JPH06317342A - Heat storage tank - Google Patents

Heat storage tank

Info

Publication number
JPH06317342A
JPH06317342A JP6008434A JP843494A JPH06317342A JP H06317342 A JPH06317342 A JP H06317342A JP 6008434 A JP6008434 A JP 6008434A JP 843494 A JP843494 A JP 843494A JP H06317342 A JPH06317342 A JP H06317342A
Authority
JP
Japan
Prior art keywords
tank
heat transfer
medium liquid
heat
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6008434A
Other languages
Japanese (ja)
Other versions
JPH07109307B2 (en
Inventor
Eiichi Hamada
栄一 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP6008434A priority Critical patent/JPH07109307B2/en
Publication of JPH06317342A publication Critical patent/JPH06317342A/en
Publication of JPH07109307B2 publication Critical patent/JPH07109307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To make it possible to stably keep a state of storage of a heating medium liquid in a thermally stratified state in a heating medium liquid storage part by a construction wherein a pipeline for supplying and discharging a high-temperature heating medium liquid is made to open below the upper end edge of an erect wall and in an upper partitioned part and a pipeline for supplying and discharging a low-temperature heating medium liquid above the lower end edge of the erect wall and in a lower partitioned part respectively. CONSTITUTION:A flow passage 6 for high-temperature cold water which makes a storage part 2 and an upper partitioned part 3A of a supplying-discharging part 3 on the opposite sides communicate with each other is formed between the upper end edge of an erect wall 4 and the liquid surface of cold water stored in a tank and through the whole width of the inside of the tank. Between the lower end edge of the erect wall 4 and the bottom wall of the tank, besides, a flow passage 7 for low-temperature cold water which makes the storage part 2 and a lower partitioned part 3B of the supplying-discharging part on the opposite sides communicate with each other is formed through the whole width of the inside of the tank. A pipeline 8A on the high temperature side out of cold water circulation passages connected to a refrigerator and an air conditioner on the load side is made to open in the upper partitioned part 3A of the supplying-discharging part 3, below the upper end edge of the erect wall 4, while a pipeline 8B on the low temperature side is made to open in the lower partitioned part 3B of the supplying-discharging part 3, above the lower end of the erect wall 4.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は空調用の蓄熱槽に関す
る。 【0002】 【従来の技術】従来、高温貯留熱媒液と低温貯留熱媒液
との槽内混合による熱損失を抑制して蓄熱効率の向上を
図った空調用蓄熱槽としてもぐり堰型や改良もぐり堰型
の蓄熱槽が実用化されているが、それら型式の蓄熱槽が
蛇行状流路より成る熱媒液貯留部を備えているのに対し
て、蛇行状流路を形成せずに熱媒液貯留部を単なる箱状
の室で形成する比較的簡易な型式の蓄熱槽にあっては、
下記(イ)あるいは(ロ)のような手段により箱状の熱
媒液貯留部における熱媒液貯留状態を温度成層状態に近
づけるようにし、それによって槽内での混合熱損失の低
減を図っていた。 【0003】(イ)第5図に示すように、熱媒液貯留部
(2)に直接に挿入配置する熱媒液給排管路(8A),
(8B)のうち高温熱媒液用給排管路(8A)を熱媒液
貯留部(2)の上層部で開口させ、かつ、低温熱媒液用
給排管路(8B)を熱媒液貯留部(2)の下層部で開口
させる。 (ロ)第6図に示すように、槽内の一側部において第1
立壁(4A)により高温熱媒液用給排部(3A)を形成
すると共に、槽内の他側部において第2立壁(4B)に
より低温熱媒液用給排部(3B)を形成し、箱状の熱媒
液貯留部(2)に対する高温熱媒液給排を、第1立壁
(4A)の上端縁と槽内貯留熱媒液の液面との間に位置
させるように形成した隙間状の高温熱媒液用流動路
(6)を介して貯留部(2)の上層部で水平層流状に行
なわせ、かつ、貯留部(2)に対する低温熱媒液給排
を、第2立壁(4B)の下端縁と槽の底壁との間に形成
した隙間状の低温熱媒液用流動路(7)を介して貯留部
(2)の下層部で同じく水平層流状に行なわせる。(文
献を示すことができない。) 【0004】 【発明が解決しようとする問題点】しかしながら、上述
(イ)の手段では、熱媒液給排管路(8A),(8B)
からの熱媒液吐出に伴なう攪拌作用で貯留熱媒液が激し
く攪拌されてしまうために、貯留熱媒液の温度成層状態
を形成、維持することが実質的に不可能で、混合熱損失
の低減という目的をほとんど達成し得ないものであっ
た。又、上述(ロ)の手段では、給排管路(8A),
(8B)からの吐出に伴なう攪拌作用で貯留熱媒液が攪
拌されてしまうことは回避できるものの、第1立壁(4
A)の上端縁側に形成した高温熱媒液用流動路(6)と
他側部において第2立壁(4B)の下端縁側に形成した
低温熱媒液用流動路(7)とが、箱状の熱媒液貯留部
(2)において対角位置に位置することに起因して、熱
媒液給排に伴ないそれら両流動路(6),(7)にわた
って対角線状に貯留熱媒液が短絡流動し易く、その対角
線状の短絡流動によって貯留熱媒液の温度成層状態が乱
されるために未だかなりの混合熱損失が発生する問題が
あり、その上、対角線状の短絡流動によって、箱状熱媒
液貯留部(2)の他方の対角部(a),(b)に死水的
な熱媒液滞留が生じるために、有効蓄熱容量が槽容積の
割に小さくなってしまう問題もあった。 【0005】本発明の目的は、蛇行状流路を有しない箱
状の熱媒液貯留部に対する熱媒液給排部を合理的に形成
することにより、槽内混合熱損失を効果的に低減すると
共に、槽容積に対する有効蓄熱容量の比を極力大にする
点にある。 【0006】 【問題点を解決するための手段】本発明による蓄熱槽の
特徴構成は、槽内を熱媒液貯留部と熱媒液給排部とに仕
切る立壁を設け、前記給排部を上下に仕切る横壁を設
け、前記貯留部と前記給排部の上側仕切部分とを連通す
る熱媒液流動路を、前記立壁の上端縁と貯留熱媒液の液
面との間に位置させるように形成し、前記立壁の下端縁
と前記槽の底壁との間に、前記貯留部と前記給排部の下
側仕切部分とを連通する熱媒液流動路を形成し、高温熱
媒液用給排管路を前記給排部の上側仕切部分に、かつ、
低温熱媒液用給排管路を前記給排部の下側仕切部分に夫
々開口させてあることにあり、その作用、効果は次の通
りである。 【0007】 【作用】つまり、第1図あるいは第3図に示すように、
箱状の熱媒液貯留部(2)に対する高温熱媒液給排を、
立壁(4)の上端縁と槽内貯留熱媒液の液面との間に位
置させるように形成した隙間状の熱媒液流動路(6)を
介して貯留部(2)の上層部で水平層流状に、かつ、貯
留部(2)に対する低温熱媒液給排を、立壁(4)の下
端縁と槽(1)の底壁との間に形成した隙間状の熱媒液
流動路(7)を介して貯留部(2)の下層部で同じく水
平層流状に夫々行なわせることにより、熱媒液給排管路
(8A),(8B)からの熱媒液吐出に伴なう攪拌作用
で貯留熱媒液が攪拌されてしまうことを防止しながら、
箱状熱媒液貯留部(2)での温度成層状態の形成、維持
を図るのであるが、熱媒液給排を夫々水平層流状に行な
う高温熱媒液用流動路(6)と低温熱媒液用流動路
(7)とを同一の立壁(4)の上端縁側と下端縁側とに
形成したことにより、各熱媒液流動路(6),(7)を
介して給排される熱媒液の流動方向(水平方向)と両熱
媒液流動路(6),(7)を最短に短絡する方向(立壁
(4)に沿う方向)とが直交することとなるから、両熱
媒液流動路が箱状熱媒液貯留部の対角位置に位置するこ
とに起因した前述の如き対角線状の熱媒液短絡流動を回
避できて、熱媒液給排に伴なう箱状熱媒液貯留部(2)
内での熱媒液流動状態を、温度成層状態の形成・維持に
最適な鉛直向きのピストン流状態に近づけることができ
る。 【0008】 【発明の効果】上述の結果、高温貯留熱媒液と低温貯留
熱媒液との槽内混合による熱損失を効果的に低減でき
て、熱媒液貯留部を単なる箱状に形成する簡易な型式で
ありながらも蓄熱効率を大巾に向上でき、しかも、貯留
部内での短絡流動に起因した死水的な熱媒液滞留も回避
できるから、槽容積に対する有効蓄熱容量の比をも向上
できて、コンパクトでありながらも有効蓄熱容量の大き
なものにでき、全体として、熱収支面での経済性、設備
費面での経済性、並びに、設置性のいずれにおいても優
れた蓄熱槽にできた。 【0009】 【実施例】次に本発明の実施例を第1図及び第2図に基
づいて説明する。箱状のコンクリート構造体から成る空
調用冷水槽(1)の内部に、その内部空間を冷水貯留部
(2)とそれに対する冷水給排部(3)とに仕切る立壁
(4)を、槽内の一側部寄りで槽内の全巾にわたらせて
設け、それによって形成された冷水給排部(3)を、立
壁(4)と槽側壁とにわたる横壁(5)で上下にほぼ2
等分に仕切ってある。 【0010】そして、貯留部(2)と給排部(3)の上
側仕切部分(3A)とを連通する隙間状の高温冷水用流
動路(6)を、立壁(4)の上端縁と槽内貯留冷水の液
面との間に位置させる状態で槽内の全巾にわたって形成
し、かつ、立壁(4)の下端縁と槽底壁との間に、貯留
部(2)と給排部の下側仕切部分(3B)とを連通する
同じく隙間状の低温冷水用流動路(7)を槽内の全巾に
わたって形成すると共に、冷凍機や負荷側の空調器に接
続する冷水循環管路のうち高温側管路(8A)を給排部
(3)の上側仕切部分(3A)内で、かつ、低温側管路
(8B)を給排部(3)の下側仕切部分(3B)内で夫
々開口させてある。 【0011】つまり、貯留部(2)に対する高温冷水の
給排を、隙間状の高温冷水用流動路(6)を介して貯留
部(2)の上層部で水平層流状に行なわせ、かつ、貯留
部(2)に対する低温冷水の給排を、高温冷水用流動路
(6)の鉛直下方に位置して同じ向きに開口する隙間状
の低温冷水用流動路(7)を介して貯留部(2)の下層
部で同じく水平槽流状に行なわせることにより、冷水給
排に伴なう貯留部(2)内での貯留冷水の流動状態を鉛
直向きのピストン流状態とし、それによって、貯留部
(2)での冷水貯留状態を混合損失の極めて少ない良好
な温度成層状態に維持するようにしてある。 【0012】尚、図中矢印は、低温冷水を冷凍機から槽
(1)へ供給し、かつ、高温冷水を槽(1)から冷凍機
へ取出すときの流動状態を示すが、低温冷水を槽(1)
から負荷側空調器へ取出し、かつ、高温冷水を負荷側空
調器から槽(1)へ戻す蓄熱消費運転状態においては矢
印の向きが全て逆向きとなる。 【0013】 【別実施例】次に別実施例を説明する。第3図、及び、
第4図に示すように、槽(1)内の中央部に互いに平行
姿勢の2枚の立壁(4)を、夫々槽内の全巾にわたらせ
て設け、それら2枚の立壁(4)の間に形成された給排
部(3)を横壁(5)により上下に仕切り、給排部
(3)の上側仕切部分(3A)と貯留部(2)とを連通
する隙間状の高温冷水用流動路(6)を各立壁(4)の
上端縁と槽内貯留冷水の液面との間に位置させるよう
に、かつ、給排部(3)の下側仕切部分(3B)と貯留
部(2)とを連通する隙間状の低温冷水用流動路(7)
を各立壁(4)の下側縁と槽底壁との間に夫々形成し、
その壁構造において高温冷水用給排管路(8A)を給排
部(3)の上側仕切部分(3A)内に、かつ、低温冷水
用給排管路(8B)を給排部の下側仕切部分(3B)内
に夫々開口させるように構成しても良く、この別実施例
構成は、貯留部(2)の容積が大きい場合に好適であ
る。 【0014】貯留対象としては、冷房用冷水、暖房用温
水、あるいは、それら水熱媒に種々の薬剤を添加した熱
媒液等、各種の熱媒液を貯留対象とすることができる。 【0015】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage tank for air conditioning. 2. Description of the Related Art Conventionally, as a heat storage tank for an air conditioner which is designed to improve heat storage efficiency by suppressing heat loss due to mixing of a high temperature storage heat transfer fluid and a low temperature storage heat transfer fluid in the tank, a moat weir type or improvement. Although the moguri weir type heat storage tank has been put into practical use, while those types of heat storage tanks are equipped with a heat transfer medium storage section consisting of a meandering flow path, heat is generated without forming a meandering flow path. In a relatively simple type heat storage tank in which the medium storage part is formed by a simple box-shaped chamber,
By means such as (a) or (b) below, the heat medium liquid storage state in the box-shaped heat medium liquid storage portion is made to approach the temperature stratified state, thereby reducing the mixed heat loss in the tank. It was (A) As shown in FIG. 5, the heat medium liquid supply / discharge pipe line (8A) directly inserted and arranged in the heat medium liquid storage section (2),
Of the (8B), the high-temperature heat transfer medium supply / discharge pipe (8A) is opened in the upper layer portion of the heat transfer medium storage part (2), and the low-temperature heat transfer medium supply / discharge pipe (8B) is connected to the heat transfer medium. The lower part of the liquid storage part (2) is opened. (B) As shown in FIG.
The high temperature heat transfer liquid supply / discharge part (3A) is formed by the standing wall (4A), and the low temperature heat transfer liquid supply / discharge part (3B) is formed by the second standing wall (4B) on the other side of the tank. A gap formed so that the high temperature heat transfer medium liquid supply / discharge to / from the box-shaped heat transfer medium storage portion (2) is located between the upper edge of the first standing wall (4A) and the liquid level of the heat transfer medium storage liquid in the tank. A horizontal laminar flow in the upper part of the storage part (2) through a flow path (6) for high-temperature heat transfer medium liquid, and supplying and discharging the low-temperature heat transfer liquid to the storage part (2) The same process is performed in a horizontal laminar flow in the lower part of the storage part (2) through a gap-shaped flow path for low-temperature heat transfer medium (7) formed between the lower edge of the standing wall (4B) and the bottom wall of the tank. Let (No reference can be given.) [Problems to be Solved by the Invention] However, in the above-mentioned means (a), the heat medium liquid supply / discharge pipe lines (8A) and (8B) are used.
The stored heat transfer medium is violently stirred by the stirring action that accompanies the discharge of the heat transfer medium, and it is virtually impossible to form and maintain the temperature stratified state of the stored heat transfer medium. The objective of reducing loss was hardly achieved. Further, in the means of (b) above, the supply / discharge pipe line (8A),
Although it is possible to avoid stirring the stored heat transfer medium liquid by the stirring action accompanying the discharge from (8B), the first standing wall (4
The flow path (6) for high temperature heat transfer medium formed on the upper edge side of A) and the flow path (7) for low temperature heat transfer medium formed on the lower edge side of the second standing wall (4B) on the other side are box-shaped. Due to the diagonal position in the heat medium liquid storage section (2), the stored heat medium liquid is diagonally formed over both flow paths (6) and (7) accompanying the heat medium liquid supply / discharge. There is a problem that short-circuit flow easily occurs, and the diagonal short-circuit flow disturbs the temperature stratification state of the stored heat transfer medium liquid, so that considerable heat loss due to mixing occurs. There is also a problem that the effective heat storage capacity becomes small relative to the tank volume because dead water-like heat medium liquid retention occurs at the other diagonal portions (a) and (b) of the heat medium liquid storage section (2). there were. The object of the present invention is to effectively reduce the heat loss in the mixing tank by rationally forming the heat medium liquid supply / discharge part for the box-shaped heat medium liquid storage part having no meandering flow path. In addition, the ratio of the effective heat storage capacity to the tank volume is maximized. A characteristic structure of a heat storage tank according to the present invention is that a standing wall that divides the inside of the tank into a heat medium liquid storage section and a heat medium liquid supply / discharge section is provided, and the supply / discharge section is provided. A horizontal wall for partitioning up and down is provided, and a heat medium liquid flow path that connects the storage portion and the upper partition portion of the supply / discharge portion is located between the upper edge of the standing wall and the liquid surface of the stored heat medium liquid. A heating medium liquid flow path that connects the storage part and the lower partition part of the supply / discharge part between the lower end edge of the standing wall and the bottom wall of the tank. The supply / discharge pipe line for the upper partition of the supply / discharge unit, and
The low-temperature heat medium liquid supply / discharge pipe lines are opened in the lower partition portions of the supply / discharge unit, respectively, and the action and effect are as follows. That is, as shown in FIG. 1 or 3,
Supply and discharge of the high-temperature heat transfer medium to the box-shaped heat transfer medium reservoir (2)
In the upper layer part of the storage part (2) via a gap-shaped heat transfer medium flow path (6) formed so as to be positioned between the upper edge of the standing wall (4) and the liquid surface of the heat transfer liquid stored in the tank. A low-temperature heat transfer medium liquid supply / discharge to / from the storage portion (2) in a horizontal laminar flow form between the lower end edge of the standing wall (4) and the bottom wall of the tank (1). By performing the same in a horizontal laminar manner in the lower layer portion of the storage portion (2) via the passage (7), the heat medium liquid is discharged from the heat medium liquid supply / discharge pipe passages (8A), (8B). While preventing the stored heat transfer fluid from being stirred by the stir action,
In order to form and maintain the temperature stratified state in the box-shaped heat medium liquid storage part (2), the heat medium liquid flow passage (6) and the low temperature medium which carry out the heat medium liquid supply and discharge in a horizontal laminar flow are provided. Since the heat medium liquid flow path (7) is formed on the upper end edge side and the lower end edge side of the same standing wall (4), the heat medium liquid flow paths (6) and (7) are supplied and discharged. Since the flow direction of the heat transfer liquid (horizontal direction) and the direction of short-circuiting both heat transfer liquid flow paths (6) and (7) (direction along the standing wall (4)) are orthogonal to each other, both heat It is possible to avoid the above-described diagonal short-circuit flow of the heat medium liquid caused by the fact that the medium liquid flow path is located at the diagonal position of the box-shaped heat medium liquid storage part, and the box shape accompanying the heat medium liquid supply and discharge can be avoided. Heat medium storage part (2)
It is possible to bring the heat medium liquid flow state inside to a vertical piston flow state which is optimum for forming and maintaining the temperature stratification state. As a result of the above, the heat loss due to the mixing of the high temperature storage heat transfer fluid and the low temperature storage heat transfer fluid in the tank can be effectively reduced, and the heat transfer fluid storage portion is formed in a simple box shape. Although it is a simple model, the heat storage efficiency can be greatly improved, and dead water-like heat medium liquid retention due to short-circuit flow in the storage part can be avoided, so that the ratio of the effective heat storage capacity to the tank volume can be increased. It can be improved and can be made compact while having a large effective heat storage capacity, making it an excellent heat storage tank in terms of both heat balance economy, facility cost economy, and installability as a whole. did it. Next, an embodiment of the present invention will be described with reference to FIGS. 1 and 2. Inside the cold water tank for air conditioning (1) composed of a box-shaped concrete structure, a standing wall (4) for partitioning the internal space into a cold water storage section (2) and a cold water supply / discharge section (3) for it is provided in the tank. The cold water supply / discharge section (3) formed by being provided so as to extend over the entire width in the tank near the one side of the tank, and the lateral wall (5) extending up and down the standing wall (4) and the side wall of the tank is almost vertically divided into two parts.
It is divided into equal parts. A gap-shaped flow path for high-temperature cold water (6) which connects the storage section (2) and the upper partition section (3A) of the supply / discharge section (3) is connected to the upper edge of the standing wall (4) and the tank. It is formed over the entire width in the tank in a state of being located between the liquid surface of the stored cold water and the storage portion (2) and the supply / discharge portion between the lower end edge of the standing wall (4) and the tank bottom wall. The same gap-shaped low-temperature cold water flow path (7) communicating with the lower partition part (3B) is formed over the entire width of the tank, and a cold water circulation pipe line is connected to the refrigerator or the load side air conditioner. Among them, the high temperature side conduit (8A) is in the upper partition part (3A) of the supply / discharge section (3), and the low temperature side conduit (8B) is the lower partition part (3B) of the supply / discharge section (3). Each is opened inside. That is, the supply and discharge of high-temperature cold water to and from the storage section (2) are performed in a horizontal laminar flow manner in the upper layer section of the storage section (2) via the flow path (6) for high-temperature cold water in the form of a gap, and The supply / drainage of the low-temperature cold water to / from the storage part (2) is performed through a gap-shaped low-temperature cold-water flow path (7) which is vertically below the high-temperature cold water flow path (6) and opens in the same direction. By performing the same horizontal tank flow in the lower layer part of (2), the flow state of the stored cold water in the storage part (2) accompanying the cold water supply and discharge is changed to a vertical piston flow state, whereby The cold water storage state in the storage section (2) is maintained in a good temperature stratified state with extremely small mixing loss. The arrows in the figure show the flow state when low-temperature cold water is supplied from the refrigerator to the tank (1) and high-temperature cold water is taken out from the tank (1) to the refrigerator. (1)
From the load side air conditioner to the load side air conditioner and the high temperature chilled water is returned from the load side air conditioner to the tank (1), the directions of the arrows are all reversed in the heat storage consumption operation state. Another Embodiment Next, another embodiment will be described. 3 and
As shown in FIG. 4, two standing walls (4) parallel to each other are provided in the central portion of the tank (1) so as to extend over the entire width of each of the standing walls (4). For high-temperature cold water in the form of a gap, which divides the supply / discharge part (3) formed between them into upper and lower parts by the lateral wall (5) and connects the upper partition part (3A) of the supply / discharge part (3) and the storage part (2). The flow path (6) is located between the upper edge of each standing wall (4) and the liquid level of the cold water stored in the tank, and the lower partition part (3B) and the storage part of the supply / discharge part (3). (2) Flow path (7) for low temperature cold water that communicates with (2)
Between the lower edge of each standing wall (4) and the bottom wall of the tank,
In the wall structure, the hot / cold water supply / discharge pipe line (8A) is located in the upper partition (3A) of the supply / discharge unit (3), and the low-temperature cold water supply / discharge pipe line (8B) is located below the supply / discharge unit. The partition portions (3B) may be configured to be opened respectively, and this configuration of another embodiment is suitable when the volume of the storage portion (2) is large. As the storage object, various heat medium liquids such as cold water for cooling, hot water for heating, or heat medium liquids obtained by adding various chemicals to these water heat mediums can be stored. [0015]

【図面の簡単な説明】 【図1】本発明の実施例を示す縦断面図 【図2】図1におけるII−II線断面図 【図3】本発明の別実施例を示す縦断面図 【図4】図3におけるIV−IV線断面図 【図5】従来例を示す縦断面図 【図6】他の従来例を示す縦断面図 【符号の説明】 1 槽 2 貯留部 3 給排部 3A 上側仕切り部分 3B 下側仕切り部分 4 立壁 5 横壁 6,7 流動路 8A 高温熱媒液用給排管路 8B 低温熱媒液用給排管路[Brief description of drawings] FIG. 1 is a vertical sectional view showing an embodiment of the present invention. FIG. 2 is a sectional view taken along line II-II in FIG. FIG. 3 is a vertical sectional view showing another embodiment of the present invention. 4 is a sectional view taken along line IV-IV in FIG. FIG. 5 is a vertical sectional view showing a conventional example. FIG. 6 is a vertical cross-sectional view showing another conventional example. [Explanation of symbols] 1 tank 2 Storage 3 supply and discharge section 3A Upper partition 3B lower partition 4 standing wall 5 horizontal walls 6,7 Flow path 8A High temperature heat transfer liquid supply / discharge line 8B Supply / Discharge Pipeline for Low Temperature Heat Transfer Liquid

─────────────────────────────────────────────────────
【手続補正書】 【提出日】平成6年2月28日 【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】全文 【補正方法】変更 【補正内容】 【書類名】 明細書 【発明の名称】 蓄熱槽 【特許請求の範囲】 槽(1)内を熱媒液給排部(3)とその両側の熱媒液貯
留部(2)とに仕切る立壁(4)を設け、 前記熱媒液給排部(3)を上側仕切り部分(3A)と下
側仕切り部分(3B)とに仕切る横壁(5)を設け、 前記上側仕切り部分(3A)とその両側の前記熱媒液貯
留部(2)とを連通させる上側熱媒液流動路(6)を、
前記立壁(4)の上端縁と貯留熱媒液の液面との間に位
置させるように形成し、 前記下側仕切り部分(3B)とその両側の前記熱媒液貯
留部(2)とを連通させる下側熱媒液流動路(7)を、
前記立壁(4)の下端縁と前記槽(1)の底壁との間に
形成し、 高温熱媒液用給排管路(8A)を前記立壁(4)の上端
縁よりも下方で前記上側仕切り部分(3A)に開口さ
せ、 低温熱媒液用給排管路(8B)を前記立壁(4)の下端
縁よりも上方で前記下側仕切り部分(3B)に開口させ
た蓄熱槽。 【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は冷房用冷水や暖房用温水
等の種々の熱媒液を貯留対象とする蓄熱槽に関する。 【0002】 【従来の技術】従来、高温貯留熱媒液と低温貯留熱媒液
との槽内混合による熱損失を抑制して蓄熱効率の向上を
図った蓄熱槽としてもぐり堰型や改良もぐり堰型の蓄熱
槽が実用化されているが、それら型式の蓄熱槽が蛇行状
流路より成る熱媒液貯留部を備えているのに対して、蛇
行状流路を形成せずに熱媒液貯留部を単なる箱状の室で
形成する比較的簡易な型式の蓄熱槽にあっては、下記
(イ)(ロ)(ハ)のような手段により箱状の熱媒液貯
留部における熱媒液貯留状態を温度成層状態に近づける
ようにし、それによって槽内での混合熱損失の低減を図
っていた。 【0003】(イ)図5に示すように、箱状の熱媒液貯
留部2に対し直接に挿入配置する熱媒液給排管路8A,
8Bのうち高温熱媒液用給排管路8Aを熱媒液貯留部2
の一側寄り位置でその上層部に開口させ、かつ、低温熱
媒液用給排管路8Bを熱媒液貯留部2の他側寄り位置で
その下層部に開口させる。 【0004】(ロ)図6に示すように、槽内の一側部に
おいて第1立壁4Aにより高温熱媒液用給排部3Aを形
成すると共に、槽内の他側部において第2立壁4Bによ
り低温熱媒液用給排部3Bを形成し、そして、箱状の熱
媒液貯留部2に対する高温熱媒液の給排を、第1立壁4
Aの上端縁と槽内貯留熱媒液の液面との間に位置させる
ように形成した隙間状の高温熱媒液用流動路6を介して
貯留部2の上層部で水平層流状に行なわせ、かつ、熱媒
液貯留部2に対する低温熱媒液の給排を、第2立壁4B
の下端縁と槽の底壁との間に形成した隙間状の低温熱媒
液用流動路7を介して貯留部2の下層部で同じく水平層
流状に行なわせる。 【0005】(ハ)実公昭59−23973号公報に示
されるように、槽内の一側における上部に、高温ヘッ
ダ、並びに、その高温ヘッダと高温熱媒液用給排管路と
を接続する均圧管及び複数連通パイプを配設し、一方、
その槽内一側における下部に、低温ヘッダ、並びに、そ
の低温ヘッダと低温熱媒液用給排管路とを接続する均圧
管及び複数連通パイプを配設し、そして、高温ヘッダ及
び低温ヘッダの夫々に、熱媒液を水平方向で熱媒液貯留
部に対し吐出・吸入する横長のスリット状ノズルを設け
る。 【0006】 【発明が解決しようとする課題】しかしながら、上述
(イ)の手段では、熱媒液給排管路8A,8Bからの熱
媒液吐出に伴なう攪拌作用で貯留熱媒液が激しく攪拌さ
れてしまうために、貯留熱媒液の温度成層状態を形成、
維持することが実質的に不可能で、混合熱損失の低減と
いう目的をほとんど達成し得ないものであった。 【0007】又、上述(ロ)の手段では、給排管路8
A,8Bからの吐出に伴なう攪拌作用で貯留熱媒液が攪
拌されてしまうことは回避できるものの、第1立壁4A
の上端縁側に形成した高温熱媒液用流動路6と他側部に
おいて第2立壁4Bの下端縁側に形成した低温熱媒液用
流動路7とが、箱状の熱媒液貯留部2において対角位置
に位置することから、熱媒液給排に伴ないそれら両流動
路6,7にわたって対角線状に貯留熱媒液が短絡流動し
易く、その対角線状の短絡流動によって貯留熱媒液の温
度成層状態が乱されるために未だかなりの混合熱損失が
発生する問題があった。 【0008】その上、対角線状の短絡流動によって、箱
状熱媒液貯留部2の他方の対角部a,bに死水的な熱媒
液滞留が生じるために、有効蓄熱容量(取出可能な蓄熱
に有効に寄与する容量)が槽容積の割に小さくなってし
まう問題もあった。 【0009】さらに、上述(ハ)の手段では、上記の
(イ)や(ロ)の手段に比べれば、熱媒液の貯留状態を
温度成層状態に近づけ得るものの、ヘッダ、均圧管、複
数の連通パイプといった複雑な管構造が熱媒液貯留部の
内部に位置するため、高温ヘッダから熱媒液貯留部へ高
温熱媒液を吐出し、かつ、それに並行して熱媒液貯留部
における下層の低温熱媒液を低温ヘッダへ吸入すること
に伴う熱媒液貯留部での熱媒液下向き流動や、逆に低温
ヘッダから熱媒液貯留部へ低温熱媒液を吐出し、かつ、
それに並行して熱媒液貯留部における上層の高温熱媒液
を高温ヘッダへ吸入することに伴う熱媒液貯留部での熱
媒液上向き流動において、それら熱媒液の下向き流動や
上向き流動が上記複雑管構造の存在により乱され、この
ため、熱媒液の貯留状態を理想の温度成層状態に安定的
に保つことができず、混合熱損失が未だ大きい問題があ
る。 【0010】また、熱媒液を吐出・吸入する高温ヘッダ
及び低温ヘッダの夫々が、槽内における同じ側の一側部
に位置するため、熱媒液貯留量を大きく確保しようとし
てヘッダ配置側の槽壁と反対側の槽壁との距離を大きく
採るほど、槽内において反対側槽壁に近い部分では、上
記の下向き流動や上向き流動が緩慢となって死水域に近
い状態となり、このため、槽容積を大きくする割りには
有効蓄熱容量を大きく確保できない問題もあった。 【0011】本発明の目的は、熱媒液貯留部における熱
媒液の貯留状態を安定的に温度成層状態に保ち得るよう
にし、しかも、槽容積の割りに有効蓄熱容量を大きく確
保できるようにする点にある。 【0012】 【課題を解決するための手段】本発明による蓄熱槽の特
徴構成は、槽内を熱媒液給排部とその両側の熱媒液貯留
部とに仕切る立壁を設け、前記熱媒液給排部を上側仕切
り部分と下側仕切り部分とに仕切る横壁を設け、前記上
側仕切り部分とその両側の前記熱媒液貯留部とを連通さ
せる上側熱媒液流動路を、前記立壁の上端縁と貯留熱媒
液の液面との間に位置させるように形成し、前記下側仕
切り部分とその両側の前記熱媒液貯留部とを連通させる
下側熱媒液流動路を、前記立壁の下端縁と前記槽の底壁
との間に形成し、高温熱媒液用給排管路を前記立壁の上
端縁よりも下方で前記上側仕切り部分に開口させ、低温
熱媒液用給排管路を前記立壁の下端縁よりも上方で前記
下側仕切り部分に開口させたことにあり、その作用、効
果は次の通りである。 【0013】 【作用】つまり、上記の特徴構成においては、高温熱媒
液用給排管路から高温熱媒液を槽内に供給し、かつ、低
温熱媒液用給排管路から槽内の低温熱媒液を排出する場
合、立壁上縁側に形成の上側熱媒液流動路を介して両側
の各熱媒液貯留部の上層部へ高温熱媒液を水平層流状に
供給し、それに並行して、立壁下縁側に形成の下側熱媒
液流動路を介し両側の各熱媒液貯留部における下層の低
温熱媒液を排出することにより、両側の各熱媒液貯留部
に面する立壁夫々の案内作用下で、各熱媒液貯留部にお
ける熱媒液をピストン流状態で下向き流動させる。 【0014】また逆に、高温熱媒液用給排管路から槽内
の高温熱媒液を排出し、かつ、低温熱媒液用給排管路か
ら低温熱媒液を槽内に供給する場合には、立壁下縁側に
形成の下側熱媒液流動路を介して両側の各熱媒液貯留部
の下層部へ低温熱媒液を水平層流状に供給し、それに並
行して、立壁上縁側に形成の上側熱媒液流動路を介し両
側の各熱媒液貯留部における上層の高温熱媒液を排出す
ることにより、両側の各熱媒液貯留部に面する立壁夫々
の案内作用下で、各熱媒液貯留部における熱媒液をピス
トン流状態で上向き流動させる。 【0015】さらに、熱媒液給排部における上側仕切り
部分に対し開口させる高温熱媒液用給排管路は、立壁の
上端縁よりも下方で上側仕切り部分に開口させ、かつ、
熱媒液給排部における下側仕切り部分に対し開口させる
低温熱媒液用給排管路は、立壁の下端縁よりも上方で下
側仕切り部分に開口させることにより、それら給排管路
における管路開口での熱媒液吐出・吸入に伴い生じる熱
媒液乱れが両側の各熱媒液貯留部にまで伝播することを
上記立壁の障壁作用によって防止する。 【0016】すなわち、立壁の案内作用下での上記ピス
トン流の形成と、立壁の障壁作用による上記の乱れ伝播
防止とにより、両側の各熱媒液貯留部での熱媒液貯留状
態を短絡流動や攪拌の無い安定的な温度成層状態に保つ
ことができる。 【0017】そしてまた、立壁による仕切りをもって熱
媒液給排部の両側に熱媒液貯留部を形成するから、槽容
積を大きくしたとしても、例えば、図1及び図2に示す
ように、立壁4により熱媒液給排部3を槽内の一側端部
に形成して、その熱媒液給排部3の他側方にのみ熱媒液
貯留部2を形成する形態に比べ、熱媒液給排部3から離
れた槽内端部側で上記の熱媒液下向き流動や上向き流動
が緩慢となって死水域に近い状況が生じるといったこと
を効果的に回避でき、熱媒液給排部3から離れた槽内端
部側でも温度成層状態でのピストン流を安定的に形成・
維持できる。 【0018】 【発明の効果】つまり、本発明によれば、熱媒液の貯留
状態を温度成層状態に安定的に保ち得ることで、高温貯
留熱媒液と低温貯留熱媒液との槽内混合による熱損失を
効果的に低減でき、これにより、熱媒液貯留部を箱状に
形成する簡易な構造でありながらも蓄熱効率を大巾に向
上し得る。 【0019】又、熱媒液給排部から離れた槽内端部側で
も温度成層状態でのピストン流を安定的に形成・維持で
きることにより、槽容積に対する有効蓄熱容量の比を高
く確保できて、コンパクトでありながらも有効蓄熱容量
の大きな蓄熱槽とすることができ、これらのことから、
全体として、熱収支面での経済性、設備費面での経済
性、及び、設置性のいずれにおいても優れた蓄熱槽を提
供し得るに至った。 【0020】 【実施例】次に本発明の実施例を図3及び図4に基づい
て説明する。1は箱状のコンクリート構造体から成る蓄
熱槽としての空調用冷水槽であり、槽内の中央部では、
互いに平行姿勢の2枚の立壁4を夫々、槽内の全巾にわ
たって設け、これら立壁4により槽内を、両立壁4の間
の冷水給排部3と、その冷水給排部3の両側夫々に位置
する冷水貯留部2とに仕切ってある。 【0021】また、冷水給排部3は両立壁4にわたる横
壁5により上下にほぼ二等分する形態で上側仕切り部分
3Aと下側仕切り部分3Bとに仕切ってある。 【0022】各立壁4の上端縁側においては、上記給排
部3の上側仕切り部分3Aと両側の貯留部2とを連通さ
せる隙間状の高温冷水用上側流動路6を、各立壁4の上
端縁と槽内貯留冷水の液面との間に位置させる状態で槽
内の全巾にわたって形成し、一方、各立壁4の下端縁と
槽底壁との間には、上記給排部3の下側仕切り部分3B
と両側の貯留部2とを連通させる同じく隙間状の低温冷
水用下側流動路7を槽内の全巾にわたって形成してあ
る。 【0023】そして、冷凍機や負荷側の空調器に接続す
る冷水循環路のうち、高温側管路8Aを上記給排部3に
おける上側仕切り部分3Aに対し立壁4の上端縁よりも
下方で開口させ、かつ、低温側管路8Bを上記給排部3
における下側仕切り部分3Bに対し立壁4の下端縁より
も上方で開口させてある。 【0024】つまり、上記構成により、両貯留部2に対
する高温冷水の給排を、隙間状の高温冷水用上側流動路
6を介して両貯留部2の上層部で水平層流状に行わせ、
かつ、両貯留部2に対する低温冷水の給排を、高温冷水
用上側流動路6の鉛直下方に位置する隙間状の低温冷水
用下側流動路7を介し両貯留部2の下層部で同じく水平
層流状に行わせ、これにより、この冷水給排に伴う両貯
留部2での貯留冷水の流動を、両貯留部2に面する立壁
4夫々の案内作用下で鉛直向きのピストン流状にする。 【0025】また、給排部3を槽内中央部に配置して、
その給排部3の両側に貯留部2を形成することにより、
給排部3から離れた槽内端部側でも上記のピストン流が
効果的かつ安定的に形成されるようにする。 【0026】そして、高温側管路8Aや低温側管路8B
における管路開口での冷水吐出吸入に伴い生じる冷水乱
れが両貯留部2にまで伝播することは各立壁4の障壁作
用をもって防止し、これらピストン流の形成と乱れ伝播
の防止とをもって、両貯留部2における冷水貯留状態を
混合損失の極めて少ない良好な温度成層状態に安定的に
維持するとともに、槽容積の割りに有効蓄熱容量を大き
く確保できるようにしてある。 【0027】尚、図中矢印は、低温冷水を冷凍機から槽
1へ供給し、かつ、高温冷水を槽1から冷凍機へ取出す
ときの流動状態を示すが、低温冷水を槽1から負荷側空
調器へ取出し、かつ、高温冷水を負荷側空調器から槽1
へ戻す蓄熱消費運転状態においては矢印の向きが全て逆
向きとなる。 【0028】〔別実施例〕貯留対象としては、冷房用冷
水、暖房用温水、あるいは、それら水熱媒に種々の薬剤
を添加した熱媒液等、各種の熱媒液を貯留対象とするこ
とができる。 【0029】 【図面の簡単な説明】 【図1】比較例を示す縦断面図 【図2】図1におけるII−II線断面図 【図3】本発明の実施例を示す縦断面図 【図4】図3におけるIV−IV線断面図 【図5】従来例を示す縦断面図 【図6】他の従来例を示す縦断面図 【符号の説明】 1 槽 2 貯留部 3 給排部 3A 上側仕切り部分 3B 下側仕切り部分 4 立壁 5 横壁 6,7 流動路 8A 高温熱媒液用給排管路 8B 低温熱媒液用給排管路
─────────────────────────────────────────────────── ───
[Procedure Amendment] [Date of submission] February 28, 1994 [Procedure Amendment 1] [Amendment target document name] Specification [Amendment target item name] Full text [Correction method] Change [Amendment content] [Document name] Specification Book [Title of Invention] Heat storage tank [Claims] A standing wall (4) is provided to partition the inside of the tank (1) into a heat medium liquid supply / discharge part (3) and heat medium liquid storage parts (2) on both sides thereof. A horizontal wall (5) for partitioning the heat medium liquid supply / discharge part (3) into an upper partition part (3A) and a lower partition part (3B) is provided, and the upper partition part (3A) and the heat medium on both sides thereof. The upper heat medium liquid flow path (6) that communicates with the liquid reservoir (2) is
It is formed so as to be located between the upper edge of the standing wall (4) and the liquid surface of the stored heat transfer medium liquid, and the lower partition part (3B) and the heat transfer liquid storage parts (2) on both sides thereof are formed. The lower heat medium liquid flow path (7) to be communicated,
It is formed between the lower end edge of the standing wall (4) and the bottom wall of the tank (1), and a high temperature heat transfer medium supply / discharge pipe line (8A) is provided below the upper end edge of the standing wall (4). A heat storage tank which is opened in the upper partition portion (3A), and the low temperature heat transfer medium supply / discharge pipe line (8B) is opened in the lower partition portion (3B) above the lower end edge of the standing wall (4). Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage tank for storing various heat transfer liquids such as cold water for cooling and hot water for heating. 2. Description of the Related Art Conventionally, as a heat storage tank in which heat loss due to mixing of a high temperature storage heat transfer fluid and a low temperature storage heat transfer fluid in a tank is suppressed to improve heat storage efficiency, a moat weir type or an improved moguri weir. Type heat storage tanks have been put to practical use, while those types of heat storage tanks are equipped with a heat transfer medium storage section consisting of a meandering flow path, a heat transfer solution without forming a meandering flow path. In a heat storage tank of a relatively simple type in which the storage part is formed by a simple box-shaped chamber, the heat transfer medium in the box-shaped heat transfer medium storage part is formed by means of the following (a), (b) and (c). The liquid storage state was made to approach the temperature stratified state, thereby reducing the mixing heat loss in the tank. (A) As shown in FIG. 5, the heat medium liquid supply / discharge pipe line 8A, which is directly inserted and arranged in the box-shaped heat medium liquid reservoir 2,
Of the 8B, the high-temperature heat medium liquid supply / discharge pipe line 8A is connected to the heat medium liquid storage section 2
Is opened to the upper layer portion at a position closer to one side, and the low-temperature heat medium liquid supply / discharge pipe line 8B is opened to the lower layer portion at a position closer to the other side of the heat medium liquid storage portion 2. (B) As shown in FIG. 6, a first standing wall 4A forms a high temperature heat transfer medium supply / discharge section 3A on one side of the tank and a second standing wall 4B on the other side of the tank. To form a low temperature heat transfer medium liquid supply / discharge section 3B, and to supply / discharge the high temperature heat transfer medium liquid to / from the box-shaped heat transfer medium storage section 2.
A horizontal laminar flow is formed in the upper layer of the reservoir 2 through a gap-shaped flow path 6 for high temperature heat transfer medium formed so as to be located between the upper edge of A and the liquid surface of the heat transfer medium stored in the tank. And the supply and discharge of the low-temperature heat transfer medium to the heat transfer medium reservoir 2 are performed by the second standing wall 4B.
Similarly, a horizontal laminar flow is performed in the lower layer portion of the storage section 2 via a gap-shaped flow path 7 for low-temperature heat transfer medium formed between the lower edge of the tank and the bottom wall of the tank. (C) As disclosed in Japanese Utility Model Publication No. 59-23973, a high temperature header is connected to an upper part on one side of the tank, and the high temperature header and a high temperature heat transfer liquid supply / discharge pipe line are connected to each other. A pressure equalizing pipe and a plurality of communication pipes are arranged, while
A low-temperature header, and a pressure equalizing pipe and a plurality of communication pipes connecting the low-temperature header and the low-temperature heat transfer medium supply / discharge pipe line are arranged in the lower part on one side in the tank, and the high-temperature header and the low-temperature header are connected. Each of them is provided with a horizontally long slit-shaped nozzle that discharges and sucks the heat transfer medium horizontally into and from the heat transfer medium reservoir. However, in the above-mentioned means (a), the stored heat transfer medium liquid is agitated by the stirring action accompanying the discharge of the heat transfer medium liquid from the heat transfer medium supply / discharge pipe lines 8A, 8B. Since it is vigorously stirred, it forms a temperature stratification state of the stored heat transfer medium liquid,
It was practically impossible to maintain and could hardly achieve the purpose of reducing the mixing heat loss. Further, in the above-mentioned means (b), the supply / discharge pipe line 8
Although it is possible to avoid stirring the stored heat transfer medium liquid by the stirring action accompanying the discharge from A and 8B, the first standing wall 4A
In the box-shaped heat medium liquid storage part 2, the high-temperature heat medium liquid flow path 6 formed on the upper end edge side and the low-temperature heat medium liquid flow path 7 formed on the other end on the lower end edge side of the second standing wall 4B. Since it is located at a diagonal position, the stored heat transfer medium liquid is likely to short-circuit diagonally across both flow paths 6 and 7 accompanying the supply and discharge of the heat transfer medium liquid. There is still a problem that a considerable heat loss due to mixing occurs due to the disturbance of the temperature stratification state. In addition, due to the diagonal short circuit flow, dead water-like heat medium liquid retention occurs in the other diagonal portions a and b of the box-shaped heat medium liquid storage portion 2, so that the effective heat storage capacity (retrievable) is obtained. There is also a problem that the capacity that effectively contributes to heat storage is small relative to the tank volume. Further, in the above-mentioned means (c), compared with the above-mentioned means (a) and (b), the storage state of the heat transfer medium can be brought closer to the temperature stratified state, but the header, the pressure equalizing pipe, and Since a complicated pipe structure such as a communication pipe is located inside the heat transfer fluid storage part, the high temperature heat transfer fluid is discharged from the high temperature header to the heat transfer fluid storage part, and in parallel therewith, the lower layer in the heat transfer fluid storage part. The downward flow of the heat transfer fluid in the heat transfer fluid reservoir due to sucking the low temperature heat transfer fluid into the heat transfer fluid reservoir, or conversely, discharging the low temperature heat transfer fluid from the low temperature header to the heat transfer fluid reservoir, and
In parallel with this, in the upward flow of the heat medium liquid in the heat medium liquid storage part due to sucking the high temperature heat medium liquid of the upper layer in the heat medium liquid storage part, the downward flow and the upward flow of the heat medium liquid are It is disturbed by the existence of the above-mentioned complicated pipe structure, so that the storage state of the heat transfer fluid cannot be stably maintained in the ideal temperature stratified state, and there is a problem that the mixed heat loss is still large. Further, since the high-temperature header and the low-temperature header for discharging / inhaling the heat transfer medium are respectively located on one side on the same side in the tank, the header disposing side is arranged in order to secure a large heat transfer medium storage amount. The larger the distance between the tank wall and the opposite tank wall, the slower the downward flow and upward flow in the part close to the opposite tank wall in the tank, and the state becomes closer to the dead water area. There is also a problem that a large effective heat storage capacity cannot be secured despite the increase in tank volume. An object of the present invention is to make it possible to stably maintain the heat medium liquid storage state in the heat medium liquid storage portion in a temperature stratified state, and yet to secure a large effective heat storage capacity for the tank volume. There is a point to do. The heat storage tank according to the present invention is characterized in that a vertical wall is provided for partitioning the inside of the tank into a heat medium liquid supply / discharge section and heat medium liquid storage sections on both sides thereof. A horizontal wall for partitioning the liquid supply / drain portion into an upper partition portion and a lower partition portion is provided, and an upper heat medium liquid flow path for communicating the upper partition portion and the heat medium liquid storage portions on both sides thereof is provided at an upper end of the standing wall. The lower heat transfer medium flow path, which is formed so as to be located between the edge and the liquid surface of the stored heat transfer liquid, connects the lower partition part and the heat transfer liquid storage parts on both sides thereof to the standing wall. Is formed between the lower edge of the tank and the bottom wall of the tank, and a supply / discharge pipe for high temperature heat transfer medium is opened in the upper partition below the upper edge of the standing wall to supply / discharge low temperature heat transfer fluid. The pipeline is opened in the lower partition portion above the lower end edge of the standing wall, and its action and effect are It is as follows. That is, in the above-mentioned characteristic structure, the high-temperature heat transfer medium liquid is supplied into the tank from the high-temperature heat transfer medium supply / discharge pipe line, and the low-temperature heat transfer medium liquid is supplied into the tank from the low-temperature heat transfer medium liquid supply / discharge line. When discharging the low temperature heat transfer fluid, the high temperature heat transfer fluid is supplied in a horizontal laminar flow form to the upper layer of each heat transfer fluid storage portion on both sides via the upper heat transfer fluid flow path formed on the upper edge side of the standing wall, In parallel with this, by discharging the low-temperature heat transfer medium liquid of the lower layer in each heat transfer liquid storage part on both sides through the lower heat transfer liquid flow path formed on the lower edge side of the standing wall, each heat transfer liquid storage part on both sides is discharged. Under the guiding action of each facing standing wall, the heat medium liquid in each heat medium liquid storage portion is caused to flow downward in a piston flow state. On the contrary, the high temperature heat transfer medium liquid is discharged from the tank through the high temperature heat transfer medium supply / discharge pipe line, and the low temperature heat transfer medium liquid is supplied into the tank from the low temperature heat transfer medium supply / discharge line. In this case, the low-temperature heat transfer medium is supplied in a horizontal laminar flow to the lower layer of each heat transfer medium storage section on both sides via the lower heat transfer medium flow path formed on the lower edge of the standing wall, and in parallel with it, By discharging the upper layer high temperature heat transfer fluid in each heat transfer fluid storage part on both sides through the upper heat transfer fluid flow path formed on the upper edge side of the standing wall, guiding of each standing wall facing each heat transfer fluid storage part on both sides Under action, the heat transfer liquid in each heat transfer liquid reservoir is caused to flow upward in a piston flow state. Further, the high-temperature heat medium liquid supply / discharge pipe line opened to the upper partition portion of the heat medium liquid supply / discharge portion is opened to the upper partition portion below the upper edge of the standing wall, and
The low-temperature heat-medium liquid supply / discharge pipe line opened to the lower partition part in the heat-medium liquid supply / discharge part is opened in the lower partition part above the lower end edge of the standing wall so that The turbulence of the standing wall prevents the heat medium liquid turbulence generated by the discharge and suction of the heat medium liquid at the opening of the pipe from propagating to the heat medium liquid reservoirs on both sides. That is, the formation of the piston flow under the guide action of the standing wall and the prevention of the turbulent propagation due to the barrier action of the standing wall prevent the short circuit flow of the heat medium liquid storage state in each heat medium liquid storage portion on both sides. It can be maintained in a stable temperature stratified state without stirring. Further, since the heat medium liquid storage section is formed on both sides of the heat medium liquid supply / discharge section by the partition by the vertical wall, even if the tank volume is increased, for example, as shown in FIGS. The heat medium liquid supply / discharge part 3 is formed at one end of the tank by means of 4 and the heat medium liquid storage part 2 is formed only on the other side of the heat medium liquid supply / discharge part 3 in comparison with the embodiment shown in FIG. It is possible to effectively avoid the situation where the above-mentioned downward flow or upward flow of the heat medium liquid becomes slow on the inner end side of the tank away from the medium liquid supply / discharge section 3 and a situation close to the dead water region occurs, and the heat medium liquid supply is performed. Stable formation of a piston flow in a temperature stratified state even on the inner end side of the tank away from the discharge part 3.
Can be maintained. That is, according to the present invention, the storage state of the heat transfer medium can be stably maintained in the temperature stratified state, so that the inside of the tank of the high temperature storage heat transfer liquid and the low temperature storage heat transfer liquid can be maintained. The heat loss due to the mixing can be effectively reduced, and thus, the heat storage efficiency can be greatly improved even though the heat medium liquid storage portion has a simple structure in a box shape. Further, since the piston flow in the temperature stratified state can be stably formed and maintained even on the inner end side of the tank away from the heat medium liquid supply / discharge section, a high ratio of the effective heat storage capacity to the tank volume can be secured. It is possible to make a heat storage tank that is compact but has a large effective heat storage capacity.
As a whole, it has become possible to provide a heat storage tank which is excellent in terms of heat balance economical efficiency, facility cost economical efficiency, and installation efficiency. Embodiments of the present invention will be described below with reference to FIGS. 3 and 4. 1 is a cold water tank for air conditioning as a heat storage tank composed of a box-shaped concrete structure, and in the center of the tank,
Two standing walls 4 that are parallel to each other are provided over the entire width of the tank, and the inside of the tank is provided by these standing walls 4 and the cold water supply / discharge section 3 between the compatible walls 4 and both sides of the cold water supply / discharge section 3 are provided. It is separated from the cold water storage section 2 located at. The cold water supply / discharge section 3 is divided into an upper partition section 3A and a lower partition section 3B by a lateral wall 5 extending over the compatible wall 4 in such a manner that it is substantially vertically divided into two equal parts. On the upper edge side of each standing wall 4, a gap-like upper flow path 6 for high-temperature cold water that connects the upper partition portion 3A of the supply / discharge section 3 and the storage sections 2 on both sides is connected to the upper edge of each standing wall 4. Is formed over the entire width of the tank in a state of being positioned between the tank and the liquid surface of the cold water stored in the tank, and between the bottom edge of each standing wall 4 and the bottom wall of the tank. Side partition part 3B
Similarly, a lower flow path 7 for low temperature cold water, which is also in the shape of a gap, is formed over the entire width of the tank so as to connect the storage section 2 on both sides. In the cold water circulation passage connected to the refrigerator or the load side air conditioner, the high temperature side pipe passage 8A is opened below the upper edge of the standing wall 4 with respect to the upper partition portion 3A of the supply / discharge portion 3. In addition, the low temperature side conduit 8B is connected to the supply / discharge unit 3
Is opened above the lower edge of the standing wall 4 with respect to the lower partition portion 3B. That is, with the above structure, the supply and discharge of the high-temperature cold water to and from both the reservoirs 2 are performed in a horizontal laminar flow manner in the upper layers of both the reservoirs 2 through the upper flow passage 6 for the high-temperature cold water in the form of a gap,
In addition, the low-temperature cold water is supplied to and discharged from both the reservoirs 2 through the gap-shaped lower flow passage 7 for the low-temperature cold water located vertically below the upper flow passage 6 for the high-temperature cold water. Laminar flow is performed, whereby the flow of the stored cold water in both storage parts 2 due to the supply and discharge of the cold water becomes a vertical piston flow shape under the guiding action of the standing walls 4 facing both storage parts 2. To do. Further, the supply / discharge unit 3 is arranged in the center of the tank,
By forming the storage section 2 on both sides of the supply / discharge section 3,
The piston flow described above is effectively and stably formed even on the inner end side of the tank, which is remote from the supply / discharge unit 3. The high temperature side conduit 8A and the low temperature side conduit 8B
Propagation of cold water turbulence that accompanies the suction and discharge of cold water at the opening of the pipe to the both storage portions 2 is prevented by the barrier action of each standing wall 4, and the formation of these piston flows and the prevention of the turbulent propagation prevent the both water storage. The cold water storage state in the section 2 is stably maintained in a good temperature stratified state with extremely small mixing loss, and a large effective heat storage capacity can be secured for the tank volume. The arrows in the figure show the flow state when low-temperature cold water is supplied from the refrigerator to the tank 1 and high-temperature cold water is taken out from the tank 1 to the refrigerator. Take it out to the air conditioner, and supply hot and cold water from the load side air conditioner to tank 1.
In the heat storage consumption operation state of returning to, the directions of the arrows are all in the opposite directions. [Other Embodiments] As a storage object, various kinds of heat medium liquids such as cold water for cooling, hot water for heating, or heat medium liquids obtained by adding various chemicals to these water heat mediums are to be stored. You can BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view showing a comparative example. FIG. 2 is a sectional view taken along the line II-II in FIG. 1. FIG. 3 is a vertical sectional view showing an embodiment of the present invention. 4] A sectional view taken along line IV-IV in Fig. 3 [Fig. 5] A longitudinal sectional view showing a conventional example [Fig. 6] A longitudinal sectional view showing another conventional example [Description of symbols] 1 tank 2 storage part 3 supply / discharge part 3A Upper partition part 3B Lower partition part 4 Standing wall 5 Horizontal walls 6, 7 Flow path 8A High temperature heat medium liquid supply / discharge pipe line 8B Low temperature heat medium liquid supply / discharge pipe line

Claims (1)

【特許請求の範囲】 槽(1)内を熱媒液給排部(3)とその両側の熱媒液貯
留部(2)とに仕切る立壁(4)を設け、 前記熱媒液給排部(3)を上側仕切り部分(3A)と下
側仕切り部分(3B)とに仕切る横壁(5)を設け、 前記上側仕切り部分(3A)とその両側の前記熱媒液貯
留部(2)とを連通させる上側熱媒液流動路(6)を、
前記立壁(4)の上端縁と貯留熱媒液の液面との間に位
置させるように形成し、 前記下側仕切り部分(3B)とその両側の前記熱媒液貯
留部(2)とを連通させる下側熱媒液流動路(7)を、
前記立壁(4)の下端縁と前記槽(1)の底壁との間に
形成し、 高温熱媒液用給排管路(8A)を前記立壁(4)の上端
縁よりも下方で前記上側仕切り部分(3A)に開口さ
せ、 低温熱媒液用給排管路(8B)を前記立壁(4)の下端
縁よりも上方で前記下側仕切り部分(3B)に開口させ
た蓄熱槽。
What is claimed is: 1. A standing wall (4) for partitioning the inside of a tank (1) into a heat medium liquid supply / discharge part (3) and heat medium liquid storage parts (2) on both sides thereof, and the heat medium liquid supply / discharge part. A lateral wall (5) for partitioning (3) into an upper partition part (3A) and a lower partition part (3B) is provided, and the upper partition part (3A) and the heat medium liquid storage parts (2) on both sides thereof are provided. The upper heat medium liquid flow path (6) to be communicated,
It is formed so as to be located between the upper edge of the standing wall (4) and the liquid surface of the stored heat transfer medium liquid, and the lower partition part (3B) and the heat transfer liquid storage parts (2) on both sides thereof are formed. The lower heat medium liquid flow path (7) to be communicated,
It is formed between the lower end edge of the standing wall (4) and the bottom wall of the tank (1), and a high temperature heat transfer medium supply / discharge pipe line (8A) is provided below the upper end edge of the standing wall (4). A heat storage tank which is opened in the upper partition portion (3A), and the low temperature heat transfer medium supply / discharge pipe line (8B) is opened in the lower partition portion (3B) above the lower end edge of the standing wall (4).
JP6008434A 1994-01-28 1994-01-28 Heat storage tank Expired - Lifetime JPH07109307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6008434A JPH07109307B2 (en) 1994-01-28 1994-01-28 Heat storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6008434A JPH07109307B2 (en) 1994-01-28 1994-01-28 Heat storage tank

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60000299A Division JPH0654195B2 (en) 1985-01-05 1985-01-05 Heat storage tank

Publications (2)

Publication Number Publication Date
JPH06317342A true JPH06317342A (en) 1994-11-15
JPH07109307B2 JPH07109307B2 (en) 1995-11-22

Family

ID=11693025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6008434A Expired - Lifetime JPH07109307B2 (en) 1994-01-28 1994-01-28 Heat storage tank

Country Status (1)

Country Link
JP (1) JPH07109307B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923973U (en) * 1982-08-05 1984-02-14 タカ産業株式会社 Fishing gear storage bag with bait container
JPS633222A (en) * 1986-06-24 1988-01-08 Mitsubishi Electric Corp Automatic selection screen reservation type display device
JPS633223A (en) * 1986-06-24 1988-01-08 Ohkura Electric Co Ltd Pull-in type sprocket mechanism for paper feeding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923973U (en) * 1982-08-05 1984-02-14 タカ産業株式会社 Fishing gear storage bag with bait container
JPS633222A (en) * 1986-06-24 1988-01-08 Mitsubishi Electric Corp Automatic selection screen reservation type display device
JPS633223A (en) * 1986-06-24 1988-01-08 Ohkura Electric Co Ltd Pull-in type sprocket mechanism for paper feeding

Also Published As

Publication number Publication date
JPH07109307B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
EP0847515B1 (en) A manifold for connecting circuits of a central heating system
JP4846251B2 (en) Method for heating fuel oil in a fuel oil storage tank
JP7070102B2 (en) Electronic device
KR100656517B1 (en) Waste heat collector
JPH06317342A (en) Heat storage tank
JP2011196632A (en) Ebullient cooling device
JPS5921930A (en) Heat storage tank
JP2002089961A (en) Tank for hot water supply apparatus and indirect hot water output type hot water supply apparatus
JPS61159092A (en) Heat accumulating tank
CN102774579B (en) Constant-volume heating liquid storage tank without loading arm and heating method
CN209230078U (en) Full-liquid type heat exchanger
JP2011502239A (en) Heating device in which medium flows in a fixed direction and circulating heating system including the device
CN213335021U (en) Novel water storage tank for geothermal system
JPS5923973Y2 (en) Temperature stratification type heat storage tank device
CN219920855U (en) Cooling device and drinking water equipment
JPH08303976A (en) Heat medium flowing system in heat accumulating tank
WO2023159626A1 (en) Waterway assembly and water supply device
JPS6032116B2 (en) heat storage tank
CN108006807A (en) Pipeline evacuation structure and air conditioning system comprising same
JP2024057265A (en) Heat storage tank
KR100562430B1 (en) Waste heat collector
JP4443888B2 (en) Oil tank
JPS5849494Y2 (en) Cold storage heat device
JPH04295528A (en) Heat storage tank
JPH0377439B2 (en)