JP3072138B2 - Thermal storage tank - Google Patents

Thermal storage tank

Info

Publication number
JP3072138B2
JP3072138B2 JP3060644A JP6064491A JP3072138B2 JP 3072138 B2 JP3072138 B2 JP 3072138B2 JP 3060644 A JP3060644 A JP 3060644A JP 6064491 A JP6064491 A JP 6064491A JP 3072138 B2 JP3072138 B2 JP 3072138B2
Authority
JP
Japan
Prior art keywords
tank
liquid
heat
row
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3060644A
Other languages
Japanese (ja)
Other versions
JPH04295528A (en
Inventor
栄一 浜田
宏次 森岡
和夫 小畑
Original Assignee
株式会社大氣社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大氣社 filed Critical 株式会社大氣社
Priority to JP3060644A priority Critical patent/JP3072138B2/en
Publication of JPH04295528A publication Critical patent/JPH04295528A/en
Application granted granted Critical
Publication of JP3072138B2 publication Critical patent/JP3072138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は蓄熱式冷暖房等に用いる
蓄熱槽に関し、詳しくは、熱媒液を貯留する液槽の複数
を列状に並べて槽列を形成し、この槽列を複数列並設
し、同一槽列の液槽を、槽列の一端側から他端側へ熱媒
液流動させるように直列に接続し、それら槽列を熱媒液
送出路及び熱媒液還流路に対して並列に接続してある蓄
熱槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage tank for use in regenerative cooling and heating, and more particularly, to a plurality of liquid tanks for storing a heat transfer medium which are arranged in a row to form a tank row. The liquid tanks of the same tank row are connected in series so that the heat medium flows from one end to the other end of the tank row, and these tank rows are connected to a heat medium liquid delivery path and a heat medium liquid return path. And a heat storage tank connected in parallel.

【0002】[0002]

【従来の技術】従来、上記の如き蓄熱槽においては、特
開平2−85642号公報に見られるように、隣合う槽
列において並び順位が等しい液槽(槽列並設方向での隣
接液槽)どうしを、それら液槽間の隔壁に穿設した開口
部により連通させ、これにより、各槽列に対する熱媒液
流通量のバラツキにかかわらず複数の槽列間で液槽の液
位を等しく保つようにして、蓄熱槽全体としての熱媒液
の貯留効率(槽容積に対する有効熱媒液貯留量の比
率)、ひいては蓄熱容量を高めるようにしたものがあ
る。
2. Description of the Related Art Conventionally, in a heat storage tank as described above, as shown in Japanese Patent Application Laid-Open No. 2-85642, liquid tanks having the same order of arrangement in adjacent tank rows (adjacent liquid tanks in the tank row juxtaposition direction). ) Are communicated with each other through openings formed in partition walls between the liquid tanks, so that the liquid level of the liquid tanks is equal among the plurality of tank rows regardless of the variation in the flow rate of the heat medium liquid to each tank row. In some cases, the storage efficiency of the heat medium liquid as a whole of the heat storage tank (the ratio of the effective heat medium liquid storage amount to the tank volume), and thus the heat storage capacity, is increased.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の従来蓄
熱槽では、並設した複数の槽列間で液槽の液位は等しく
し得るものの、各槽列へ流入させる熱媒液を熱媒液還流
路から分配する部分における熱媒液流動抵抗のバラツキ
や各槽列からの送出熱媒液を熱媒液送出路へ集合させる
部分における熱媒液流動抵抗のバラツキ等に対し、各槽
列の熱媒液流通量を各槽列の槽容積(各槽列における液
槽直列接続群の容積)に応じた流量に調整する機能はな
く、この為、熱媒液還流路から還流した貯留熱媒液と熱
媒液送出路へ送出すべき貯留熱媒液との領域境界の槽列
内移動速度が複数の槽列間で異なるものとなって、ある
槽列では熱媒液送出路へ送出すべき蓄熱状態の熱媒液が
すでに残存しないにもかかわらず、他の槽列では熱媒液
送出路へ送出すべき蓄熱状態の熱媒液が未だ残り、その
残存熱媒液分の蓄熱量を有効に利用できないといったこ
とが生じ、この点、蓄熱量の有効利用率(全蓄熱量のう
ち有効に取出し利用できる熱量の比率)が未だ低い問題
がある。
However, in the above-described conventional heat storage tanks, the liquid level of the liquid tanks can be made equal among a plurality of tank rows arranged in parallel, but the heat transfer medium flowing into each tank row is heated by the heat transfer medium. Each of the tank rows may be used to prevent variations in the flow resistance of the heat transfer fluid in the portion distributed from the liquid return path, and variations in the flow resistance of the heat transfer liquid in the section in which the heat transfer liquid delivered from each tank row is collected into the heat transfer path. There is no function to adjust the flow rate of the heat medium liquid to the flow rate according to the tank volume of each tank row (the capacity of the liquid tank series connection group in each tank row). The moving speed in the tank row at the region boundary between the liquid medium and the stored heat transfer medium to be sent to the heat transfer liquid delivery path differs between a plurality of tank rows, and in a certain tank row, the transfer speed to the heat transfer liquid delivery path is different. Even if the heat storage liquid in the heat storage state to be discharged no longer remains, it should be delivered to the heating medium delivery path in other tank rows. The heat storage liquid in the heat storage state still remains, and the amount of heat stored in the remaining heat medium cannot be used effectively. In this respect, the effective utilization rate of the heat storage amount (the amount of heat that can be effectively taken out and used out of the total heat storage amount) Ratio is still low.

【0004】また、隣の槽列の液槽から前記開口部を通
じて流入する熱媒液により槽列における貯留熱媒液の温
度分布状態(特に熱媒液を温度成層状態で貯留する方式
を採る場合の温度分布状態)が乱され、これにより蓄熱
量の損失(いわゆる混合損失)が大きくなる問題もあ
る。
Further, the temperature distribution state of the stored heat transfer fluid in the tank row by the heat transfer liquid flowing from the liquid tank of the adjacent tank row through the opening portion (particularly, a method in which the heat transfer medium is stored in a temperature stratified state). Temperature distribution state) is disturbed, which causes a problem that the loss of heat storage amount (so-called mixing loss) increases.

【0005】本発明の主たる目的は、複数の液槽を直列
接続してなる槽列の複数を熱媒液送出路及び熱媒液還流
路に対し並列接続する形式の蓄熱槽において、上記の如
き問題を効果的に解消する点にある。
A main object of the present invention is to provide a heat storage tank of the type in which a plurality of liquid tanks connected in series are connected in parallel to a heat medium liquid delivery path and a heat medium liquid return path. The point is to solve the problem effectively.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明の特
徴構成は、熱媒液を貯留する液槽の複数を列状に並べて
槽列を形成し、この槽列を複数列並設し、同一槽列の前
記液槽を、槽列の一端側から他端側へ熱媒液流動させる
ように直列に接続し、それら槽列を熱媒液送出路及び熱
媒液還流路に対して並列に接続する蓄熱槽において、各
槽列に対する熱媒液流通量を個別に調整する流量調整弁
を設けてあることにある。
According to a first feature of the present invention, a plurality of liquid tanks for storing a heat transfer medium are arranged in a row to form a tank row, and a plurality of the tank rows are arranged in parallel. The liquid tanks in the same tank row are connected in series so that the heat medium flows from one end to the other end of the tank row, and these tank rows are connected to the heat medium liquid delivery path and the heat medium liquid return path. In the heat storage tanks connected in parallel, a flow control valve for individually adjusting the flow rate of the heat medium liquid to each tank row is provided.

【0007】請求項2に係る発明の特徴構成は、請求項
1に係る発明の実施において、前記流量調整弁に自動定
流量弁を用いてあることにある。
A feature of the invention according to claim 2 is that, in the embodiment of the invention according to claim 1, an automatic constant flow valve is used as the flow control valve.

【0008】請求項3に係る発明の特徴構成は、請求項
1又は2に係る発明の実施において、高温熱媒液の貯留
側に位置して下端部に連通開口部を形成する第1壁体
と、低温熱媒液の貯留側に位置して上端部に熱媒液溢液
部を形成する第2壁体と、上下中間部に連通開口部を形
成した状態で前記第1壁体と前記第2壁体との間に位置
させる第3壁体とで槽仕切り用の堰構造を構成し、この
堰構造を同一槽列における隣接液槽間に配設して、同一
槽列における複数の液槽を直列接続状態で仕切り形成し
てあることにある。
According to a third aspect of the present invention, in the first or the second aspect of the invention, the first wall body is located on the high-temperature heat transfer medium storage side and has a communication opening at the lower end. A second wall body that is located on the storage side of the low-temperature heat medium liquid and forms a heat medium liquid overflow section at the upper end, and the first wall body in a state where a communication opening is formed in the upper and lower middle part. The third wall positioned between the second wall and the third wall constitutes a weir structure for partitioning the tank, and this weir structure is disposed between adjacent liquid tanks in the same tank row, and a plurality of dams in the same tank row are arranged. That is, the liquid tanks are partitioned in a serially connected state.

【0009】[0009]

【作用】請求項1に係る発明では、熱媒液還流路及び熱
媒液送出路に対し複数の槽列を並列接続した構成におい
て、各槽列に対する熱媒液流通量を個別に調整する上記
流量調整弁により、複数の槽列夫々の熱媒液流通量を各
槽列の槽容積(各槽列における液槽直列接続群の容積)
に応じた流量に調整することができ、これにより、熱媒
液還流路から還流した貯留熱媒液と熱媒液送出路へ送出
すべき貯留熱媒液との領域境界の槽列内移動速度を複数
の槽列間で同等にすることができて、それら複数の槽列
において、蓄熱状態にある貯留熱媒液を熱媒液送出路へ
送出することをほぼ同時に完了させることができる。
According to the first aspect of the present invention, in a configuration in which a plurality of tank rows are connected in parallel to the heat medium liquid return path and the heat medium liquid delivery path, the flow rate of the heat medium liquid for each tank row is individually adjusted. The flow rate of the heat medium in each of the plurality of tank rows is controlled by the flow rate adjustment valve to the capacity of each tank row (the capacity of the liquid tank series connection group in each tank row).
The flow rate in the tank row at the boundary between the storage heat medium refluxed from the heat medium liquid return path and the storage heat medium liquid to be sent to the heat medium liquid delivery path can be adjusted. Can be made equal between the plurality of tank rows, and in these plurality of tank rows, the delivery of the stored heat transfer medium in the heat storage state to the heat transfer medium delivery path can be completed almost simultaneously.

【0010】すなわち、このことにより、先述の従来蓄
熱槽における問題、すなわち、ある槽列では熱媒液送出
路へ送出すべき蓄熱状態の熱媒液がすでに残存しないに
もかかわらず、他の槽列では熱媒液送出路へ送出すべき
蓄熱状態の熱媒液が未だ残る状態となって、その残存熱
媒液分の蓄熱量を有効に利用できなくなるといった問題
を効果的に回避でき、複数の槽列からなる蓄熱槽の全蓄
熱量をより有効に利用することができる。
That is, this causes a problem in the above-described conventional heat storage tank, that is, in a certain tank row, the heat storage liquid in the heat storage state to be sent to the heat medium liquid delivery path does not already remain, but the other heat storage tank remains. In the row, the heat storage liquid in the heat storage state to be sent to the heat medium liquid delivery path remains in a state, and the problem that the heat storage amount of the remaining heat medium liquid cannot be used effectively can be effectively avoided. The total amount of heat stored in the heat storage tank composed of the tank rows can be used more effectively.

【0011】また、各槽列の熱媒液流通量を各槽列の槽
容積に応じた流量に調整できることで、先述の従来蓄熱
槽の如き開口部(槽列並設方向での隣接液槽どうし連通
する開口部)を不要にしながら複数槽列間での液槽液位
の均等化も図ることができて、熱媒液の貯留効率も高め
ることができ、そして、このように槽列並設方向での隣
接液槽どうし連通する開口部を不要にし得ることで、先
述の従来蓄熱槽におけるもう1つの問題、すなわち、そ
の開口部を通じて隣の槽列の液槽から流入する熱媒液に
より槽列における貯留熱媒液の温度分布状態が乱されて
蓄熱量の損失(混合損失)が大きくなるといった問題も
効果的に回避できる。
In addition, the flow rate of the heat medium in each tank row can be adjusted to a flow rate corresponding to the tank volume of each tank row. It is also possible to equalize the liquid level in the plurality of tank rows while eliminating the need for openings communicating with each other), to increase the storage efficiency of the heat transfer fluid, and thus to increase the efficiency of the tank rows. By eliminating the need for an opening communicating with the adjacent liquid tanks in the installation direction, another problem in the above-described conventional heat storage tank, namely, by the heat transfer medium flowing from the liquid tank of the adjacent tank row through the opening. The problem that the temperature distribution state of the stored heat transfer fluid in the tank row is disturbed and the loss of heat storage amount (mixing loss) increases can also be effectively avoided.

【0012】請求項2に係る発明では、上記流量調整弁
に自動定流量弁を用いることで、人為の弁操作を不要に
しながら、各槽列の熱媒液流通量を各槽列の槽容積に応
じた流量に調整して、その調整流量を熱媒液流動抵抗の
変化などにかかわらず維持することができる。
According to the second aspect of the present invention, by using an automatic constant flow rate valve as the flow rate regulating valve, the flow rate of the heat medium in each tank row can be reduced while eliminating the need for manual valve operation. , And the adjusted flow rate can be maintained irrespective of a change in the flow resistance of the heat medium liquid.

【0013】請求項3に係る発明では、地下二重スラブ
構造における壁や梁を槽壁に利用して複数の液槽を形成
する場合、それら壁や梁に開口を形成することが制限さ
れるのに対し、それら壁や梁を第3壁体とすることで、
それら壁や梁に形成する開口を上下中間部の連通開口部
だけとしながらも、その上下中間部の連通開口部を通じ
て行なう同一槽列における隣接液槽間での熱媒液流通
を、第3壁体に対し高温熱媒液の貯留側に位置させた第
1壁体の下端部に形成される連通開口部、及び、第3壁
体に対し低温熱媒液の貯留側に位置させた第2壁体の上
端部に形成される熱媒液溢液部を介して行なうことによ
り、それら液槽の各々において熱媒液を温度成層状態で
貯留することができ、これにより、いわゆる混合損失を
抑制して蓄熱効率を高めることができる。
In the invention according to claim 3, when a plurality of liquid tanks are formed by using the walls and beams in the underground double slab structure as the tank walls, the formation of openings in the walls and beams is limited. However, by making those walls and beams the third wall,
While the openings formed in the walls and beams are only the communication openings at the upper and lower middle portions, the flow of the heat medium between adjacent liquid tanks in the same tank row through the communication openings at the upper and lower middle portions is performed by the third wall. A communication opening formed at the lower end of the first wall body located on the storage side of the high-temperature heat transfer fluid with respect to the body, and a second opening located on the storage side of the low-temperature heat transfer fluid with respect to the third wall body. By performing the heating medium liquid overflowing portion formed at the upper end of the wall, the heating medium liquid can be stored in a temperature stratified state in each of the liquid tanks, thereby suppressing so-called mixing loss. As a result, the heat storage efficiency can be increased.

【0014】また、地下二重スラブ構造における壁や梁
を槽壁に利用して複数の液槽を形成する場合において、
それら壁や梁に形成する開口を上下中間部の開口だけと
しながら、同一槽列における隣接液槽の夫々で熱媒液を
温度成層状態に貯留できるようにするのに、一端が高温
熱媒液の貯留側において槽底部に開口し、かつ、他端が
低温熱媒液の貯留側において槽上部に開口するS字状の
連通管を梁や壁の上下中間部に貫通させる状態に設ける
形式(先述の特開平2−85642号公報参照)も考え
られるが、この形式では、S字状連通管の管端開口にお
ける熱媒液流速が高速となることで、各液槽での温度成
層状態の形成が不完全なものとなり易い。
In the case where a plurality of liquid tanks are formed by using walls and beams in the underground double slab structure as tank walls,
One end of the high-temperature heat transfer medium is used to allow the heat transfer liquid to be stored in a temperature stratified state in each of the adjacent liquid tanks in the same tank row while the openings formed in the walls and beams are only the openings in the upper and lower middle parts. A type in which an S-shaped communication pipe that opens to the bottom of the tank on the storage side of the tank and the other end opens to the top of the tank on the storage side of the low-temperature heat transfer medium, and penetrates through the upper and lower intermediate portions of the beams and walls ( Although the above-mentioned Japanese Patent Application Laid-Open No. 2-85642 is also conceivable, in this type, the flow rate of the heat medium liquid at the pipe end opening of the S-shaped communication pipe becomes high, so that the temperature stratified state in each liquid tank is increased. The formation is likely to be incomplete.

【0015】これに対し、堰構造を構成する前記の如き
第1壁体及び第2壁体をもって各液槽での熱媒液貯留を
温度成層状態にするのであれば、第1壁体の下端部に形
成される連通開口部の開口幅、及び、第2壁体の上端部
に形成される熱媒液溢液部の幅を大きく採れることで、
それら連通開口部や熱媒液溢液部での熱媒液流速を小さ
くして、各液槽での温度成層状態の形成をより完全に近
い良好なものにすることができ、これにより、上記のS
字状連通管を用いる形式に比べ、温度成層状態の形成に
よる蓄熱効率の向上を一層効果的に達成できる。
On the other hand, if the storage of the heat transfer medium in each liquid tank is made into a temperature stratified state by the first wall and the second wall constituting the weir structure, the lower end of the first wall is formed. The opening width of the communication opening formed in the portion, and the width of the heat medium liquid overflow portion formed in the upper end portion of the second wall body can be made large,
By reducing the flow rate of the heat transfer fluid at the communication openings and the overflow portion of the heat transfer fluid, it is possible to make the formation of a temperature stratified state in each of the liquid tanks more nearly perfect and good. S
The heat storage efficiency can be more effectively improved by the formation of the temperature stratified state, as compared with the type using the letter-shaped communication pipe.

【0016】[0016]

【発明の効果】請求項1に係る発明によれば、熱媒液還
流路及び熱媒液送出路に対し並列接続した複数の槽列に
おいて、蓄熱状態にある貯留熱媒液を熱媒液送出路へ送
出することをほぼ同時に完了させ得ることで、蓄熱量の
有効利用率を高めることができ、また、貯留熱媒液の温
度分布状態を安定的に保って蓄熱量の損失(混合損失)
を抑制しながら、液槽液位を複数槽列間で均等化して熱
媒液の貯留効率も高めることができ、これらの点で先述
の従来蓄熱槽に比べより優れた蓄熱槽にすることができ
る。
According to the first aspect of the present invention, in the plurality of tank rows connected in parallel to the heat medium liquid return path and the heat medium liquid discharge path, the stored heat medium liquid in the heat storage state is discharged. Can be almost simultaneously completed, the effective utilization rate of the heat storage amount can be increased, and the temperature distribution state of the storage heat medium liquid is stably maintained, and the loss of the heat storage amount (mixing loss)
In addition, it is possible to increase the storage efficiency of the heat medium liquid by equalizing the liquid tank liquid level among the plurality of tank rows while suppressing the heat tank. In these respects, it is possible to make the heat storage tank more excellent than the conventional heat storage tank described above. it can.

【0017】そして、複数の液槽を直列接続してなる槽
列の複数を熱媒液還流路及び熱媒液送出路に対し並列に
接続する形式の利点、すなわち、図6に示す如く熱媒液
還流路3を接続した一端側槽列Laの端部液槽1aか
ら、熱媒液送出路2を接続した他端側槽列Lxの端部液
槽1xにかけて熱媒液Wを蛇行状に流動させるように、
熱媒液還流路3及び熱媒液送出路2に対して全ての液槽
1a〜1xを直列に接続する形式に比べ、蓄熱槽におけ
る熱媒液流動抵抗を小さくすることができて、熱媒液循
環に要する動力を低減できるとともに、蓄熱槽における
熱媒液還流側の端部液槽と熱媒液送出側の端部液槽との
液位差を小さくすることができて、槽容積に対する有効
熱媒液貯留量大きく確保できるといった利点と相俟っ
て、極めて優れた蓄熱槽にすることができる。
The advantage of the type in which a plurality of tank rows formed by connecting a plurality of liquid tanks in series are connected in parallel to the heat medium liquid return path and the heat medium liquid discharge path, that is, as shown in FIG. The heat transfer liquid W is formed in a meandering manner from the end liquid tank 1a of the one end tank row La to which the liquid recirculation path 3 is connected to the end liquid tank 1x of the other end tank row Lx to which the heat medium liquid delivery path 2 is connected. Like flowing
Compared to a type in which all the liquid tanks 1a to 1x are connected in series to the heat medium liquid return path 3 and the heat medium liquid discharge path 2, the heat medium liquid flow resistance in the heat storage tank can be reduced, The power required for liquid circulation can be reduced, and the difference in liquid level between the end liquid tank on the heat medium liquid recirculation side and the end liquid tank on the heat medium liquid delivery side in the heat storage tank can be reduced. Combined with the advantage that a large effective heat medium liquid storage amount can be secured, an extremely excellent heat storage tank can be provided.

【0018】請求項2に係る発明によれば、人為の弁操
作を不要にし得ることでメンテナンスの負担を軽減で
き、また、熱媒液流動抵抗の変化などにかかわらず各槽
列の熱媒液流通量を各槽列の槽容積に応じた流量に自動
的に調整・維持できることで、請求項1に係る発明の効
果を継続して一層確実に得ることができる。
According to the second aspect of the present invention, the burden on maintenance can be reduced by eliminating the need for manual valve operation, and the heat transfer fluid in each tank row can be changed regardless of the change in the flow resistance of the heat transfer fluid. Since the flow rate can be automatically adjusted and maintained at a flow rate corresponding to the tank volume of each tank row, the effect of the invention according to claim 1 can be continuously and more reliably obtained.

【0019】請求項3に係る発明によれば、地下二重ス
ラブ構造における壁や梁を槽壁に利用して複数の液槽を
形成する場合、それら壁や梁に開口を形成することが制
限されるのに対し、それら壁や梁に形成する開口を上下
中間部の開口だけとしながらも、同一槽列における隣接
液槽の夫々において熱媒液を良好な温度成層状態で貯留
することができて、蓄熱効率を効果的に高めることがで
きる。
According to the third aspect of the present invention, when a plurality of liquid tanks are formed by using the walls and beams in the underground double slab structure as tank walls, it is limited to form openings in the walls and beams. On the other hand, it is possible to store the heat transfer medium in a good temperature stratified state in each of the adjacent liquid tanks in the same tank row, while making only the openings formed in the upper and lower middle portions of the walls and beams. Thus, the heat storage efficiency can be effectively improved.

【0020】[0020]

【実施例】次に実施例を説明する。Next, an embodiment will be described.

【0021】図1は多数の水槽1a〜1cから構成する
蓄熱槽1を示し、複数の水槽1a〜1cを列状に並べて
槽列Lを形成し、この槽列Lを複数列並設してある。
FIG. 1 shows a heat storage tank 1 composed of a large number of water tanks 1a to 1c. A plurality of water tanks 1a to 1c are arranged in a row to form a tank row L. is there.

【0022】同一槽列Lの水槽1a〜1cは、槽列Lの
一端側から他端側へ熱媒液としての貯留冷水Wを流動さ
せるように直列接続してあり、そして、これら槽列L
を、熱媒液送出路である冷水送出路2及び熱媒液還流路
である冷水還流路3に対して並列に接続してある。
The water tanks 1a to 1c of the same tank row L are connected in series so that stored cold water W as a heat transfer medium flows from one end of the tank row L to the other end thereof.
Are connected in parallel to a chilled water delivery path 2 which is a heating medium liquid delivery path and a chilled water reflux path 3 which is a heating medium liquid reflux path.

【0023】つまり、このように複数の槽列Lを冷水送
出路2及び冷水還流路3に対して並列に接続すること
で、多数の水槽1a〜1cの全てを冷水送出路2及び冷
水還流路3に対して直列に接続するに比して、蓄熱槽1
全体としての冷水流動抵抗を低減するとともに、蓄熱槽
1における冷水流動方向の上流端と下流端との間での水
位差を減少させるようにしてある。
That is, by connecting the plurality of tank rows L in parallel to the chilled water delivery path 2 and the chilled water return path 3 as described above, all of the large number of water tanks 1a to 1c are connected to the chilled water delivery path 2 and the chilled water return path. 3, the heat storage tank 1
The cold water flow resistance as a whole is reduced, and the water level difference between the upstream end and the downstream end of the heat storage tank 1 in the cold water flow direction is reduced.

【0024】図2に示すように、上記冷水送出路2は蓄
熱槽1における貯留冷水Wを空調機等の冷熱消費装置4
に給送する流路であり、また、冷水還流路3は冷熱消費
装置4で使用した冷水Wを蓄熱槽1に戻す流路である。
As shown in FIG. 2, the chilled water delivery path 2 is used to supply the chilled water W stored in the heat storage tank 1 to a chilled heat
The cold water recirculation path 3 is a flow path for returning the cold water W used in the cold heat consuming device 4 to the heat storage tank 1.

【0025】各槽列Lにおける水槽1a〜1cの形成構
造、及び、直列接続構造としては、貯留冷水Wの流動方
向で上流側(換言すれば高温冷水Wの貯留側)に位置し
て下端部に連通開口部5を形成する第1壁体6と、貯留
冷水Wの流動方向で下流側(換言すれば低温冷水Wの貯
留側)に位置して上端部に冷水溢水部7を形成する第2
壁体8とにより槽仕切り用の堰構造9を構成し、そし
て、この堰構造9を隣接水槽1a〜1c間に位置させ
て、各水槽1a〜1cを直列接続状態で仕切り形成して
ある。
The formation structure of the water tanks 1a to 1c in each tank row L, and the series connection structure, are located on the upstream side in the flowing direction of the stored cold water W (in other words, on the storage side of the high-temperature cold water W) and have a lower end. A first wall body 6 that forms a communication opening 5 with the first cooling water W, and a first water body 7 that is located downstream (in other words, the storage side of the low-temperature cold water W) in the flow direction of the stored cold water W and forms a cold water overflow section 7 at the upper end. 2
The wall 8 constitutes a weir structure 9 for partitioning the tank, and the weir structure 9 is positioned between the adjacent water tanks 1a to 1c, and the water tanks 1a to 1c are partitioned and formed in series.

【0026】また、各槽列Lにおける上流側端部の水槽
1aと冷水還流路3との接続構造、及び、各槽列Lにお
ける下流側端部の水槽1cと冷水送出路2との接続構造
については、冷水還流路3及び冷水送出路2の夫々にお
ける蓄熱槽接続部分をヘッダ構造3h,2hにより形成
し、そして、冷水還流路3におけるヘッダ構造3hと各
槽列Lにおける上流側端部の水槽1aとを単管10を介
して接続するとともに、冷水送出路2におけるヘッダ構
造2hと各槽列Lにおける下流側端部の水槽1cとを単
管11を介して接続してある。
The connection structure between the water tank 1a at the upstream end of each tank row L and the chilled water return passage 3 and the connection structure between the water tank 1c at the downstream end of each tank row L and the chilled water delivery path 2 With regard to the above, the heat storage tank connecting portions in each of the cold water return path 3 and the cold water delivery path 2 are formed by header structures 3h and 2h, and the header structure 3h in the cold water return path 3 and the upstream end of each tank row L The water tank 1a is connected via a single pipe 10, and the header structure 2h in the cold water delivery path 2 and the water tank 1c at the downstream end of each tank row L are connected via a single pipe 11.

【0027】各槽列Lにおける上流側端部の水槽1aに
おいて単管接続側には、前記の第2壁体8と同構成で上
端部に冷水溢水部12を形成する上流端壁体13を設け
てあり、また、各槽列Lにおける下流側端部の水槽1c
において単管接続側には、前記の第1壁体6と同構成で
下端部に連通開口部14を形成する下流端壁体15を設
けてある。
An upstream end wall 13 having the same configuration as the second wall 8 and forming a cold water overflow portion 12 at the upper end is provided on the single pipe connecting side of the water tank 1a at the upstream end of each tank row L. A water tank 1c at the downstream end of each tank row L
, A downstream end wall 15 having the same configuration as the first wall 6 and having a communication opening 14 at the lower end is provided on the single pipe connection side.

【0028】つまり、前記の堰構造9による水槽間仕切
り、並びに、端部水槽1a,1cにおける上記の上流端
壁体13及び下流端壁体15の配設により、図中矢印で
示す如く貯留冷水Wを流動させ、これによって、各水槽
1a〜1cにおける冷水貯留状態を温度成層状態に保ち
ながら、槽列Lの上流端と下流端との間で大きな冷水温
度差を維持するようにしてある。
That is, due to the partitioning of the water tank by the weir structure 9 and the arrangement of the upstream end wall 13 and the downstream end wall 15 in the end water tanks 1a and 1c, the stored cold water W is indicated by the arrow in the figure. Is caused to flow, thereby maintaining a large cold water temperature difference between the upstream end and the downstream end of the tank row L while keeping the cold water storage state in each of the water tanks 1a to 1c in a temperature stratified state.

【0029】冷水還流路3におけるヘッダ構造3hと各
槽列Lにおける上流側端部の水槽1aとを接続する単管
10の夫々には流量調整弁16及び流量計18を設けて
あり、また、冷水送出路2におけるヘッダ構造2hと各
槽列Lにおける下流側端部の水槽1cとを接続する単管
11の夫々には流量調整弁17を設けてあり(尚、図示
しないが、冷水送出路2側の接続端管11にも流量計1
8を付設することとしても良い)、流量計18による流
量計測に基づき各流量調整弁16,17により各槽列L
の冷水通水量を個別に調整する(本例では各槽列Lが互
いに同仕様であることに対し、各槽列Lの冷水通水量を
均等化する)ようにしてある。
A flow control valve 16 and a flow meter 18 are provided in each of the single pipes 10 connecting the header structure 3h in the cold water recirculation path 3 and the water tank 1a at the upstream end in each tank row L. Each of the single pipes 11 connecting the header structure 2h in the cold water delivery path 2 and the water tank 1c at the downstream end in each tank row L is provided with a flow control valve 17 (not shown, but a cold water delivery path). The flow meter 1 is also connected to the connection end pipe 11 on the second side.
8 may be attached), and based on the flow rate measurement by the flow meter 18, each tank row L is controlled by each of the flow control valves 16 and 17.
(In this example, the amount of cold water flowing through each tank row L is equalized while the tank rows L have the same specifications in this example).

【0030】複数の水槽1a〜1cを直列接続した槽列
Lの複数を冷水送出路2及び冷水還流路3に対して並列
接続する蓄熱槽構成とするにあたっては、槽列Lの並設
数を槽列Lにおける水槽1a〜1cの直列接続数よりも
大きくしてあり、これによって、蓄熱槽1における冷水
流動抵抗の低減、及び、蓄熱槽1における上流側端と下
流側端との水位差の減少をより効果的に達成するように
してある。
When a plurality of tank rows L in which a plurality of water tanks 1a to 1c are connected in series are connected in parallel to the chilled water delivery path 2 and the chilled water recirculation path 3, a heat storage tank configuration is required. The number of water tanks 1a to 1c in the tank row L is larger than the number of water tanks connected in series, thereby reducing the cold water flow resistance in the heat storage tank 1 and the difference in water level between the upstream end and the downstream end in the heat storage tank 1. The reduction is to be achieved more effectively.

【0031】また、各槽列Lにおける水槽1a〜1cの
直列接続数は3槽以上としてあり、冷水送出路2への冷
水送出や冷水還流路3からの冷水流入の影響を受けずに
冷水貯留状態が安定した水槽1bを各槽列Lの冷水流動
経路中間部に確保することで、蓄熱槽全体としての蓄熱
効率を高く維持するようにしてある。
The number of water tanks 1a to 1c connected in series in each tank row L is three or more, and cold water storage is performed without being affected by cold water delivery to the cold water delivery path 2 or cold water inflow from the cold water return path 3. By securing the water tank 1b in a stable state at the middle part of the cold water flow path of each tank row L, the heat storage efficiency of the entire heat storage tank is kept high.

【0032】図中19は冷凍機であり、この冷凍機19
の冷水吐出路20は前記の冷水送出路2に接続し、か
つ、冷凍機19への冷水戻し路21は前記の冷水還流路
3に接続してある。
In the figure, reference numeral 19 denotes a refrigerator.
The chilled water discharge path 20 is connected to the chilled water delivery path 2, and the chilled water return path 21 to the refrigerator 19 is connected to the chilled water return path 3.

【0033】つまり、蓄熱槽1に対する冷熱蓄熱運転時
には、各槽列Lにおいて冷水送出路2のヘッダ構造2h
から冷水還流路3のヘッダ構造3hへ向けて冷水Wを流
動させる形態で蓄熱槽1と冷凍機19との間で冷水循環
させて、冷凍機19による生成低温冷水Wを蓄熱槽1に
貯留する。
That is, at the time of cold heat storage operation for the heat storage tank 1, the header structure 2h of the cold water delivery path 2 in each tank row L
The cold water W is circulated between the heat storage tank 1 and the refrigerator 19 in the form of flowing the cold water W toward the header structure 3h of the cold water return path 3, and the low-temperature cold water W generated by the refrigerator 19 is stored in the heat storage tank 1. .

【0034】22は冷凍機19から吐出される低温冷水
Wの一部を冷水戻し路21へ合流させるバイパス路であ
り、この合流量を三方弁23により調整することで冷凍
機19への戻し冷水温度を所定の温度に調整する。
Reference numeral 22 denotes a bypass for joining a part of the low-temperature chilled water W discharged from the refrigerator 19 to the chilled water return passage 21, and adjusting the combined flow rate by the three-way valve 23 to return the chilled water to the refrigerator 19. Adjust the temperature to the desired temperature.

【0035】図中24、25は夫々、ポンプである。In the figures, 24 and 25 are pumps, respectively.

【0036】次に別実施例を列記する。Next, another embodiment will be described.

【0037】(イ)前述実施例においては冷水を貯留熱
媒液Wとしたが、熱媒液Wは温水、あるいは、水以外の
液体であってもよい。
(A) In the above-described embodiment, cold water is used as the stored heat medium liquid W. However, the heat medium liquid W may be hot water or a liquid other than water.

【0038】尚、先述の図1及び図2、又、後述の図
3、図4、図5の夫々において熱媒液Wの流れを示す矢
印は、熱媒液Wとして冷水を蓄熱槽1に貯留する形態に
おいて、その蓄熱槽1の蓄熱冷熱を取り出し消費する冷
熱消費運転時の流れ方向を示し、蓄熱槽1に冷熱を蓄熱
する冷熱蓄熱運転時には逆向きの流れ方向となるが、こ
れに対し、熱媒液Wとして温水を蓄熱槽1に貯留する形
態においては、蓄熱槽1の蓄熱温熱を取り出し消費する
温熱消費運転時の流れ方向は、冷水貯留形態における冷
熱消費運転時の流れ方向と逆向きとなり、又、蓄熱槽1
に温熱を蓄熱する温熱蓄熱運転時の流れ方向も冷水貯留
形態における冷熱蓄熱運転時の流れ方向と逆向きとな
る。
In each of FIGS. 1 and 2 described above and FIGS. 3, 4 and 5 described below, arrows indicating the flow of the heat medium liquid W indicate cold water as the heat medium liquid W in the heat storage tank 1. In the form of storage, the flow direction in the cold energy consumption operation in which the heat storage cold heat of the heat storage tank 1 is taken out and consumed is shown, and in the cold heat storage operation in which the cold heat is stored in the heat storage tank 1, the flow direction is opposite to the flow direction. In the mode in which hot water is stored in the heat storage tank 1 as the heat medium liquid W, the flow direction during the heat consumption operation in which the heat storage heat of the heat storage tank 1 is taken out and consumed is opposite to the flow direction during the cold heat consumption operation in the cold water storage mode. Orientation, and heat storage tank 1
The flow direction at the time of the heat storage operation in which the heat is stored is also opposite to the flow direction at the time of the cold heat storage operation in the cold water storage mode.

【0039】(ロ)槽列Lにおいて直列接続する液槽1
a〜1cの仕切り構造は種々の構成変更が可能であり、
図3に示す如く、上下中間部に連通開口部26を形成し
た第3壁体27を先述の第1壁体6と第2壁体8との間
に配した堰構造28をもって液槽1a〜1cを直列接続
状態で仕切り形成しても良く、この構造では、地下二重
スラブ構造における壁や梁を槽壁に利用して複数の液槽
を形成する場合、それら壁や梁に開口を形成することが
制限されるのに対し、それら壁や梁を第3壁体27とす
ることで、それら壁や梁に形成する開口を上下中間部の
連通開口部26だけとしながら、同一槽列Lにおける液
槽1a〜1c夫々で熱媒液Wを良好な温度成層状態で貯
留することができる。
(B) Liquid tanks 1 connected in series in the tank row L
Various configurations can be changed for the partition structures a to 1c.
As shown in FIG. 3, the liquid tanks 1 a to 3 have a weir structure 28 in which a third wall 27 having a communication opening 26 formed in the upper and lower middle part is disposed between the first wall 6 and the second wall 8. 1c may be partitioned in series connection state. In this structure, when a plurality of liquid tanks are formed by using the walls and beams in the underground double slab structure as tank walls, openings are formed in the walls and beams. However, by using the walls and beams as the third wall 27, the openings formed in the walls and beams are limited to the communication openings 26 at the upper and lower intermediate portions, and the same tank row L is formed. In each of the liquid tanks 1a to 1c, the heat medium liquid W can be stored in a good temperature stratified state.

【0040】また、図4に示す如く、先述の第1壁体6
のみをもって隣接液槽1a,1bを直列接続状態で仕切
り形成するとともに、隣の隣接液槽1b,1cを先述の
第2壁体8のみをもって直列接続状態で仕切り形成する
という形態で、第1壁体6と第2壁体8とを交互に使用
して液槽1a〜1cを直列接続状態で仕切り形成するよ
うにしてもよい。
As shown in FIG. 4, the first wall 6
The first wall is formed by partitioning the adjacent liquid tanks 1a and 1b in series connection with only the second wall body 8 and partitioning the adjacent liquid tanks 1b and 1c in series connection with only the second wall body 8 described above. The liquid tanks 1a to 1c may be partitioned and formed in series by using the bodies 6 and the second wall bodies 8 alternately.

【0041】(ハ)槽列Lにおける液槽1a〜1cの直
列接続数は3槽に限定されるものではなく、また、槽列
Lの並設数も前述実施例の並設数に限定されるものでは
ない。
(C) The number of liquid tanks 1a to 1c connected in series in the tank row L is not limited to three tanks, and the number of tank rows L arranged in parallel is also limited to the number of parallel arrangements in the above embodiment. Not something.

【0042】(ニ)図5に示すように、槽列Lの複数を
熱媒液送出路2及び熱媒液還流路3に対して並列接続し
た蓄熱槽構成1A,1Bの複数を、熱媒液送出路2ない
し熱媒液還流路3を兼用する状態で隣接配設してもよ
い。
(D) As shown in FIG. 5, a plurality of heat storage tank structures 1A and 1B in which a plurality of tank rows L are connected in parallel to a heat medium liquid delivery path 2 and a heat medium liquid return path 3 are connected to a heat medium tank. The liquid delivery path 2 and the heat medium liquid return path 3 may be provided adjacent to each other while also serving as the same.

【0043】(ホ)各槽列Lに対する熱媒液流通量を個
別に調整する流量調整弁に自動定流量弁を採用してもよ
く、この場合、人為の弁操作を不要にしながら、各槽列
Lの熱媒液流通量を各槽列Lの槽容積に応じた流量に調
整して、その調整流量を熱媒液流動抵抗の変化などにか
かわらず維持することができる。
(E) An automatic constant flow valve may be used as a flow control valve for individually adjusting the flow rate of the heat medium liquid to each of the tank rows L. The flow rate of the heat medium liquid in the row L can be adjusted to a flow rate corresponding to the tank volume of each tank row L, and the adjusted flow rate can be maintained regardless of a change in the flow resistance of the heat medium liquid.

【0044】(ヘ)熱媒液送出路2、及び、熱媒液還流
路3夫々の流路構造は種々の構成変更が可能である。
(F) Various configurations can be changed for the flow path structure of the heat medium liquid delivery path 2 and the heat medium liquid return path 3.

【0045】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明が添
付図面の構成に限定されるものではない。
Incidentally, reference numerals are provided in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】平面図FIG. 1 is a plan view

【図2】槽列縦断面図FIG. 2 is a vertical sectional view of a tank row.

【図3】別実施例を示す槽列縦断面図FIG. 3 is a vertical sectional view of a tank row showing another embodiment.

【図4】別実施例を示す槽列縦断面図FIG. 4 is a vertical sectional view of a tank row showing another embodiment.

【図5】別実施例を示す平面図FIG. 5 is a plan view showing another embodiment.

【図6】従来例を示す平面図FIG. 6 is a plan view showing a conventional example.

【符号の説明】[Explanation of symbols]

1a,1b,1c 液槽 2 熱媒液送出路 3 熱媒液還流路 L 槽列 W 熱媒液 16,17 流量調整弁 5 連通開口部 6 第1壁体 7 熱媒液溢液部 8 第2壁体 26 連通開口部 27 第3壁体 28 堰構造 1a, 1b, 1c Liquid tank 2 Heat medium liquid delivery path 3 Heat medium liquid return path L Tank line W Heat medium liquid 16, 17 Flow control valve 5 Communication opening 6 First wall 7 Heat medium liquid overflow 8 2 wall body 26 communication opening 27 third wall body 28 weir structure

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−85642(JP,A) 特開 平3−255831(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 5/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-85642 (JP, A) JP-A-3-255831 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F24F 5/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱媒液(W)を貯留する液槽(1a),
(1b),(1c)の複数を列状に並べて槽列(L)を
形成し、 この槽列(L)を複数列並設し、 同一槽列(L)の前記液槽(1a),(1b),(1
c)を、槽列(L)の一端側から他端側へ熱媒液流動さ
せるように直列に接続し、 それら槽列(L)を熱媒液送出路(2)及び熱媒液還流
路(3)に対して並列に接続してある蓄熱槽であって、 各槽列(L)に対する熱媒液流通量を個別に調整する流
量調整弁(16),(17)を設けてある 蓄熱槽。
1. A liquid tank (1a) for storing a heat medium (W),
A plurality of tanks (1b) and (1c) are arranged in a row to form a tank row (L). A plurality of the tank rows (L) are arranged in parallel, and the liquid tanks (1a), (1b), (1
c) are connected in series so that the heat medium flows from one end of the tank row (L) to the other end, and the tank rows (L) are connected to the heat medium liquid delivery path (2) and the heat medium liquid return path. A heat storage tank connected in parallel to (3) , wherein the flow of the heat medium liquid flowing through each tank row (L) is individually adjusted.
A heat storage tank provided with quantity regulating valves (16) and (17) .
【請求項2】 前記流量調整弁(16),(17)に自
動定流量弁を用いてある請求項1記載の蓄熱槽。
2. The flow control valve (16), (17)
2. The heat storage tank according to claim 1, wherein a variable flow rate valve is used .
【請求項3】 高温熱媒液の貯留側に位置して下端部に
連通開口部(5)を形成する第1壁体(6)と、低温熱
媒液の貯留側に位置して上端部に熱媒液溢液部(7)を
形成する第2壁体(8)と、上下中間部に連通開口部
(26)を形成した状態で前記第1壁体(6)と前記第
2壁体(7)との間に位置させる第3壁体(27)とで
槽仕切り用の堰構造(28)を構成し、 この堰構造(28)を同一槽列(L)における隣接液槽
(1a),(1b),(1c)間に配設して、同一槽列
(L)における複数の液槽(1a),(1b),(1
c)を直列接続状態で仕切り形成してある 請求項1又は
2記載の蓄熱槽。
3. A high temperature heat transfer medium storage side which is located at a lower end thereof.
A first wall (6) forming a communication opening (5), and a low-temperature heat
A heating medium overflowing portion (7) is located at the upper end of the storage medium storage side.
A second wall body (8) to be formed, and a communication opening in an upper and lower middle part
With the (26) formed, the first wall (6) and the
With the third wall (27) located between the two walls (7)
A weir structure (28) for tank partitioning is formed, and this weir structure (28) is connected to an adjacent liquid tank in the same tank row (L).
(1a), (1b) and (1c)
The plurality of liquid tanks (1a), (1b), (1) in (L)
3. The heat storage tank according to claim 1, wherein c) is partitioned in a series connection state .
JP3060644A 1991-03-26 1991-03-26 Thermal storage tank Expired - Fee Related JP3072138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3060644A JP3072138B2 (en) 1991-03-26 1991-03-26 Thermal storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3060644A JP3072138B2 (en) 1991-03-26 1991-03-26 Thermal storage tank

Publications (2)

Publication Number Publication Date
JPH04295528A JPH04295528A (en) 1992-10-20
JP3072138B2 true JP3072138B2 (en) 2000-07-31

Family

ID=13148244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3060644A Expired - Fee Related JP3072138B2 (en) 1991-03-26 1991-03-26 Thermal storage tank

Country Status (1)

Country Link
JP (1) JP3072138B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600918B2 (en) * 2009-10-02 2014-10-08 株式会社大林組 Continuous heat storage tank
JP5341008B2 (en) * 2010-04-15 2013-11-13 エスペック株式会社 COOLING DEVICE AND ENVIRONMENTAL TEST DEVICE HAVING THE SAME
DK3245388T3 (en) * 2015-03-20 2020-02-24 Siemens Gamesa Renewable Energy As Heat energy storage system and method of operating a heat energy storage system

Also Published As

Publication number Publication date
JPH04295528A (en) 1992-10-20

Similar Documents

Publication Publication Date Title
CN101842643B (en) Hot water supply system
US4522254A (en) Heat storage trough
US4406136A (en) Heating installation notably for space heating and for sanitary hot water production
JP3072138B2 (en) Thermal storage tank
JPS6193387A (en) Heat exchanger
CN207816043U (en) Heat transmission equipment, heat pump water heater system, home-use shower system and bathroom
JPH08261691A (en) Heat exchanger
JPS62223975A (en) Heat exchanger of fuel cell
JPS5921930A (en) Heat storage tank
CN208567584U (en) Gas heater for the heat exchanger and application of the gas heater exchanger
JP6246038B2 (en) Heat source equipment
JP6209111B2 (en) Heat source equipment
JP2013064569A (en) Plate fin type heat exchanger and its control method
CN219977193U (en) Cold and hot energy storage rapid temperature homogenizing device
JP3089051B2 (en) Thermal storage tank equipment
JP3578973B2 (en) Thermal storage tank
JP2596674B2 (en) Thermal storage method and apparatus using both water tank and ice tank
JP4588845B2 (en) Thermal storage tank and thermal storage system
CN215372958U (en) Plate water exchange path system of gas heating water heater and gas heating water heater
JPH0152661B2 (en)
CN115727386B (en) Solid sensible heat storage peak regulation heating system and demand response regulation and control method
JPS6214062B2 (en)
JPS5923973Y2 (en) Temperature stratification type heat storage tank device
JPH0343549Y2 (en)
JPS581338B2 (en) Heat storage tank for heating and cooling

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees