of the base material and the Ti—OH group of the thin film, as in the CVD method and the sol-gel method. . However, in the present invention, since only the surface can be locally heated by the combustion heat generated by the oxidative decomposition reaction of the organic residues constituting the organic resin and the titanium oxide precursor, the dehydration condensation reaction proceeds, and at a relatively low temperature. Si-O-Ti bonds are formed. Therefore, even when a substrate such as glass having low heat resistance is used, Si--O
A thin film having a layer having a —Ti bond can be formed, and a strong titanium oxide film can be obtained. Furthermore, the presence of this Si-O-Ti bond promotes the adsorption of heavy metal ions. When a titanium oxide photocatalyst is used, the adsorption of heavy metal ions occurs by a photodeposition reaction. That is, electrons in the ground state of titanium oxide are excited to the conduction band by the irradiation of light, and heavy metal ions receive excited electrons from titanium oxide and become heavy metals to be deposited on the titanium oxide surface. At this time, if the Si—O—Ti bond is present, the titanium oxide structure is disturbed, and the energy difference (band gap) between the ground state and the excited state of titanium oxide becomes small. That is, since the probability that the electrons of titanium oxide are excited increases, heavy metal ions become heavy metals and are easily deposited on the titanium oxide surface. Therefore, the adsorption of the heavy metal ions can be promoted. Further, the photocatalyst is flexible and can be installed in a container of any shape.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1は本発明液中重金属イオン除去装置の一実施例
を示すもので、図中1は透明石英管からなる容器を示
し、該容器1内には液中重金属イオン除去用光触媒2が
配置され、該容器1内にポンプ3を介して重金属イオン
を含む溶液を循環通過させるようにし、容器1の近傍に
設けた光源4から光を照射して重金属イオンを除去する
ように構成してある。尚、図中5は集光用ミラー、6は
重金属イオンを除去された溶液を取り出すための取出
口、7は新たな重金属イオンを含む溶液を供給するため
の取入口を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the apparatus for removing heavy metal ions in liquid according to the present invention. In FIG. 1, reference numeral 1 denotes a container made of a transparent quartz tube, in which a photocatalyst 2 for removing heavy metal ions in liquid is arranged. A solution containing heavy metal ions is circulated in the container 1 via a pump 3, and light is emitted from a light source 4 provided in the vicinity of the container 1 to remove the heavy metal ions. In the figure, 5 is a converging mirror, 6 is an outlet for taking out the solution from which heavy metal ions have been removed, and 7 is an inlet for supplying a solution containing new heavy metal ions.

【0016】次に、前記装置の使用例に即し、具体的な
実施例を比較例と共に説明する。 (実施例)平均繊維径7μmのEガラスモノフィラメン
ト(単一繊維)からなるヤーンを織ってなる目付け50
0g/m2 のガラス織布(ガラスクロス)を、酸化チタ
ン前駆体であるチタンイソプロポキシド10gとアクリ
ル系樹脂10gをエチルアルコール180gに溶解した
溶液に浸漬した。このガラス織布を溶液から取り出し、
60℃で1時間乾燥した後毎分1℃の速度で450℃ま
で昇温し、450℃で5時間保持することにより、有機
物樹脂を完全に酸化分解し、同時にチタンイソプロポキ
シドもTiO2 に変化させ、ガラス繊維表面にTiO2
膜を形成した。このときのTiO2 膜の厚さは約0.3
μmであり、強固に付着していた。この場合、被覆した
酸化チタンのガラス織布全体に対する量の比率は18%
であった。この膜についてEPMA(測定にはX線マイ
クロアナライザー,日本電子製,JEM−2000FX
IIを使用)およびESCA(測定にはX線光電子分光装
置,島津・クレイトス社製,XSAM800を使用)に
より分析を行ったところ、Si−O−Ti結合の存在が
確認された。ここで図2は本実施例による膜の断面図で
あり、Aはガラス繊維、BはTiO2 薄膜、CはSi−
O−Ti結合層を示している。この織布(触媒)を直径
12mm、長さ500mmの透明石英管に詰め、水銀7
0ppm、カドミウム90ppmを含有する反応液10
0リットルをポンプにより循環させた。約2時間光照射
を行いながら循環させたところ、水銀0.02ppm以
下、カドミウム0.05ppm以下の処理水を得た。こ
の場合、水の濁りはなかった。
Next, a concrete embodiment will be described together with a comparative example in accordance with a usage example of the apparatus. (Example) A basis weight 50 formed by weaving a yarn made of E glass monofilament (single fiber) having an average fiber diameter of 7 μm
A glass woven fabric (glass cloth) of 0 g / m 2 was immersed in a solution of 10 g of titanium isopropoxide as a titanium oxide precursor and 10 g of an acrylic resin in 180 g of ethyl alcohol. Remove this woven glass cloth from the solution,
After being dried at 60 ° C for 1 hour, the temperature was raised to 450 ° C at a rate of 1 ° C / min and kept at 450 ° C for 5 hours to completely oxidize and decompose the organic resin and at the same time convert titanium isopropoxide to TiO 2 . Change the TiO 2 on the glass fiber surface.
A film was formed. At this time, the thickness of the TiO 2 film is about 0.3.
It was μm and was firmly attached. In this case, the ratio of the coated titanium oxide to the entire glass woven fabric is 18%.
Met. About this film, EPMA (X-ray micro analyzer for measurement, JEM-2000FX manufactured by JEOL Ltd.)
II) and ESCA (using an X-ray photoelectron spectrometer, XSAM800 manufactured by Shimadzu-Kraitos Co., Ltd. for measurement), the presence of Si—O—Ti bonds was confirmed. Here, FIG. 2 is a cross-sectional view of the film according to the present embodiment, where A is glass fiber, B is a TiO 2 thin film, and C is Si-.
The O-Ti bond layer is shown. This woven fabric (catalyst) was packed in a transparent quartz tube with a diameter of 12 mm and a length of 500 mm,
Reaction liquid 10 containing 0 ppm and 90 ppm of cadmium
0 liter was circulated by the pump. When circulating while irradiating with light for about 2 hours, treated water containing 0.02 ppm or less of mercury and 0.05 ppm or less of cadmium was obtained. In this case, there was no turbidity in the water.

【0017】(比較例)実施例で用いたガラス織布を用
い、従来のゾルゲル法によりTiO2 薄膜の形成を試み
た。ガラス織布を浸漬させる液をチタンイソプロポキシ
ド10gと濃硫酸0.1gおよびエチルアルコール19
0gを混合した溶液に変えた以外は実施例と同様の方法
とした。結果形成されたTiO2 膜の厚さは約0.3μ
mであったが、弱い付着で簡単に剥離した。この場合、
被覆した酸化チタンのガラス織布全体に対する量の比率
は18%であった。この膜について前記実施例と同様に
EPMAおよびESCAにより分析を行ったところ、S
i−O−Ti結合の存在は確認されなかった。ここで、
図3は本比較例による膜の断面図であり、Aはガラス繊
維、BはTiO2 膜を示している。この織布(触媒)を
直径12mm、厚さ500mmの透明石英管に詰め、実
施例1と同じ反応液をポンプにより循環させた。約2時
間光照射後、水銀1ppm以下、カドミウム2ppm以
下になったが、酸化チタンの脱落により水がかなり濁っ
た。
Comparative Example Using the glass woven cloth used in the examples, an attempt was made to form a TiO 2 thin film by the conventional sol-gel method. The liquid in which the glass woven cloth is dipped is 10 g of titanium isopropoxide, 0.1 g of concentrated sulfuric acid and 19 of ethyl alcohol.
The same method as in Example was used except that 0 g was changed to a mixed solution. The resulting TiO 2 film has a thickness of about 0.3 μm.
It was m, but peeled off easily due to weak adhesion. in this case,
The ratio of the amount of coated titanium oxide to the entire glass woven fabric was 18%. When this film was analyzed by EPMA and ESCA in the same manner as in the above example, S
The presence of i-O-Ti bond was not confirmed. here,
FIG. 3 is a cross-sectional view of a film according to this comparative example, where A is glass fiber and B is a TiO 2 film. This woven fabric (catalyst) was packed in a transparent quartz tube having a diameter of 12 mm and a thickness of 500 mm, and the same reaction solution as in Example 1 was circulated by a pump. After irradiation with light for about 2 hours, the mercury content was 1 ppm or less and the cadmium content was 2 ppm or less, but the water became considerably cloudy due to the dropping of titanium oxide.

【0018】[0018]

【発明の効果】このように、本発明による織布は、光透
過性が良く、かつ水や気体との接触面積が大きいため、
液中の重金属イオンを高効率で除去できるという効果を
有する。また、織布を構成する繊維にSi−O−Ti結
合により強固に酸化チタン膜が被覆されているため、酸
化チタンの剥離や脱落がなく、長期に渡り高効率を維持
し、また水の濁りもないので粉体等を回収する必要がな
い、という効果を有する。更にSi−O−Ti結合が存
在するため、酸化チタンの電子が励起され易く、重金属
イオンの光析出反応を促進させるといった効果を有す
る。また、フレキシブル性を有するので、複雑な形状の
容器にも適用することが可能となり、カラム化も可能で
ある、という効果を有する。
As described above, the woven fabric according to the present invention has good light transmittance and a large contact area with water or gas.
It has an effect that heavy metal ions in the liquid can be removed with high efficiency. In addition, since the fibers constituting the woven fabric are strongly covered with the titanium oxide film by Si-O-Ti bonds, the titanium oxide is not peeled off or dropped off, high efficiency is maintained for a long time, and turbidity of water is caused. Since it is not necessary, it has an effect that it is not necessary to collect powder and the like. Furthermore, since the Si—O—Ti bond is present, the electrons of titanium oxide are easily excited, and the effect of promoting the photodeposition reaction of heavy metal ions is obtained. Further, since it has flexibility, it can be applied to a container having a complicated shape and can be columnized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液中重金属イオン除去装置の一実施例
の説明図
FIG. 1 is an explanatory diagram of an embodiment of a device for removing heavy metal ions in liquid according to the present invention.

【図2】本発明の液中重金属イオン除去用光触媒の被覆
の形成状態を示す拡大断面図
FIG. 2 is an enlarged cross-sectional view showing a formation state of a coating of the photocatalyst for removing heavy metal ions in liquid of the present invention.

【図3】比較例による液中重金属イオン除去用光触媒の
被覆の形成状態を示す拡大断面図
FIG. 3 is an enlarged cross-sectional view showing a state of forming a coating of a photocatalyst for removing heavy metal ions in liquid according to a comparative example.

【符号の説明】[Explanation of symbols]

1 容器 2 液中重金属イオン除去用光触媒 3 ポンプ 4 光源 5 集光用ミラー 6 取出口 7 取入口 A ガラス繊維 B TiO2 薄膜 C Si−O−Ti結合層1 Container 2 Photocatalyst for Removal of Heavy Metal Ions in Liquid 3 Pump 4 Light Source 5 Focusing Mirror 6 Inlet 7 Inlet A Glass Fiber B TiO 2 Thin Film C Si-O-Ti Bonding Layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/62 Z (72)発明者 村林 眞行 神奈川県横浜市旭区笹野台4−25−14 (72)発明者 伊藤 公紀 東京都目黒区目黒本町1−16−13−906─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication C02F 1/62 Z (72) Inventor Masayuki Murabayashi 4-25-14 Sasanodai, Asahi-ku, Yokohama-shi, Kanagawa (72) Inventor Koki Ito 1-16-13-906 Megurohonmachi, Meguro-ku, Tokyo

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス繊維からなる織布に酸化チタンを
被覆した液中重金属イオン除去用光触媒であって、前記
ガラス繊維からなる織布を、加熱により酸化チタンにな
る前駆体と有機物樹脂とを相溶性のある溶媒に溶解して
なる溶液に浸漬した後、乾燥、焼成することにより前記
ガラス繊維と前記酸化チタンの間にSi−O−Ti結合
層を形成したことを特徴とする液中重金属イオン除去用
光触媒。
1. A photocatalyst for removing heavy metal ions in a liquid, comprising a woven cloth made of glass fibers coated with titanium oxide, wherein a woven cloth made of glass fibers is heated with a precursor to become titanium oxide and an organic resin. A heavy metal in liquid characterized by forming a Si-O-Ti bond layer between the glass fiber and the titanium oxide by immersing in a solution prepared by dissolving in a compatible solvent, followed by drying and firing. Photocatalyst for removing ions.
【請求項2】 前記酸化チタンの厚さが1μm以下であ
ることを特徴とする請求項1記載の液中重金属イオン除
去用光触媒。
2. The photocatalyst for removing heavy metal ions in a liquid according to claim 1, wherein the titanium oxide has a thickness of 1 μm or less.
【請求項3】 前記酸化チタンの量がガラス繊維織布に
対して40wt%以下であることを特徴とする請求項1
または2記載の液中重金属イオン除去用光触媒。
3. The amount of titanium oxide is 40 wt% or less with respect to the glass fiber woven fabric.
Alternatively, the photocatalyst for removing heavy metal ions in liquid according to the item 2.
【請求項4】 重金属イオンを含む溶液を通過させる光
透過性の容器内に前記請求項1乃至3の何れかに記載の
光触媒を配置すると共に前記容器内に光を照射するため
の光源を備えたことを特徴とする液中重金属イオン除去
装置。
4. The photocatalyst according to any one of claims 1 to 3 is arranged in a light-transmissive container that allows a solution containing heavy metal ions to pass therethrough, and a light source for irradiating light into the container is provided. An apparatus for removing heavy metal ions in liquid, characterized in that
JP13676693A 1993-05-15 1993-05-15 Method for producing photocatalyst for removing heavy metal ions in liquid Expired - Fee Related JP3502414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13676693A JP3502414B2 (en) 1993-05-15 1993-05-15 Method for producing photocatalyst for removing heavy metal ions in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13676693A JP3502414B2 (en) 1993-05-15 1993-05-15 Method for producing photocatalyst for removing heavy metal ions in liquid

Publications (2)

Publication Number Publication Date
JPH06320011A true JPH06320011A (en) 1994-11-22
JP3502414B2 JP3502414B2 (en) 2004-03-02

Family

ID=15183016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13676693A Expired - Fee Related JP3502414B2 (en) 1993-05-15 1993-05-15 Method for producing photocatalyst for removing heavy metal ions in liquid

Country Status (1)

Country Link
JP (1) JP3502414B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032664A1 (en) * 1996-03-04 1997-09-12 Tao Inc. Molded product having photocatalytic function
WO1999064364A1 (en) * 1998-06-10 1999-12-16 Saint-Gobain Recherche Substrate with a photocatalytic coating
JP2000063118A (en) * 1998-08-14 2000-02-29 Jsr Corp Titanium dioxide precursor composition and titanium dioxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032664A1 (en) * 1996-03-04 1997-09-12 Tao Inc. Molded product having photocatalytic function
US6074748A (en) * 1996-03-04 2000-06-13 Tao Inc. Molded product having photocatalytic function
WO1999064364A1 (en) * 1998-06-10 1999-12-16 Saint-Gobain Recherche Substrate with a photocatalytic coating
FR2779751A1 (en) * 1998-06-10 1999-12-17 Saint Gobain Isover SUBSTRATE WITH PHOTOCATALYTIC COATING
JP2000063118A (en) * 1998-08-14 2000-02-29 Jsr Corp Titanium dioxide precursor composition and titanium dioxide

Also Published As

Publication number Publication date
JP3502414B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
US6336998B1 (en) UV lamp device for air cleaning
US6074981A (en) Photocatalyst and process for the preparation thereof
WO1997023572A1 (en) Photocatalytic process for making surface hydrophilic and composite material having photocatalytically hydrophilic surface
US20040226813A1 (en) Fluorescent lamp device capable of cleaning air
JPH05309267A (en) Photocatalyst body
WO1998011984A1 (en) Ultrafine metal particle carrying photocatalyst, highly function material loaded with the photocatalyst, and method of manufacturing them
JP2003024781A (en) Photocatalyst holder and its production method
CN109794237B (en) Preparation method of silver-loaded titanium dioxide nanorod array photocatalyst
JPS635301A (en) Reflecting mirror
JP2009247546A (en) Air cleaning filter and air cleaner
CN107149872B (en) Preparation method of photocatalytic gas purification sticky note
WO2007119489A1 (en) Visible light response-type titanium oxide photocatalyst, method for manufacturing the visible light response-type titanium oxide photocatalyst, and use of the visible light response-type titanium oxide photocatalyst
JP2002320862A (en) Photocatalyst thin film in which metal is supported on titanium oxide thin film
JP3502414B2 (en) Method for producing photocatalyst for removing heavy metal ions in liquid
JP3502413B2 (en) Method for producing photocatalyst for treating organic harmful substances
WO2008001405A2 (en) Metal or metalized fabrics coated with nanostructured titanium dioxide
JP2010142702A (en) Photocatalyst and method of manufacturing the same
CN110191757A (en) Photocatalyst-supporting net slice, the manufacturing method of air purifier and photocatalyst-supporting net slice
JP3722515B2 (en) Filter material for dust removal, filter unit and filtration method
CN1607035A (en) Method for processing waste gas treating ultraviolet lamp and waste gas treating method
JP2002085967A (en) Photocatalyst membrane and method of producing the same
JPH1071337A (en) Photocatalyst and its production
JP3359667B2 (en) Photocatalyst for removing heavy metal ions in liquid and apparatus for removing heavy metal ions in liquid
JP3358826B2 (en) Photocatalyst for treating toxic substances in liquids and equipment for treating toxic substances in liquids
EP1132133A1 (en) Photocatalytic water and air treatment reactors based on silica supported titanium dioxide

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031205

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees