JPH04295528A - Heat storage tank - Google Patents

Heat storage tank

Info

Publication number
JPH04295528A
JPH04295528A JP6064491A JP6064491A JPH04295528A JP H04295528 A JPH04295528 A JP H04295528A JP 6064491 A JP6064491 A JP 6064491A JP 6064491 A JP6064491 A JP 6064491A JP H04295528 A JPH04295528 A JP H04295528A
Authority
JP
Japan
Prior art keywords
tank
liquid
heat medium
tanks
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6064491A
Other languages
Japanese (ja)
Other versions
JP3072138B2 (en
Inventor
Eiichi Hamada
浜田 栄一
Koji Morioka
森岡 宏次
Kazuo Obata
小畑 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP3060644A priority Critical patent/JP3072138B2/en
Publication of JPH04295528A publication Critical patent/JPH04295528A/en
Application granted granted Critical
Publication of JP3072138B2 publication Critical patent/JP3072138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To economize on the running cost on one hand and increase the heat- storage capacity on the other hand, in the use of heat-storage tanks divided into groups each of which consists of a row of tanks for liquid for storing a liquid heat medium and is arranged in parallel with other rows of tanks, by reducing the fluid resistance to the liquid heat medium for the reduction of the running cost and by decreasing the difference in the liquid level between the upstream end and the downstream end relative to the direction of the flow of the liquid heat medium. CONSTITUTION:Individual liquid tanks 1a, 1b, 1c are connected in series to form a single row L of tanks so as to allow liquid heat medium to flow from one end of the row L to the other end and such rows L of tanks are connected in parallel in relation to an outgoing line 2 for liquid heat medium and to a return line 3 for liquid heat medium.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は蓄熱式冷暖房等に用いる
蓄熱槽に関し、詳しくは、熱媒液を貯留する液槽の複数
を列状に並べて槽列を形成し、この槽列を複数列並設し
た蓄熱槽に関する。
[Industrial Application Field] The present invention relates to a heat storage tank used for heat storage type air conditioning, etc., and more specifically, a plurality of liquid tanks for storing heat medium liquid are arranged in a row to form a tank row, and the tank rows are arranged in a plurality of rows. Regarding heat storage tanks installed in parallel.

【0002】0002

【従来の技術】従来、上記の如き液槽配列形態の蓄熱槽
においては、熱媒液還流路から蓄熱槽に戻る熱媒液と蓄
熱槽から熱媒液送出路へ送出する熱媒液との温度差を維
持する観点から、図6に示すように、熱媒液還流路3を
接続した一端側槽列Laの端部液槽1aから、熱媒液送
出路2を接続した他端側槽列Lxの端部液槽1xへかけ
て熱媒液Wを蛇行状に流動させるように、熱媒液還流路
3及び熱媒液送出路2に対して全ての液槽1a〜1xを
直列に接続していた。
[Prior Art] Conventionally, in a heat storage tank having a liquid tank arrangement as described above, the heat medium liquid returns to the heat storage tank from the heat medium liquid return path and the heat medium liquid is sent from the heat storage tank to the heat medium liquid delivery path. From the viewpoint of maintaining the temperature difference, as shown in FIG. All the liquid tanks 1a to 1x are connected in series to the heat medium liquid return path 3 and the heat medium liquid delivery path 2 so that the heat medium liquid W flows in a meandering manner toward the end liquid tank 1x of the column Lx. It was connected.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記従
来の蛇行状直列接続では、蓄熱槽における熱媒液流動抵
抗が大きく、このために、熱媒液循環に大きな動力を要
してランニングコストが嵩む問題があった。
[Problems to be Solved by the Invention] However, in the conventional meandering series connection described above, the flow resistance of the heat medium liquid in the heat storage tank is large, and therefore, a large amount of power is required to circulate the heat medium liquid, increasing running costs. There was a problem.

【0004】また、蓄熱槽における熱媒液流動抵抗が大
きいことに起因して熱媒液還流側の端部液槽と熱媒液送
出側の端部液槽とで大きな液位差が生じるため、蓄熱槽
の有効熱媒液貯留量が少量となって蓄熱槽の蓄熱容量が
槽容積の割りに小となる問題があった。
[0004] Furthermore, due to the large flow resistance of the heat medium liquid in the heat storage tank, a large liquid level difference occurs between the end liquid tank on the heat medium liquid return side and the end liquid tank on the heat medium liquid delivery side. There was a problem in that the effective storage amount of heat medium liquid in the heat storage tank was small, and the heat storage capacity of the heat storage tank was small relative to the tank volume.

【0005】本発明の目的は、合理的な液槽接続形態を
採用することにより上述問題の解消を図る点にある。
[0005] An object of the present invention is to solve the above-mentioned problems by adopting a rational liquid tank connection form.

【0006】[0006]

【課題を解決するための手段】本発明による蓄熱槽の第
1の特徴構成は、熱媒液を貯留する液槽の複数を列状に
並べて槽列を形成し、この槽列を複数列並設した構成に
おいて、同一槽列の前記液槽を、槽列の一端側から他端
側へ熱媒液流動させるように直列に接続し、それら槽列
を熱媒液送出路及び熱媒液還流路に対して並列に接続し
てあることにあり、その作用・効果は次の通りである。
[Means for Solving the Problems] A first feature of the heat storage tank according to the present invention is that a plurality of liquid tanks for storing heat medium liquid are arranged in a row to form a tank row, and the tank rows are arranged in a plurality of rows. In this configuration, the liquid tanks in the same tank row are connected in series so that the heat medium liquid flows from one end side of the tank row to the other end, and the tank rows are connected to a heat medium liquid delivery path and a heat medium liquid return path. The function and effect are as follows.

【0007】[0007]

【作用】つまり、同一槽列の液槽のみを直列に接続して
、それら直列接続の液槽から成る槽列の夫々は、熱媒液
送出路及び熱媒液還流路に対して並列に接続するから、
液槽の全てを蛇行状に直列接続する従来蓄熱槽に比べ、
蓄熱槽における熱媒液流動抵抗を小さくすることができ
る。
[Operation] In other words, only the liquid tanks in the same tank row are connected in series, and each tank row consisting of the series-connected liquid tanks is connected in parallel to the heat medium liquid delivery path and the heat medium liquid return path. Because I will,
Compared to conventional heat storage tanks, which connect all liquid tanks in series in a meandering pattern,
The flow resistance of the heat medium liquid in the heat storage tank can be reduced.

【0008】また、槽列の夫々を熱媒液送出路及び熱媒
液還流路に対して並列に接続することにより、液槽の全
てを蛇行状に直列接続する従来蓄熱槽に比べ各液槽にお
ける単位時間あたりの熱媒液流出入量(換言すれば、各
液槽における熱媒液流速)が小さくなることから、槽列
の夫々を熱媒液送出路及び熱媒液還流路に対して並列に
接続しても、熱媒液還流路から各槽列に戻る熱媒液と各
槽列から熱媒液送出路へ送出する熱媒液との温度差、す
なわち、蓄熱槽に戻る熱媒液と蓄熱槽から送出する熱媒
液との温度差は、液槽の全てを蛇行状に直列接続する従
来蓄熱槽と同等に維持できる。
Furthermore, by connecting each of the tank rows in parallel to the heat medium liquid delivery path and the heat medium liquid return path, each liquid tank Since the amount of heat medium liquid flowing in and out per unit time (in other words, the flow rate of heat medium liquid in each liquid tank) becomes small, each of the tank rows is connected to the heat medium liquid delivery path and the heat medium liquid return path. Even when connected in parallel, the temperature difference between the heat medium liquid returning from the heat medium liquid return path to each tank row and the heat medium liquid sent from each tank row to the heat medium liquid sending path, that is, the heat medium returning to the heat storage tank. The temperature difference between the liquid and the heat medium liquid sent out from the heat storage tank can be maintained at the same level as in a conventional heat storage tank in which all the liquid tanks are connected in series in a meandering manner.

【0009】[0009]

【発明の効果】その結果、本発明の第1特徴構成によれ
ば、蓄熱槽への戻り熱媒液と蓄熱槽からの送出熱媒液と
の温度差は従前と同等に維持できながらも、蓄熱槽にお
ける熱媒液流動抵抗を小さくできることにより、熱媒液
循環に要する動力を低減できてランニングコストを節減
でき、また、蓄熱槽における熱媒液還流側の端部液槽と
熱媒液送出側の端部液槽との液位差も小さくできて、槽
容積に対する有効熱媒液貯留量、ひいては、蓄熱容量を
従来に比べ大きく確保し得るに至った。
As a result, according to the first feature of the present invention, the temperature difference between the heat medium liquid returned to the heat storage tank and the heat medium liquid sent out from the heat storage tank can be maintained at the same level as before. By reducing the flow resistance of the heat medium liquid in the heat storage tank, the power required for circulation of the heat medium liquid can be reduced and running costs can be saved. The difference in liquid level with the side end liquid tank can also be reduced, making it possible to secure a larger effective storage amount of heat medium liquid relative to the tank volume, and thus a larger heat storage capacity than in the past.

【0010】ちなみに、蓄熱槽における熱媒液流動抵抗
を小さくし、また、蓄熱槽における熱媒液還流側端部と
熱媒液送出側端部との液位差を小さくするに、全ての液
槽を熱媒液送出路及び熱媒液還流路に対して並列に接続
することも考えられるが、この場合、全ての液槽に対し
て熱媒液送出路及び熱媒液還流路の夫々を各別に分岐接
続するために配管構成が極めて複雑となり、また、複数
の液槽を列状に並べた槽列の複数を並列配置する液槽配
列において、中央部に位置する液槽に対する熱媒液送出
路及び熱媒液還流路の接続構成が難しくなり、これらの
ことから、蓄熱槽の全体設備構成が複雑となって設備コ
ストが嵩むといった問題を生じる。
Incidentally, in order to reduce the flow resistance of the heat medium liquid in the heat storage tank and also to reduce the liquid level difference between the heat medium liquid return side end and the heat medium liquid delivery side end of the heat storage tank, it is necessary to It is also possible to connect the tanks in parallel to the heat medium liquid delivery path and the heat medium liquid return path, but in this case, each of the heat medium liquid delivery path and the heat medium liquid return path is connected to all liquid tanks. The piping configuration is extremely complicated due to the separate branch connections, and in a liquid tank arrangement in which multiple tank rows are arranged in parallel, the heating medium for the liquid tank located in the center is The connection configuration of the delivery path and the heat medium liquid return path becomes difficult, and this causes a problem that the overall equipment configuration of the heat storage tank becomes complicated and the equipment cost increases.

【0011】この点、本発明の第1特徴構成によれば、
複数液槽を直列接続した槽列を熱媒液送出路及び熱媒液
還流路に対して並列に接続するものであるから、各槽列
の一端側液槽を熱媒液送出路に、かつ、他端側液槽を熱
媒液還流路に接続すればよく、全ての液槽に対して熱媒
液送出路及び熱媒液還流路の夫々を各別に分岐接続する
に比べ、分岐配管構成を簡略にできるとともに、液槽配
列の中央部に位置する液槽に熱媒液送出路及び熱媒液還
流路を接続するといったことも不要となり、これらのこ
とから、設備構成の複雑化及び設備コストの増大を抑制
し得る利点がある。
In this regard, according to the first characteristic configuration of the present invention,
Since a tank row in which a plurality of liquid tanks are connected in series is connected in parallel to the heating medium liquid delivery path and the heating medium liquid return path, one end side liquid tank of each tank row is connected to the heating medium liquid sending path, and , it is only necessary to connect the liquid tank on the other end side to the heat medium liquid reflux path, and compared to connecting each of the heat medium liquid delivery path and the heat medium liquid reflux path separately for all liquid tanks, a branch piping configuration is required. In addition, it is not necessary to connect the heat medium liquid delivery path and the heat medium liquid return path to the liquid tank located in the center of the liquid tank arrangement. This has the advantage of suppressing cost increases.

【0012】(本発明の第2及び第3特徴構成)本発明
による蓄熱槽の第2の特徴構成は、前記槽列の並設数を
槽列における液槽数よりも大にしてあることにある。
(Second and Third Characteristic Structure of the Present Invention) The second characteristic structure of the heat storage tank according to the present invention is that the number of the tank rows arranged in parallel is larger than the number of liquid tanks in the tank row. be.

【0013】つまり、複数の液槽を列状に並べた槽列の
複数を並列配置する液槽配列においては、液槽の縦列方
向を槽列方向として液槽の横列方向を槽列の並設方向と
見るか、あるいは、液槽の横列方向を槽列方向として液
槽の縦列方向を槽列の並設方向と見るかによって、槽列
の並設数が槽列における液槽数よりも大となる場合と小
となる場合とが生じることが多いが、この場合、前述第
1特徴構成の実施にあたり上記第2特徴構成を採用すれ
ば、すなわち、槽列の並設数が槽列における液槽数より
も大となる形態において前述第1特徴構成を実施すれば
、槽列の並設数が槽列における液槽数よりも小となる形
態において実施するに比べ、各槽列における液槽の直列
接続数が小となることから、蓄熱槽における熱媒液流動
抵抗の低減、及び、蓄熱槽における熱媒液還流側端部と
熱媒液送出側端部との液位差の減少をより効果的に達成
し得る。
In other words, in a liquid tank arrangement in which a plurality of tank rows in which a plurality of liquid tanks are arranged in a row are arranged in parallel, the vertical direction of the liquid tanks is the tank row direction, and the horizontal direction of the liquid tanks is the parallel arrangement of the tank rows. Depending on whether you view the horizontal direction of the liquid tanks as the direction of the tank rows or the vertical direction of the liquid tanks as the direction in which the tank rows are arranged, the number of juxtaposed tank rows is larger than the number of liquid tanks in the tank row. In this case, if the second characteristic configuration is adopted in implementing the first characteristic configuration, in other words, the number of juxtaposed tank rows becomes smaller than the number of liquids in the tank row. If the first characteristic configuration described above is implemented in a configuration where the number of tank rows is larger than the number of liquid tanks in each tank row, the number of liquid tanks in each tank row Since the number of series connections is small, the flow resistance of the heat medium liquid in the heat storage tank is reduced, and the liquid level difference between the heat medium liquid return side end and the heat medium liquid delivery side end of the heat storage tank is reduced. can be achieved more effectively.

【0014】本発明による蓄熱槽の第3の特徴構成は、
前記槽列の液槽数を3槽以上としてあることにある。
The third characteristic configuration of the heat storage tank according to the present invention is as follows:
The number of liquid tanks in the tank row is three or more.

【0015】つまり、一般に連通開口の面積を大きく採
れる液槽どうしの接続に比べ、熱媒液送出路や熱媒液還
流路を形成する配管構成と液槽との接続の場合、配管開
口面積が小さくて配管接続部における熱媒液流速が大き
くなるため、熱媒液送出路や熱媒液還流路を接続した液
槽においては貯留熱媒液に乱れを生じ易く、そして、こ
の乱れにより貯留熱媒液の温度分布も乱されるため、そ
れら流路接続液槽における蓄熱効率が低下するといった
現象がある。
[0015] In other words, compared to the connection of liquid tanks, which generally allows for a large communication opening area, the piping opening area is smaller in the case of connecting a liquid tank to a piping configuration that forms a heating medium liquid delivery path or a heating medium liquid return path. Because the flow rate of the heat medium liquid at the piping connection part is small, turbulence tends to occur in the stored heat medium liquid in the liquid tank connected to the heat medium liquid delivery path and the heat medium liquid return path, and this turbulence causes the stored heat to Since the temperature distribution of the medium is also disturbed, there is a phenomenon in which the heat storage efficiency in the flow path connected liquid tanks is reduced.

【0016】したがって、槽列の液槽数を2槽とする場
合では、それら2槽の両方(結果として全ての液槽)が
、熱媒液送出路や熱媒液還流路に対する接続液槽となっ
て蓄熱効率の低いものとなるため、蓄熱槽全体としての
蓄熱効率が大きく低下するといった問題を派生するが、
この点、上記第3特徴構成を採用すれば、各槽列におい
て両端部に位置する液槽以外の中間部の液槽は、熱媒液
送出路への熱媒液送出や熱媒液還流路からの熱媒液流入
の影響を受けずに熱媒液貯留状態が安定した蓄熱効率の
高い液槽とすることができることから、蓄熱槽全体とし
ての蓄熱効率を高く維持できる利点がある。
[0016] Therefore, when the number of liquid tanks in a tank row is two, both of those two tanks (as a result, all the liquid tanks) serve as connecting liquid tanks to the heat medium liquid delivery path and the heat medium liquid return path. As a result, the heat storage efficiency becomes low, leading to problems such as a significant decrease in the heat storage efficiency of the heat storage tank as a whole.
In this regard, if the third characteristic configuration described above is adopted, the intermediate liquid tanks other than the liquid tanks located at both ends of each tank row are connected to the heat medium liquid delivery path and the heat medium liquid return path. Since it is possible to create a liquid tank with high heat storage efficiency in which the heat medium liquid storage state is stable without being affected by the heat medium liquid inflow from the heat medium, there is an advantage that the heat storage efficiency of the heat storage tank as a whole can be maintained at a high level.

【0017】[0017]

【実施例】次に実施例を説明する。[Example] Next, an example will be explained.

【0018】図1は多数の水槽1a〜1cから構成する
蓄熱槽1を示し、複数の水槽1a〜1cを列状に並べて
槽列Lを形成し、この槽列Lを複数列並設してある。
FIG. 1 shows a heat storage tank 1 consisting of a large number of water tanks 1a to 1c. A plurality of water tanks 1a to 1c are arranged in a row to form a tank row L, and a plurality of tank rows L are arranged in parallel. be.

【0019】同一槽列Lの水槽1a〜1cは、槽列Lの
一端側から他端側へ貯留冷水Wを流動させるように直列
接続してあり、そして、これら槽列Lを、冷水送出路2
及び冷水還流路3に対して並列に接続してある。
The water tanks 1a to 1c of the same tank row L are connected in series so that the stored cold water W flows from one end of the tank row L to the other end, and these tank rows L are connected to a cold water delivery path. 2
and is connected in parallel to the cold water return path 3.

【0020】つまり、このように複数の槽列Lを冷水送
出路2及び冷水還流路3に対して並列に接続することで
、多数の水槽1a〜1cの全てを冷水送出路2及び冷水
還流路3に対して直列に接続するに比して、蓄熱槽1全
体としての冷水流動抵抗を低減するとともに、蓄熱槽1
における冷水流動方向の上流端と下流端との間での水位
差を減少させるようにしてある。
That is, by connecting a plurality of tank rows L in parallel to the cold water delivery path 2 and the cold water return path 3 in this way, all of the large number of water tanks 1a to 1c are connected to the cold water delivery path 2 and the cold water return path 3. 3, the cold water flow resistance of the heat storage tank 1 as a whole is reduced, and the heat storage tank 1
The water level difference between the upstream end and the downstream end in the cold water flow direction is reduced.

【0021】図2に示すように、上記冷水送出路2は蓄
熱槽1における貯留冷水Wを空調機等の冷熱消費装置4
に給送する流路であり、また、冷水還流路3は冷熱消費
装置4で使用した冷水Wを蓄熱槽1に戻す流路である。
As shown in FIG. 2, the cold water delivery path 2 transfers the stored cold water W in the heat storage tank 1 to a cold heat consuming device 4 such as an air conditioner.
The cold water return path 3 is a flow path that returns the cold water W used in the cold heat consumption device 4 to the heat storage tank 1.

【0022】各槽列Lにおける水槽1a〜1cの形成構
造、及び、直列接続構造としては、貯留冷水Wの流動方
向において上流側に位置して下端部に連通開口部5を形
成する第1壁体6と、貯留冷水Wの流動方向において下
流側に位置して上端部に冷水溢水部7を形成する第2壁
体8とにより槽仕切り用の堰構造9を構成し、そして、
この堰構造9を隣接水槽1a〜1c間に位置させて、各
水槽1a〜1cを直列接続状態で仕切り形成してある。
The formation structure of the water tanks 1a to 1c in each tank row L and the series connection structure include a first wall located on the upstream side in the flow direction of the stored cold water W and forming a communication opening 5 at the lower end. A weir structure 9 for partitioning the tank is constituted by the body 6 and a second wall 8 located on the downstream side in the flow direction of the stored cold water W and forming a cold water overflow part 7 at the upper end.
This weir structure 9 is positioned between adjacent water tanks 1a to 1c, and the water tanks 1a to 1c are connected in series and partitioned.

【0023】また、各槽列Lにおける上流側端部の水槽
1aと冷水還流路3との接続構造、及び、各槽列Lにお
ける下流側端部の水槽1cと冷水送出路2との接続構造
については、冷水還流路3及び冷水送出路2の夫々にお
ける蓄熱槽接続部分をヘッダ構造3h,2hにより形成
し、そして、冷水還流路3におけるヘッダ構造3hと各
槽列Lにおける上流側端部の水槽1aとを単管10を介
して接続するとともに、冷水送出路2におけるヘッダ構
造2hと各槽列Lにおける下流側端部の水槽1cとを単
管11を介して接続してある。
[0023] Also, the connection structure between the water tank 1a at the upstream end of each tank row L and the cold water return path 3, and the connection structure between the water tank 1c at the downstream end of each tank row L and the cold water delivery path 2. In this case, the heat storage tank connecting portions of the cold water return path 3 and the cold water delivery path 2 are formed by header structures 3h and 2h, and the header structure 3h of the cold water return path 3 and the upstream end of each tank row L are formed by the header structures 3h and 2h. The water tank 1a is connected via a single pipe 10, and the header structure 2h in the cold water delivery path 2 and the water tank 1c at the downstream end of each tank row L are connected via a single pipe 11.

【0024】各槽列Lにおける上流側端部の水槽1aに
おいて単管接続側には、前記の第2壁体8と同構成で上
端部に冷水溢水部12を形成する上流端壁体13を設け
てあり、また、各槽列Lにおける下流側端部の水槽1c
において単管接続側には、前記の第1壁体6と同構成で
下端部に連通開口部14を形成する下流端壁体15を設
けてある。
In the water tank 1a at the upstream end of each tank row L, on the single pipe connection side, there is an upstream end wall 13 having the same structure as the second wall 8 and forming a cold water overflow part 12 at the upper end. A water tank 1c at the downstream end of each tank row L
A downstream end wall 15 having the same structure as the first wall 6 and having a communication opening 14 at its lower end is provided on the single pipe connection side.

【0025】つまり、前記の堰構造9による水槽間仕切
り、並びに、端部水槽1a,1cにおける上記の上流端
壁体13及び下流端壁体15の配設により、図中矢印で
示す如く貯留冷水Wを流動させ、これによって、各水槽
1a〜1cにおける冷水貯留状態を温度成層状態に保ち
ながら、槽列Lの上流端と下流端との間で大きな冷水温
度差を維持するようにしてある。
That is, due to the partitioning of the water tank by the weir structure 9 and the arrangement of the upstream end wall 13 and the downstream end wall 15 in the end water tanks 1a and 1c, the stored cold water W is distributed as indicated by the arrow in the figure. is made to flow, thereby maintaining a large cold water temperature difference between the upstream end and the downstream end of the tank row L while maintaining the cold water storage state in each of the water tanks 1a to 1c in a temperature stratified state.

【0026】冷水還流路3におけるヘッダ構造3hと各
槽列Lにおける上流側端部の水槽1aとを接続する単管
10の夫々には流量調整弁16及び流量計18を設けて
あり、また、冷水送出路2におけるヘッダ構造2hと各
槽列Lにおける下流側端部の水槽1cとを接続する単管
11の夫々には流量調整弁17を設けてあり(尚、図示
しないが、冷水送出路2側の接続端管11にも流量計1
8を付設することとしても良い)、流量計18による流
量計測に基づき各流量調整弁16,17を調整すること
により、各槽列Lに対する冷水通水量を均等化するよう
にしてある。
Each of the single pipes 10 connecting the header structure 3h in the cold water return path 3 and the water tank 1a at the upstream end of each tank row L is provided with a flow rate regulating valve 16 and a flow meter 18, and Each of the single pipes 11 connecting the header structure 2h in the cold water delivery path 2 and the water tank 1c at the downstream end of each tank row L is provided with a flow rate regulating valve 17 (although not shown in the figure, the cold water delivery path Flow meter 1 is also installed on the connecting end pipe 11 on the 2 side.
8 may be added), and by adjusting the flow rate regulating valves 16 and 17 based on the flow rate measurement by the flow meter 18, the amount of cold water flowing to each tank row L is equalized.

【0027】複数の水槽1a〜1cを直列接続した槽列
Lの複数を冷水送出路2及び冷水還流路3に対して並列
接続する蓄熱槽構成とするにあたっては、槽列Lの並設
数を槽列Lにおける水槽1a〜1cの直列接続数よりも
大きくしてあり、これによって、蓄熱槽1における冷水
流動抵抗の低減、及び、蓄熱槽1における上流側端と下
流側端との水位差の減少をより効果的に達成するように
してある。
When constructing a heat storage tank configuration in which a plurality of tank rows L each having a plurality of water tanks 1a to 1c connected in series are connected in parallel to the cold water delivery path 2 and the cold water return path 3, the number of tank rows L to be installed in parallel is determined by The number is greater than the number of water tanks 1a to 1c connected in series in the tank row L, thereby reducing the cold water flow resistance in the heat storage tank 1 and reducing the water level difference between the upstream end and the downstream end of the heat storage tank 1. The reduction is achieved more effectively.

【0028】また、各槽列Lにおける水槽1a〜1cの
直列接続数は3槽以上としてあり、冷水送出路2への冷
水送出や冷水還流路3からの冷水流入の影響を受けずに
冷水貯留状態が安定した水槽1bを各槽列Lの冷水流動
経路中間部に確保することで、蓄熱槽全体としての蓄熱
効率を高く維持するようにしてある。
In addition, the number of series connections of the water tanks 1a to 1c in each tank row L is three or more, so that cold water can be stored without being affected by the cold water sent to the cold water delivery path 2 or the cold water inflow from the cold water return path 3. By securing a water tank 1b in a stable state at the intermediate portion of the cold water flow path of each tank row L, the heat storage efficiency of the heat storage tank as a whole is maintained at a high level.

【0029】図中19は冷凍機であり、この冷凍機19
の冷水吐出路20は前記の冷水送出路2に接続し、かつ
、冷凍機19への冷水戻し路21は前記の冷水還流路3
に接続してある。
19 in the figure is a refrigerator, and this refrigerator 19
The cold water discharge path 20 is connected to the cold water delivery path 2, and the cold water return path 21 to the refrigerator 19 is connected to the cold water return path 3.
It is connected to.

【0030】つまり、蓄熱槽1に対する冷熱蓄熱運転時
には、各槽列Lにおいて冷水送出路2のヘッダ構造2h
から冷水還流路3のヘッダ構造3hへ向けて冷水Wを流
動させる形態で蓄熱槽1と冷凍機19との間で冷水循環
させて、冷凍機19による生成低温冷水Wを蓄熱槽1に
貯留する。
That is, during the cold heat storage operation for the heat storage tank 1, the header structure 2h of the cold water delivery path 2 in each tank row L is
The cold water W is circulated between the heat storage tank 1 and the refrigerator 19 in such a manner that the cold water W flows from there toward the header structure 3h of the cold water return path 3, and the low-temperature cold water W generated by the refrigerator 19 is stored in the heat storage tank 1. .

【0031】22は冷凍機19から吐出される低温冷水
Wの一部を冷水戻し路21へ合流させるバイパス路であ
り、この合流量を三方弁23により調整することで冷凍
機19への戻し冷水温度を所定の温度に調整する。
Reference numeral 22 denotes a bypass passage that makes a part of the low-temperature cold water W discharged from the refrigerator 19 merge into the cold water return passage 21. By adjusting the amount of this confluence with the three-way valve 23, the cold water returned to the refrigerator 19 can be adjusted. Adjust the temperature to the desired temperature.

【0032】図中24、25は夫々、ポンプである。In the figure, 24 and 25 are pumps, respectively.

【0033】次に別実施例を列記する。Next, another example will be listed.

【0034】(イ)前述実施例においては冷水を貯留熱
媒液Wとしたが、熱媒液Wは温水、あるいは、水以外の
液体であってもよい。
(a) In the above embodiment, cold water was used as the stored heat transfer liquid W, but the heat transfer liquid W may be hot water or a liquid other than water.

【0035】尚、先述の図1及び図2、又、後述の図3
、図4、図5の夫々において熱媒液Wの流れを示す矢印
は、熱媒液Wとして冷水を蓄熱槽1に貯留する形態にお
いて、その蓄熱槽1の蓄熱冷熱を取り出し消費する冷熱
消費運転時の流れ方向を示し、蓄熱槽1に冷熱を蓄熱す
る冷熱蓄熱運転時には逆向きの流れ方向となるが、これ
に対し、熱媒液Wとして温水を蓄熱槽1に貯留する形態
においては、蓄熱槽1の蓄熱温熱を取り出し消費する温
熱消費運転時の流れ方向は、冷水貯留形態における冷熱
消費運転時の流れ方向と逆向きとなり、又、蓄熱槽1に
温熱を蓄熱する温熱蓄熱運転時の流れ方向も冷水貯留形
態における冷熱蓄熱運転時の流れ方向と逆向きとなる。
[0035] In addition, FIGS. 1 and 2 described earlier, and FIG. 3 described later
, 4 and 5, the arrows indicating the flow of the heat medium liquid W indicate the cold heat consumption operation in which cold water stored in the heat storage tank 1 is taken out and consumed in a form in which cold water is stored as the heat medium liquid W in the heat storage tank 1. The flow direction is the opposite direction during cold heat storage operation in which cold heat is stored in the heat storage tank 1; The flow direction during the heat consumption operation in which the heat stored in the tank 1 is taken out and consumed is opposite to the flow direction during the cold heat consumption operation in the cold water storage mode, and the flow direction during the heat storage operation in which warm heat is stored in the heat storage tank 1. The direction is also opposite to the flow direction during the cold heat storage operation in the cold water storage mode.

【0036】(ロ)槽列Lにおいて直列接続する液槽1
a〜1cの仕切り構造は種々の構成変更が可能であり、
図3に示す如く、上下中間部に連通開口部26を形成し
た第3壁体27を先述の第1壁体6と第2壁体8との間
に配した堰構造28をもって液槽1a〜1cを直列接続
状態で仕切り形成しても良く、また、図4に示す如く、
先述の第1壁体6のみをもって隣接液槽1a,1bを直
列接続状態で仕切り形成するとともに、隣の隣接液槽1
b,1cを先述の第2壁体8のみをもって直列接続状態
で仕切り形成するという形態で、第1壁体6と第2壁体
8とを交互に使用して液槽1a〜1cを直列接続状態で
仕切り形成するようにしてもよい。
(b) Liquid tanks 1 connected in series in tank row L
Various configuration changes are possible for the partition structures a to 1c,
As shown in FIG. 3, a weir structure 28 in which a third wall 27 with a communication opening 26 formed in the upper and lower intermediate portions is arranged between the first wall 6 and the second wall 8 is used to create a liquid tank 1a to 1c may be connected in series to form a partition, or as shown in FIG.
Adjacent liquid tanks 1a and 1b are connected in series to form a partition using only the first wall 6, and the adjacent liquid tanks 1
The liquid tanks 1a to 1c are connected in series by alternately using the first wall 6 and the second wall 8, in which the liquid tanks 1a to 1c are connected in series and partitioned using only the second wall 8 described above. Partitions may be formed depending on the state.

【0037】(ハ)槽列Lにおける液槽1a〜1cの直
列接続数は3槽に限定されるものではなく、また、槽列
Lの並設数も前述実施例の並設数に限定されるものでは
ない。
(c) The number of the liquid tanks 1a to 1c connected in series in the tank row L is not limited to three tanks, and the number of parallel arrangement of the tank row L is also limited to the number of parallel arrangement in the above-mentioned embodiment. It's not something you can do.

【0038】(ニ)図5に示すように、槽列Lの複数を
熱媒液送出路2及び熱媒液還流路3に対して並列接続し
た蓄熱槽構成1A,1Bの複数を、熱媒液送出路2ない
し熱媒液還流路3を兼用する状態で隣接配設してもよい
(d) As shown in FIG. 5, a plurality of heat storage tank configurations 1A and 1B in which a plurality of tank rows L are connected in parallel to the heat medium liquid delivery path 2 and the heat medium liquid return path 3 are connected to the heat medium They may be disposed adjacent to each other so as to serve as both the liquid delivery path 2 and the heat medium liquid return path 3.

【0039】(ホ)各槽列Lに対する熱媒液流通量を調
整する流量調整弁に自動定流量弁を採用してもよい。
(e) An automatic constant flow valve may be used as the flow rate adjustment valve for adjusting the flow rate of the heat medium liquid to each tank row L.

【0040】(ヘ)熱媒液送出路2、及び、熱媒液還流
路3夫々の流路構造は種々の構成変更が可能である。
(f) The flow path structures of the heat medium liquid delivery path 2 and the heat medium liquid return path 3 can be modified in various ways.

【0041】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明が添
付図面の構成に限定されるものではない。
[0041] Although reference numerals are written in the claims section for convenience of comparison with the drawings, the present invention is not limited to the structure of the accompanying drawings by such entry.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】平面図[Figure 1] Plan view

【図2】槽列縦断面図[Figure 2] Longitudinal cross-sectional view of tank rows

【図3】別実施例を示す槽列縦断面図[Fig. 3] Vertical cross-sectional view of a tank row showing another embodiment

【図4】別実施例を示す槽列縦断面図[Fig. 4] Vertical cross-sectional view of a tank row showing another embodiment

【図5】別実施例を示す平面図[Fig. 5] Plan view showing another embodiment

【図6】従来例を示す平面図[Fig. 6] Plan view showing a conventional example

【符号の説明】[Explanation of symbols]

1a,1b,1c    液槽 1a, 1b, 1c Liquid tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  熱媒液(W)を貯留する液槽(1a)
,(1b),(1c)の複数を列状に並べて槽列(L)
を形成し、この槽列(L)を複数列並設した蓄熱槽であ
って、同一槽列(L)の前記液槽(1a),(1b),
(1c)を、槽列(L)の一端側から他端側へ熱媒液流
動させるように直列に接続し、それら槽列(L)を熱媒
液送出路(2)及び熱媒液還流路(3)に対して並列に
接続してある蓄熱槽。
[Claim 1] Liquid tank (1a) for storing heat transfer liquid (W)
, (1b), (1c) are arranged in a row to form a tank row (L).
The heat storage tank has a plurality of tank rows (L) arranged in parallel, and the liquid tanks (1a), (1b), of the same tank row (L),
(1c) are connected in series so that the heat medium liquid flows from one end side of the tank row (L) to the other end side, and these tank rows (L) are connected to the heat medium liquid delivery path (2) and the heat medium liquid reflux path. A heat storage tank connected in parallel to the road (3).
【請求項2】  前記槽列(L)の並設数を槽列(L)
における液槽数よりも大にしてある請求項1記載の蓄熱
槽。
[Claim 2] The number of the tank rows (L) arranged in parallel is the tank row (L).
2. The heat storage tank according to claim 1, wherein the number of liquid tanks is larger than that of the heat storage tank.
【請求項3】  前記槽列(L)の液槽数を3槽以上と
してある請求項1又は2記載の蓄熱槽。
3. The heat storage tank according to claim 1, wherein the number of liquid tanks in the tank row (L) is three or more.
JP3060644A 1991-03-26 1991-03-26 Thermal storage tank Expired - Fee Related JP3072138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3060644A JP3072138B2 (en) 1991-03-26 1991-03-26 Thermal storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3060644A JP3072138B2 (en) 1991-03-26 1991-03-26 Thermal storage tank

Publications (2)

Publication Number Publication Date
JPH04295528A true JPH04295528A (en) 1992-10-20
JP3072138B2 JP3072138B2 (en) 2000-07-31

Family

ID=13148244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3060644A Expired - Fee Related JP3072138B2 (en) 1991-03-26 1991-03-26 Thermal storage tank

Country Status (1)

Country Link
JP (1) JP3072138B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080609A (en) * 2009-10-02 2011-04-21 Ohbayashi Corp Connected heat storage tank
JP2011226658A (en) * 2010-04-15 2011-11-10 Espec Corp Cooling device and environmental test device equipped with the same
WO2016150455A1 (en) * 2015-03-20 2016-09-29 Siemens Aktiengesellschaft System for storing thermal energy and method of operating a system for storing thermal energy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080609A (en) * 2009-10-02 2011-04-21 Ohbayashi Corp Connected heat storage tank
JP2011226658A (en) * 2010-04-15 2011-11-10 Espec Corp Cooling device and environmental test device equipped with the same
WO2016150455A1 (en) * 2015-03-20 2016-09-29 Siemens Aktiengesellschaft System for storing thermal energy and method of operating a system for storing thermal energy

Also Published As

Publication number Publication date
JP3072138B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US7107787B2 (en) Evaporator
US4522254A (en) Heat storage trough
US5511611A (en) Heat exchanger
JPS6193387A (en) Heat exchanger
JPH04295528A (en) Heat storage tank
CN101240956A (en) Heat converter and air conditioner possessing the heat converter
JPH08261691A (en) Heat exchanger
JPS5921930A (en) Heat storage tank
CN207816043U (en) Heat transmission equipment, heat pump water heater system, home-use shower system and bathroom
EA026850B1 (en) Heat exchanger for heat removal in a heating system or a heat supply system
JPS5923973Y2 (en) Temperature stratification type heat storage tank device
JPH0614782U (en) Heat exchanger
CN215372958U (en) Plate water exchange path system of gas heating water heater and gas heating water heater
JP3578973B2 (en) Thermal storage tank
JP2596674B2 (en) Thermal storage method and apparatus using both water tank and ice tank
JPH0289996A (en) Heat accumulating device
JPH02259378A (en) Refrigerant distributor
JPH0612363Y2 (en) Cooling water supply device for heat exchanger
JPS581338B2 (en) Heat storage tank for heating and cooling
JP2004132629A (en) Water heater
JP2005114196A (en) Heating medium supply system
JPH0152661B2 (en)
JPH10213385A (en) Low resistance flow passage type heat exchanger
JPH0285642A (en) Heat storage tank
JPH08200980A (en) Plate fin coil

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees