JPH06316425A - Light-transmitting block - Google Patents

Light-transmitting block

Info

Publication number
JPH06316425A
JPH06316425A JP12819293A JP12819293A JPH06316425A JP H06316425 A JPH06316425 A JP H06316425A JP 12819293 A JP12819293 A JP 12819293A JP 12819293 A JP12819293 A JP 12819293A JP H06316425 A JPH06316425 A JP H06316425A
Authority
JP
Japan
Prior art keywords
light
silica glass
treated
liquid
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12819293A
Other languages
Japanese (ja)
Other versions
JP3006702B2 (en
Inventor
Hiroshi Kimura
博至 木村
Shinji Hashiya
信治 橋谷
Hideo Ito
秀夫 伊藤
Yoshihiro Tsuchiyama
良博 土山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP12819293A priority Critical patent/JP3006702B2/en
Publication of JPH06316425A publication Critical patent/JPH06316425A/en
Application granted granted Critical
Publication of JP3006702B2 publication Critical patent/JP3006702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/08Other methods of shaping glass by foaming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Water Treatments (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To widely transmit and diffuse UV and disperse and fluidize a material to be treated over the whole region of a beam by forming a specified silica glass body with a communicating porous body. CONSTITUTION:The fine powder of hot vapor-phase process high-purity amorphous silica glass contg. <=0.5ppm of metallic impurities is previously heat- treated for about 4hr in a gaseous NH3 and N2 atmosphere at 850 deg.C, the treated fine powder is filled in a carbon crucible, heated at 10-2Torr and 1650-1700 deg.C for about 120min, fused and foamed to obtain a silica glass foamed body consisting of many closed cells and having 0.1-0.4g/cm<3> density. The foamed body is dipped in a 10-50% aq. hydrofluoric acid for about 10min to obtain a quartz glass open cell foamed body in which >=30% of all the cells consist of an open cell 11. The obtained foamed body is ground to a specified size to obtain a silica glass body capable of uniformly transmitting and diffusing an irradiating light 10 from a UV lamp 1 passed through a quartz glass tube 4 and contg. >=70% SiO2, and a light-transmitting block 3 consisting of the porous body capable of dispersing and fluidizing a liq. 9 to be treated over the whole region of a beam is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽光、ランプ光、特
に紫外線の照射により汚泥、海水、室内雰囲気等気体又
は液体の被処理物の殺菌や光合成及びクロレラ等の生物
の培養等を行なう装置に使用する光透過ブロック体に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention sterilizes a gas or liquid object to be treated such as sludge, seawater or indoor atmosphere by irradiating it with sunlight, lamp light, especially ultraviolet rays, culturing organisms such as photosynthesis and chlorella. The present invention relates to a light transmission block body used in an apparatus.

【0002】[0002]

【従来の技術】従来から、ランプ光を使用した、殺菌な
いし、細菌の増殖を抑制するとともに抗菌類の育成する
等の装置がある。しかしこれらの装置には下記のような
問題点がある。例えば紫外線を照射するUVランプを使
用して汚水の殺菌処理をする場合、被処理液である汚泥
が濁っているため紫外線の透過性が悪いことにより、ラ
ンプ周辺部位の被処理液に対する殺菌は出来るが、ラン
プより遠く離れた部位にある被処理液にまで前記紫外線
が届かなく、殺菌効率は非常に低いものになる。また、
プール等の藻を殺すのにUVランプを使用する場合、ラ
ンプ表面の藻は殺せるが、該表面より離れた外側に近い
部位の藻は殺せなく流れ去ってしまうといった非効率的
な現象がまま見受けられている。
2. Description of the Related Art Conventionally, there are devices that use lamp light to sterilize or suppress the growth of bacteria and grow antibacterial substances. However, these devices have the following problems. For example, when sterilizing sewage using a UV lamp that radiates ultraviolet rays, the liquid to be treated around the lamp can be sterilized because the sludge, which is the liquid to be treated, is turbid and the permeability to ultraviolet rays is poor. However, the ultraviolet rays do not reach the liquid to be treated, which is located far from the lamp, and the sterilization efficiency is very low. Also,
When a UV lamp is used to kill algae such as pools, the algae on the surface of the lamp can be killed, but the inefficient phenomenon that the algae near the outside of the surface of the lamp can flow away without being killed. Has been.

【0003】これらの紫外線による処理方法には水及び
液体即ち被処理液を流しながら外部から光を照射する外
照式と、石英ガラス保護管で包んだ二重管形式の殺菌ラ
ンプを前記被処理液中に入れて内部から照射する内照式
に大別されるが、前記殺菌効率を上げるため、内照式流
水殺菌装置が多用されている。上記内照式流水処理装置
の概略の構造は、図4に示すように、流水路を形成する
細長円筒状外筒20の軸芯部位に同心円筒状の水密空間
を形成す内筒21を設け、該内筒内に紫外線ランプ22
を内蔵する構成としてある。前記紫外線ランプは25
3.7nmを中心波長とする紫外線を照射し、この波長
をよく透過させる石英もしくは紫外線透過ガラスで照射
部が防水型に構成されている。また、前記内筒21の材
質は、石英、弗素樹脂、紫外線透過ガラス何れかで構成
されている。また、前記外筒20は、紫外線反射率が大
なる内面を有する金属容器で構成されている。
These treatment methods using ultraviolet rays include an external illumination type in which water and a liquid, that is, a liquid to be treated are radiated from the outside, and a double-tube type germicidal lamp wrapped in a quartz glass protective tube. It is roughly classified into an internal illumination type in which it is placed in a liquid and irradiated from the inside. However, in order to improve the sterilization efficiency, an internal illumination type running water sterilizer is often used. As shown in FIG. 4, a schematic structure of the internal illumination type running water treatment device is such that an inner cylinder 21 forming a concentric cylindrical watertight space is provided at an axial center portion of an elongated cylindrical outer cylinder 20 forming a flowing water channel. , The UV lamp 22 in the inner cylinder
Is built in. The UV lamp is 25
The irradiation part is made of a waterproof type by irradiating an ultraviolet ray having a center wavelength of 3.7 nm, and by making quartz or an ultraviolet transmitting glass which transmits this wavelength well. The material of the inner cylinder 21 is made of any one of quartz, fluororesin, and ultraviolet transparent glass. The outer cylinder 20 is composed of a metal container having an inner surface having a high ultraviolet reflectance.

【0004】[0004]

【発明が解決しようとする課題】上記構成においては、
流水路にある被処理液に対し十分な紫外線を照射すべく
内筒には紫外線透過率の高い材料を使用し、外筒内面に
は反射率の高い素材を使用する配慮はされているが、照
射された紫外線が被処理液の混濁の如何を問わず遠隔部
位まで到達させる特別の手段がないため、殺菌効率を上
げるためには外筒と内筒との間に形成される被処理液の
流路の断面幅をなるべく小さく設定する必要がある。結
局処理能力を大にするためには、細長の長尺処理装置を
多数本持つ構造にせざるを得ない状況にあり、コスト高
と設備の大型化につながるものである。
In the above configuration,
In order to radiate sufficient ultraviolet rays to the liquid to be treated in the running water channel, it is considered to use a material with high ultraviolet transmittance for the inner cylinder and a material with high reflectance for the inner surface of the outer cylinder. Since there is no special means for the irradiated ultraviolet rays to reach a remote site regardless of the turbidity of the liquid to be treated, in order to improve the sterilization efficiency, the liquid to be treated formed between the outer cylinder and the inner cylinder is It is necessary to set the cross-sectional width of the channel as small as possible. After all, in order to increase the processing capacity, there is no choice but to have a structure having a large number of elongated long processing devices, which leads to high cost and large equipment.

【0005】本発明は、上記事項に鑑みなされたもの
で、ランプ光特に紫外線の透過拡散が広い範囲にわたり
可能であるとともに、被処理液に対しは前記紫外線の透
過拡散する全領域に亙り、細分された状態で分散流動し
て前記紫外線の照射を受けるようにした光透過ブロック
体の提供を目的とするものである。
The present invention has been made in view of the above matters, and is capable of transmitting and diffusing lamp light, in particular, ultraviolet light over a wide range, and is finely divided into a liquid to be treated over the entire region in which the ultraviolet light is transmitted and diffused. The object of the present invention is to provide a light-transmissive block which is dispersed and fluidized in the above-mentioned state to receive the irradiation of the ultraviolet rays.

【0006】[0006]

【課題を解決するための手段】本発明はかかる技術的課
題を達成するために、流水殺菌等に使用される光透過ブ
ロック体において、該ブロック体を、ランプ光即ち紫外
線を広い範囲に亙り透過拡散させるために、無数の気泡
を内蔵する石英ガラス発泡体より構成し、また、被処理
液を紫外線の透過拡散する全領域に亙り、被処理液を細
分化するとともに分散流動させて、前記細分された状態
で紫外線の照射を受けさせるために、前記発泡体を連通
気泡により構成することを特徴としたものである。前記
光透過ブロック体の製造は、熱気相法又はゾルゲル法に
よる高純度シリカガラス微粉をアンモニアガス雰囲気内
で熱処理をし、ついで所要形状寸法のカーボン等枠体中
において熱融着発泡処理をして独立気泡発泡体を形成さ
せ、更に、該発泡体を弗酸溶液による浸漬処理により石
英ガラス連通発泡体を構成させ、必要により所要のブロ
ック形状加工を施すことにより光透過ブロック体を得る
ようにしたものである。
In order to achieve the above technical object, the present invention provides a light transmitting block body used for sterilization with running water, for transmitting the lamp light, that is, the ultraviolet ray over a wide range. In order to diffuse, it is composed of a quartz glass foam containing innumerable bubbles, and the liquid to be treated is spread over the entire region where ultraviolet rays permeate and diffuse, and the liquid to be treated is subdivided and dispersed to flow, and In order to receive the irradiation of ultraviolet rays in the above-mentioned state, the foamed body is constituted by communicating cells. The production of the light-transmitting block body is performed by heat-treating high-purity silica glass fine powder by a hot-gas phase method or a sol-gel method in an atmosphere of ammonia gas, and then performing a heat-sealing foaming treatment in a frame such as carbon of a required shape and dimension. A closed-cell foam was formed, and the foam was further subjected to a dipping treatment with a hydrofluoric acid solution to form a quartz glass continuous foam, and if necessary, a block-shaped processing was performed to obtain a light-transmitting block. It is a thing.

【0007】[0007]

【作用】上記技術手段により、光透過ブロック体を高純
度石英ガラス微粉を用い、減圧下のもとに、形成された
シリカガラス発泡体より構成したため、ランプ光からの
光即ち紫外線は、紫外線透過率の良好な70%以上のS
iO2 からなるシリカガラス体により前記ブロック体の
隅々まで広く均一に透過拡散し、該ブロック体内に内蔵
する連通気泡を包み込むようにして、均質な光を前記気
泡内に向け照射して、広い光照射領域を形成させること
が出来る。また、前記発泡体が連通気泡により構成され
ているため、被処理液は、前記ランプ光より透過拡散さ
れた光照射領域の全領域にわたり、前記連通気泡により
形成された分散流動路を介して、細分化されながら隅々
まで一方より他方へ流動して、流動する間に前記気泡の
外面より前記照射光を受け、効率のよい殺菌処理や育成
処理を受けることが出来る。
By the above technical means, the light transmission block body is made of silica glass foam formed under the reduced pressure by using high-purity silica glass fine powder. Therefore, the light from the lamp light, that is, the ultraviolet light, transmits the ultraviolet light. 70% or more S with good rate
The silica glass body made of io 2 spreads and diffuses widely and evenly to every corner of the block body, wraps the communication bubbles contained in the block body, and irradiates homogeneous light into the bubbles to form a wide range. A light irradiation area can be formed. Further, since the foam is composed of communicating bubbles, the liquid to be treated is over the entire area of the light irradiation region that is transmitted and diffused from the lamp light, through the dispersion flow path formed by the communicating bubbles, While being subdivided, it flows from one side to the other in every corner, and while flowing, receives the irradiation light from the outer surface of the bubbles, and can be subjected to efficient sterilization treatment and growth treatment.

【0008】[0008]

【実施例】以下、図面を参照して本発明の好適な実施例
を例示的に詳しく説明する。但しこの実施例に記載され
ている構成部品の寸法、材質、形状、その相対的配置等
は特に特定的な記載がないかぎりは、この発明の範囲を
それに限定する趣旨ではなく、単なる説明例にすぎな
い。先ず、光透過ブロック体の製造方法を説明する。光
透過ブロック体を構成する石英ガラス連通発泡体は下記
のようにして得られる。先ず、所要の形状寸法より少し
大きめのカーボン製坩堝(但し中子に相当する部分は小
さめにする)内に、各金属不純物が0.5ppm以下で
ある熱気相法高純度非晶質シリカガラス微粉を予め85
0℃のアンモニアガス+窒素ガス雰囲気内で4時間程熱
処理した前記石英ガラス微粉を充填し、減圧雰囲気(1
0-2tor)で1650〜1700℃にて120min
加熱処理して前記石英ガラス微粉を融着発泡させ、多数
の独立気泡よりなる密度0.1〜0.4g/cm3 のシ
リカガラス発泡体を得る。ついで、上記して得られた石
英ガラス発泡体を弗酸10〜50%の溶液中に約10m
in程度浸漬することにより、下部に沈澱した状態の全
気泡の30%以上が連通気泡である石英ガラス連通発泡
体が得られる。斯くして得られた連通発泡体を所定寸法
に研削すれば所要の光透過ブロック体を得ることが出来
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be exemplarily described in detail below with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Only. First, a method of manufacturing the light transmission block body will be described. The quartz glass continuous foamed material forming the light transmission block is obtained as follows. First, in a carbon crucible that is slightly larger than the required shape size (however, the portion corresponding to the core is made smaller), the amount of each metal impurity is 0.5 ppm or less. 85 in advance
The silica glass fine powder that had been heat-treated for 4 hours in an atmosphere of ammonia gas and nitrogen gas at 0 ° C. was filled, and a reduced pressure atmosphere (1
0-2 torr) at 1650-1700 ° C for 120 min
The silica glass fine powder is fused and foamed by heat treatment to obtain a silica glass foam having a density of 0.1 to 0.4 g / cm3, which is composed of a large number of closed cells. Then, the quartz glass foam obtained above was added to a solution of 10 to 50% hydrofluoric acid for about 10 m.
By immersing it in about in, a quartz glass open-cell foam can be obtained in which 30% or more of all the open-air precipitated cells are open cells. The required light-transmitting block can be obtained by grinding the thus-obtained communicating foam to a predetermined size.

【0009】斯かる技術手段により得られれた光透過ブ
ロック体は、その内部に石英ガラス薄膜が縦横に張りめ
ぐらされ、お互いに連なり合った連通気泡を内蔵する連
通気泡発泡体が形成されている。然も前記薄膜は紫外線
から可視光及び赤外線の広範囲にわたり高い透過率を持
つシリカガラスで構成されている。一方殺菌に必要な紫
外線は200〜300nmの波長帯が最もよく使用され
ているため、汚泥、海水等の流水殺菌等に使用されるラ
ンプ光から照射される紫外線は、たとえ照射源が単一で
あっても当該光ブロック体に対し、の広範囲にわたる透
過、屈折、反射を繰り返して拡散し、均一な光照射領域
を形成することになる。また、前記所定寸法の形状に研
削加工された光透過ブロック体の研削面には、諸々に前
記連通気泡の裁断部が露出されて外界と連通状態にあ
り、当該ブロック体に内蔵されている無数の連通気泡は
お互いに連通状態にある。そのため、例えば光透過ブロ
ック体の片面に被処理液を充填した場合、被処理液は前
記研削面に露出した裁断状態にある連通気泡と以下それ
に連なる連通気泡を介して、細かく細分された状態で前
記均一光照射領域に分散流動して、各連通気泡の内面で
その外側を取り巻く照射光による所定の殺菌等の処理を
受け、反対側に流出する。即ち一つの照射源でも広範囲
にわたり多量の被処理液を効率よく処理することが出来
る。また、上記光透過ブロック体は前記のように、各金
属不純物の含有量を0.5ppm以下に押さえてあるた
めに高いエネルギーの光線にて長時間使用しても変形や
マイクロクラックを起こすことがない。然も、石英ガラ
スは化学的安定性が高く且つ腐食を生じる余地がないた
め、その耐久性は非常に高いものとなるだけでなく耐熱
性も耐熱性も高い為、高温の処理と並用も可能である。
また、前記発泡処理を受けた光透過ブロック体を構成す
る石英ガラス連通発泡体は、表面が滑らかな内蔵する気
泡を連通化したので、被処理液に対し円滑な流動を可能
にしている。また、光源よりの照射光は広範囲にわた
り、透過拡散して均一な光照射領域を形成するため、内
照式、外照式の如何を問わず使用できる。
The light-transmitting block obtained by such a technical means has a quartz glass thin film stretched vertically and horizontally inside thereof to form an interconnected cell foam containing interconnected cells interconnected with each other. Of course, the thin film is made of silica glass having a high transmittance over a wide range from ultraviolet rays to visible rays and infrared rays. On the other hand, the ultraviolet rays required for sterilization are most often used in the wavelength range of 200 to 300 nm, so the ultraviolet rays emitted from the lamp light used for sterilizing running water such as sludge and seawater can be emitted from a single irradiation source. Even if there is, the light block body is repeatedly diffused, transmitted, refracted, and reflected over a wide range to form a uniform light irradiation region. In addition, on the ground surface of the light-transmitting block body that has been ground into the shape of the predetermined size, the cutting portions of the communication bubbles are exposed in various ways and are in communication with the outside world. The communication bubbles of are in communication with each other. Therefore, for example, when one surface of the light transmission block is filled with the liquid to be treated, the liquid to be treated is divided into finely subdivided states through the communicating bubbles in the cut state exposed on the grinding surface and the following communicating bubbles. The particles are dispersed and flown in the uniform light irradiation region, undergo a predetermined treatment such as sterilization by the irradiation light surrounding the outer side of each communicating bubble, and flow out to the opposite side. That is, a single irradiation source can efficiently process a large amount of liquid to be processed over a wide range. Further, as described above, since the content of each metal impurity is suppressed to 0.5 ppm or less, the light transmission block body may be deformed or cause microcracks even when used for a long time with a high energy light beam. Absent. However, because quartz glass has high chemical stability and no room for corrosion, it not only has extremely high durability, but also has high heat resistance and heat resistance, so it can be used at the same time as high-temperature treatment. Is.
Further, since the silica glass communication foam that constitutes the light-transmitting block that has been subjected to the foaming process has the built-in bubbles having a smooth surface communicated with each other, it enables a smooth flow to the liquid to be treated. Further, since the irradiation light from the light source is transmitted and diffused over a wide range to form a uniform light irradiation area, it can be used regardless of whether it is an internal illumination type or an external illumination type.

【0010】前記石英ガラス連通発泡体の前身である独
立気泡発泡体の生成過程におけるアンモニアガスによる
熱処理の代わりに、カーボンと酸化剤や金属炭酸塩のよ
うに高温で反応、分解してガス化する発泡剤を石英ガラ
ス微粉に混入し、高温で発泡させることによっても同様
な70%以上のSiO2 からなるシリカガラス発泡体を
得ることが出来るが、発泡剤が残留しやすく、使用中被
処理液に混入することも考えられまた残留不純物による
シリカガラスの耐久性の低下が有り使用目的によっては
問題があるため、望ましくはアンモニアガスを使用した
高純度のシリカガラス発泡体の発泡方法が望ましい。ま
た、また、焼結タイプに見られる連通型多孔スタイルや
パイレックスやバイコールのようにガラスを作るときボ
ロン系のガラスを析出して酸で洗って連通化させる場合
の連通部分は、トンネル状で本発明の石英ガラス連通発
泡体に見るようなセル状の連結部を形成していなく、こ
の点から見ても上記他の連通型に比較して石英ガラス連
通発泡体よりなる光透過ブロック体は広い処理面積を形
成して、被処理液に対する処理効率は格段に高いものと
言える。
Instead of heat treatment with ammonia gas in the process of forming the closed-cell foam, which is the predecessor of the quartz glass continuous foam, carbon and an oxidizing agent or a metal carbonate react and decompose at high temperature to be gasified. A similar silica glass foam made of 70% or more of SiO 2 can be obtained by mixing the foaming agent into fine quartz glass powder and foaming at a high temperature, but the foaming agent tends to remain and the liquid to be treated during use It is also considered that the silica glass may be mixed into the silica glass, and the durability of the silica glass is deteriorated due to residual impurities, which causes a problem depending on the purpose of use. In addition, when making glass like Pyrex or Vycor, which is the continuous porous type found in the sintered type, when the boron-based glass is deposited and washed with acid to make the communication, the communication part is tunnel-shaped. The cell-shaped connecting portion as in the quartz glass continuous foam of the invention is not formed, and from this point as well, the light transmission block body made of the quartz glass continuous foam is wider than the other communication types described above. It can be said that a treatment area is formed and the treatment efficiency for the liquid to be treated is remarkably high.

【0011】図1は、UVランプを使用した処理装置に
本発明の光透過ブロック体を装着した状況を示す縦断面
図である。図に示すように、外筒管2内の中央軸芯部に
UVランプ1を設け、該UVランプ1の石英ガラス管4
の外側表面に密着させるようにした石英ガラス連通気泡
発泡体よりなる光透過ブロック体3を前記外筒管2に内
蔵させるように構成する。処理液は右端上部より投入さ
れ、前記光透過ブロック体3の連通気泡を介して投入即
外筒管2の全断面より分散流入が出来るように構成す
る。また、図2には、縦型水銀ランプを使用した処理装
置に本発明の光透過ブロック体を装着した状況を示す断
面図が示されている。この場合は、容器7内の中央部位
に、該容器の幅方向に嵌装された角型の前記光透過ブロ
ック体6を設け、該ブロック体6の中央部位に縦型水銀
ランプ5を挿設する構成とし、処理液である細菌性汚泥
を右端下部より投入し、前記光透過ブロック体6の幅方
向の全域に亙り流入され、投入即連通気泡を介して分散
流動できるように構成し、左端上部より清澄液が排出さ
れるようにしてある。
FIG. 1 is a longitudinal sectional view showing a state in which the light transmission block body of the present invention is mounted on a processing apparatus using a UV lamp. As shown in the figure, a UV lamp 1 is provided on the central axis of an outer tube 2, and a quartz glass tube 4 of the UV lamp 1 is provided.
A light transmitting block body 3 made of a quartz glass open-cell foam is made to be closely attached to the outer surface of the outer cylindrical tube 2. The treatment liquid is introduced from the upper right end and is configured so that the treatment liquid can be dispersed and flowed in from the entire cross section of the outer cylindrical tube 2 immediately after being introduced through the communication bubbles of the light transmission block body 3. Further, FIG. 2 is a sectional view showing a state in which the light transmission block body of the present invention is mounted on a processing device using a vertical mercury lamp. In this case, the rectangular light-transmitting block body 6 fitted in the width direction of the container is provided in the central portion of the container 7, and the vertical mercury lamp 5 is inserted in the central portion of the block member 6. It is configured such that bacterial sludge as a treatment liquid is thrown in from the lower right end, is flowed over the entire area of the light transmission block body 6 in the width direction, and can be dispersed and flowed immediately after being put in through the communicating bubbles, and the left end The clear liquid is discharged from the upper part.

【0012】図3には図1のA部拡大断面図が示され、
特に光透過ブロック体3におけるランプ光の透過拡散の
状況と、被処理液の流動の状況が示され、図に見るよう
に、UVランプ1からの光透過ブロック体3への入射す
る照射光は実線矢印に示すように、石英ガラス管4を経
て前記光透過ブロック体3の連通気泡11の間隙を縫っ
て、屈折、反射を繰り返し下方へ拡散透過して均一且つ
広範囲にわたる光照射領域を形成している。また、前記
照射光は、前記拡散の過程で各連通気泡を包み込むよう
にして、該気泡内面に向け均質な光を照射してそれぞれ
の連通気泡11において該気泡内を流動する被処理液に
対し均一且つ広い光照射領域を形成している。一方、被
処理液は、点線矢印に示すように右端上部より投入さ
れ、爾後光透過ブロック体3の連通気泡11の外部露出
裁断部より該気泡内に入り逐次隣接する連通気泡を経由
して左端へ細分化された状態で分散流動する。その流動
の過程において被処理液は気泡内壁で前記照射光を全面
に受け効率の良い紫外線による処理を受ける。尚、本発
明による光透過ブロック体は、その内部に紫外、可視、
赤外を問わずに広範囲に渡り、高い光透過率と分散効果
を持った連通気泡を構成するシリカガラス薄膜を有する
ので、当然のごとく透過光と気体又は液体の処理物質を
幅広く選択することにより光線を必要とするクロレラ等
の微生物の効率的な培養や高いエネルギーの光による光
合成にも幅広く利用できるものであることは言うまでも
ない。
FIG. 3 is an enlarged sectional view of the portion A of FIG.
In particular, the situation of transmission / diffusion of the lamp light in the light transmission block body 3 and the situation of the flow of the liquid to be treated are shown, and as shown in the figure, the irradiation light incident on the light transmission block body 3 from the UV lamp 1 is As shown by the solid line arrow, the space between the communicating bubbles 11 of the light transmitting block body 3 is sewn through the quartz glass tube 4, and refraction and reflection are repeated to diffuse and transmit downward to form a uniform and wide light irradiation region. ing. Further, the irradiation light irradiates a uniform light toward the inner surface of the communication bubble so as to wrap each communication bubble in the diffusion process, and the irradiation liquid is applied to the liquid to be treated flowing in the communication bubble 11 in each communication bubble 11. A uniform and wide light irradiation area is formed. On the other hand, the liquid to be treated is introduced from the upper part of the right end as shown by the dotted line arrow, enters into the bubble from the external exposure cutting portion of the communicating bubble 11 of the post-light transmission block 3, and successively passes through the adjacent communicating bubble to the left end. Disperse and flow in the state of being subdivided. In the process of the flow, the liquid to be treated receives the irradiation light all over the inner wall of the bubble and is subjected to the treatment with the efficient ultraviolet rays. Incidentally, the light transmission block according to the present invention, inside the ultraviolet, visible,
Since it has a silica glass thin film that forms a communicating bubble with a high light transmittance and dispersion effect over a wide range regardless of infrared, naturally it is possible to select a wide range of transmitted light and gas or liquid processing substances. It goes without saying that it can be widely used for efficient culture of microorganisms such as chlorella that require light rays and photosynthesis with high-energy light.

【0013】[0013]

【発明の効果】以上、記載した如く本発明によれば、太
陽光、ランプ光等の光の均一な透過拡散が広い範囲にわ
たり可能になり、気体又は液体の被処理物は前記光の照
射を浴びながら、光透過ブロック体の内蔵する連通気泡
を介して、一方より他方へ分散流動し、その流動過程に
おいて通過する無数の気泡群の各気泡内面において均質
な光照射を受け広い照射表面を形成されて、高効率の光
による処理を受けることが出来る。
As described above, according to the present invention, it is possible to uniformly transmit and diffuse light such as sunlight and lamp light over a wide range, and a gas or liquid object to be processed is irradiated with the light. While bathing, it diffuses and flows from one side to the other via the communication bubbles contained in the light-transmitting block body, and receives a uniform light irradiation on the inside surface of each of the countless bubbles passing through the flow process to form a wide irradiation surface. Therefore, it is possible to receive the treatment by the highly efficient light.

【図面の簡単な説明】[Brief description of drawings]

【図1】UVランプを使用した処理装置に本発明の光透
過ブロック体を装着した状況を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a state in which a light transmission block body of the present invention is attached to a processing device using a UV lamp.

【図2】縦型水銀ランプを使用した処理装置に本発明の
光透過ブロック体を装着した状況を示す断面図である。
FIG. 2 is a cross-sectional view showing a state in which the light transmission block body of the present invention is attached to a processing device using a vertical mercury lamp.

【図3】図1のA部の光透過ブロック体における、ラン
プ光の透過拡散と被処理液の流動状況を示す図である。
FIG. 3 is a diagram showing the transmission and diffusion of lamp light and the flow state of a liquid to be treated in the light transmission block body of the portion A of FIG.

【図4】従来の内照式流水殺菌装置の概要を示す縦断面
図である。
FIG. 4 is a vertical cross-sectional view showing an outline of a conventional internally illuminated running water sterilizer.

【符号の説明】[Explanation of symbols]

1 UVランプ 2 外筒管 3、6 光透過ブロック体 4 石英ガラス管 5 水銀ランプ 7 容器 9 被処理液 10 照射光 11 連通気泡 1 UV Lamp 2 Outer Cylinder Tube 3, 6 Light Transmission Block 4 Quartz Glass Tube 5 Mercury Lamp 7 Container 9 Treatment Liquid 10 Irradiation Light 11 Communication Bubble

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土山 良博 福井県武生市北府2丁目13番60号 信越石 英株式会社武生工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiro Tsuchiyama 2-13-60 Kitafu, Takefu City, Fukui Prefecture Shin-Etsuishi Hideshi Takefu Factory Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源の照射を受けて液体又は気体の処理
に使用される光透過ブロック体において、光線の均一な
透過拡散可能な70%以上のSiO2 からなるシリカガ
ラス体より構成し、該シリカガラス体は、被処理物を前
記光線の全領域に亙り分散流動出来る連通多孔体よりな
ることを特徴とする光透過ブロック体。
1. A light-transmissive block used for treating a liquid or gas under irradiation of a light source, which is composed of a silica glass body composed of 70% or more of SiO 2 capable of uniformly transmitting and diffusing light rays, The silica glass body is a light-transmitting block body characterized by comprising a continuous porous body capable of dispersing and flowing an object to be treated over the entire region of the light beam.
【請求項2】 前記連通多孔体が多数の気泡を有するシ
リカガラス発泡体であり、少なくともその一部が連通可
能な気泡である連通発泡体であることを特徴とする請求
項1の光透過ブロック体。
2. The light transmitting block according to claim 1, wherein the communicating porous body is a silica glass foam having a large number of bubbles, and at least a part of the communicating glass is a communicating foam. body.
【請求項3】 高純度合成シリカガラス微粉をアンモニ
アガス雰囲気内で行う熱処理と、ついで行われる所要寸
法の枠体中における熱融着発泡処理とにより独立気泡発
泡体を構成し、更に、該発泡体を構成したことを特徴と
する請求項1に記載の光透過ブロック体。
3. A closed-cell foam is formed by heat-treating high-purity synthetic silica glass fine powder in an ammonia gas atmosphere, and then heat-sealing and foaming in a frame of a required size, and further, the foaming. The light transmission block body according to claim 1, wherein the light transmission block body is configured as a body.
JP12819293A 1993-04-30 1993-04-30 Light transmission block Expired - Fee Related JP3006702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12819293A JP3006702B2 (en) 1993-04-30 1993-04-30 Light transmission block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12819293A JP3006702B2 (en) 1993-04-30 1993-04-30 Light transmission block

Publications (2)

Publication Number Publication Date
JPH06316425A true JPH06316425A (en) 1994-11-15
JP3006702B2 JP3006702B2 (en) 2000-02-07

Family

ID=14978734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12819293A Expired - Fee Related JP3006702B2 (en) 1993-04-30 1993-04-30 Light transmission block

Country Status (1)

Country Link
JP (1) JP3006702B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004756A1 (en) * 2007-06-29 2009-01-08 Shin-Etsu Quartz Products Co., Ltd. Process for producing porous photocatalyst body, porous photocatalyst body and purification apparatus
JP2019076004A (en) * 2017-10-20 2019-05-23 清水建設株式会社 Algae culture method and algae culture plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004756A1 (en) * 2007-06-29 2009-01-08 Shin-Etsu Quartz Products Co., Ltd. Process for producing porous photocatalyst body, porous photocatalyst body and purification apparatus
JP2009007219A (en) * 2007-06-29 2009-01-15 Shinetsu Quartz Prod Co Ltd Method for producing porous photocatalytic body, porous photocatalytic body, and cleaning device
JP2019076004A (en) * 2017-10-20 2019-05-23 清水建設株式会社 Algae culture method and algae culture plant

Also Published As

Publication number Publication date
JP3006702B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
US6767453B2 (en) Portable water purifier with ultraviolet light source
ES2292535T3 (en) UV DISINFECTION SYSTEM AND PROCEDURE TO TREAT DRINKING WATER.
US4694179A (en) Symbiotic filter-sterilizer
CA2231990C (en) Apparatus for ultraviolet disinfection of water
CA2806078C (en) Solar-activated photochemical purification of fluids
KR101431498B1 (en) Optical reactor and method for manufacturing same
KR20120017021A (en) Ultraviolet light treatment chamber
DK149323B (en) PROCEDURE FOR CLEANING, INSCRIPTION AND DISINFECTION, OF LIQUID MEDIA AND PLACES FOR EXECUTING THE PROCEDURE
CA2117397A1 (en) Photocatalyst and process for purifying water with same
Davies et al. Solar radiation disinfection of drinking water at temperate latitudes: inactivation rates for an optimised reactor configuration
KR100439195B1 (en) Method for killing of microorganisms in the water by UV-TiO2 photocatalytic reaction and reactor for killing of microorganisms
US7288498B1 (en) Transition metal oxide-aluminosilicate purification media
US9809468B1 (en) Water disinfection system using functional mixture, copper foam catalyst, continuous flow, UV radiation, optical pipe
Cho et al. Disinfection effects on E. coli using TiO2/UV and solar light system
CA2574005A1 (en) Photocatalytic reactor with a modular configuration, based on uv light sources and a catalyst, and process for purifying and disinfecting wastewater from confined aquaculture, using advanced oxidation processes
JPH06316425A (en) Light-transmitting block
Groocock Disinfection of drinking water by ultraviolet light
CN104944512A (en) Method for effectively degrading algal toxin in water
JPH1112115A (en) Quality preserving agent and use thereof
JPH1015393A (en) Photocatalytic reaction vessel
WO2007078294A1 (en) Drinking water pitcher incorporating ultraviolet (uv) disinfection feature
JPS62114694A (en) Ultraviolet sterilizing apparatus
KR101680656B1 (en) Photooxidation adsorption object manufacturing method decreasing loss of photo catalysis and photooxidation adsorption object manufactured by the same
AU747459B2 (en) Portable water purifier with ultraviolet light source
CN114516674B (en) Method for inactivating bacteria in water body by using sunlight to activate periodate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees