JPH06315880A - Elbow rotating method for seven-axis multi-joint robot manipulator - Google Patents

Elbow rotating method for seven-axis multi-joint robot manipulator

Info

Publication number
JPH06315880A
JPH06315880A JP5131368A JP13136893A JPH06315880A JP H06315880 A JPH06315880 A JP H06315880A JP 5131368 A JP5131368 A JP 5131368A JP 13136893 A JP13136893 A JP 13136893A JP H06315880 A JPH06315880 A JP H06315880A
Authority
JP
Japan
Prior art keywords
axis
control point
angle
robot manipulator
manipulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5131368A
Other languages
Japanese (ja)
Other versions
JP3331674B2 (en
Inventor
Masanori Koga
正徳 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP13136893A priority Critical patent/JP3331674B2/en
Publication of JPH06315880A publication Critical patent/JPH06315880A/en
Application granted granted Critical
Publication of JP3331674B2 publication Critical patent/JP3331674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To readily evade an obstacle and expand the action range allowable at a control point by calculating the joint angle rotating an elbow with the position and attitude of the tip control point kept unchanged according to the prescribed calculation procedures, and allowing such rotation of the elbow. CONSTITUTION:In a seven-axis multi-joint robot manipulator, a rotary shaft connecting the point of a shoulder and a control point is assumed, and a pseudo six-axis robot manipulator for the first axis through the sixth axis with the seventh axis fixed is imagined. The axial angle for rotating the pseudo manipulator around the rotary shaft by a fine angle is obtained by the calculation of inverse transformation, and the fine change of only the attitude at the control point generated by the rotation is corrected. A six-axis robot manipulator for six axes from the tip except for the first axis is assumed, the calculation of inverse transformation is made for matching the attitude at the control point after the elbow is rotated with the initial attitude at the control point to obtain the angles of six axes at the tip, and the joint angle for rotating the elbow by the fine angle is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は宇宙、深海、原子力発電
所あるいは一般産業における7軸関節型ロボットマニピ
ュレータの肘回転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for rotating an elbow of a 7-axis articulated robot manipulator in space, deep sea, nuclear power plant or general industry.

【0002】[0002]

【従来の技術】従来の6軸関節型ロボットマニピュレー
タに、さらにもう1軸追加し人間の腕に似せた7軸関節
型ロボットマニピュレータ(図4参照)は、作業中先端
の制御点での位置・姿勢を変化させないで、肘部分のみ
回転させるという動作が可能である。
2. Description of the Related Art A 7-axis articulated robot manipulator (see FIG. 4), which is similar to a human arm by adding an additional axis to the conventional 6-axis articulated robot manipulator, is used to control the position of the tip at the control point during work It is possible to rotate only the elbow part without changing the posture.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、6軸関
節型ロボットマニピュレータと異なり、冗長軸があるた
め、先端の制御点での位置・姿勢がきまっても角関節軸
の角度は一義的に決まらないため、制御方法に工夫が必
要である。本出願人は先に、特願平3−286665、
特願平4−70325、特願平4−110773号等を
提案しているが、演算が複雑である等の不具合がある。
そこで、本発明は、先端制御点の位置・姿勢を元のまま
で肘を回転させる効率的な方法を提供することを目的と
するものである。
However, unlike the 6-axis articulated robot manipulator, since there is a redundant axis, the angle of the angular joint axis is not uniquely determined even if the position / orientation at the control point of the tip is determined. It is necessary to devise the control method. The present applicant has previously filed Japanese Patent Application No. 3-286665,
Although Japanese Patent Application No. 4-70325, Japanese Patent Application No. 4-110773, etc. are proposed, there are problems such as complicated arithmetic operations.
Therefore, it is an object of the present invention to provide an efficient method of rotating an elbow while maintaining the position and orientation of the tip control point.

【0004】[0004]

【課題を解決するための手段】7軸多関節型ロボットマ
ニピュレータの肘を回転するには次のようにして行う。 (1)マニピュレータの先端に置ける制御点とマニピュ
レータの肩の線を回転軸に選択する。 (2)7軸多関節型ロボットマニピュレータの7軸を固
定して6軸ロボットマニピュレータとして考える。 (3)6軸ロボットマニピュレータを先の回転軸回りに
微小角度だけ回転させる。このための軸角度の逆変換の
計算で求める。 (4)この回転によって制御点での姿勢のみ微小な変化
を生ずる来すのでこれを修正する。 (5)第一軸を除く先端からの6軸をとって6軸ロボッ
トマニピュレータを想定する。 (6)最初の制御点での姿勢に肘回転後の制御点の姿勢
を合わせるための逆変換の計算を行い先端6軸の角度を
求める。 (7)以上でもって肘を微小角度だけ回転させる関節角
度が求められる。 (8)(2)に戻ってこの計算を繰り返せばさらに肘が
回転する軸角度が次々にもとまる。
The elbow of a 7-axis articulated robot manipulator is rotated as follows. (1) A control point that can be placed at the tip of the manipulator and a shoulder line of the manipulator are selected as rotation axes. (2) Consider the 7-axis articulated robot manipulator as a 6-axis robot manipulator by fixing 7 axes. (3) The 6-axis robot manipulator is rotated around the previous rotation axis by a small angle. For this purpose, the calculation is performed by the inverse transformation of the shaft angle. (4) Since this rotation causes a slight change in only the posture at the control point, this is corrected. (5) Assume a 6-axis robot manipulator by taking 6 axes from the tip excluding the first axis. (6) The angle of the tip 6 axes is calculated by performing the inverse transformation for adjusting the posture of the control point after the elbow rotation to the posture at the first control point. (7) With the above, the joint angle for rotating the elbow by a small angle is obtained. (8) Returning to (2) and repeating this calculation, the axis angle at which the elbow rotates further stops.

【0005】[0005]

【作用】上記の方法により、7軸多関節型ロボットマニ
ピュレータの肘回転が、制御点での位置姿勢を元のまま
に保って可能になる。
With the above method, the elbow rotation of the 7-axis articulated robot manipulator can be performed while keeping the original position and orientation at the control point.

【0006】[0006]

【実施例】以下、本発明の実施例を詳細に説明する。7
軸関節型ロボットマニピュレータの最初のジョイントの
角度を{ 0i }とし、先端制御点の微小な位置・姿勢
変化と各軸の微小角度の関係は次のように表される。
EXAMPLES Examples of the present invention will be described in detail below. 7
The angle of the first joint of the axis-joint type robot manipulator is { 0 q i } and the relationship between the minute position / orientation change of the tip control point and the minute angle of each axis is expressed as follows.

【0007】[0007]

【数1】 [Equation 1]

【0008】ただし、 Δr:作業空間における制御点での微小位置変化 Δω:作業空間における制御点での微小姿勢変化 zi :DHモデルにおけるi軸の回転軸方向ベクトル hi :DHモデルにおけるi軸回転軸位置から制御点に
到るベクトル Δq:ロボットマニピュレータの微小回転角度ベクトル
[Δq1 Δq2 …Δq7T
However, Δr: a minute position change at a control point in the working space Δω: a minute attitude change at a control point in the working space z i : a rotational axis direction vector of the i-axis in the DH model h i : i-axis in the DH model Vector from rotation axis position to control point Δq: Minute rotation angle vector of robot manipulator [Δq 1 Δq 2 ... Δq 7 ] T

【0009】ロボットマニピュレータの肩の位置から制
御点に向かう単位回転軸ベクトルkとする(図1参
照)。この軸回りにΔθだけ回転することを考える。制
御点位置は不変で姿勢のみ変化するので、この変化は次
のように示される。 [ΔrT ΔωT T =[0T [Δθ*k]T T (2) なお、 [ΔrT ΔωT T =[0T T T として
(1)式の左辺に代入して、肘を回転するような解を見
つけることが前述の特願平4−70325の方法であっ
た。本発明の方法は(1)式を次のように分解する。
A unit rotation axis vector k from the shoulder position of the robot manipulator to the control point is set (see FIG. 1). Consider rotation about this axis by Δθ. Since the control point position does not change and only the posture changes, this change is shown as follows. [Δr T Δω T ] T = [0 T [Δθ * k] T ] T (2) Note that [Δr T Δω T ] T = [0 T 0 T ] T is substituted into the left side of the equation (1). Finding a solution that rotates the elbow was the method of Japanese Patent Application No. 4-70325. The method of the present invention decomposes equation (1) as follows.

【0010】[0010]

【数2】[Equation 2]

【0011】ただしq7 は固定。ベクトルΔqは[Δq
1 ,Δq2 ,…,Δq6 T である(図2参照)。
However, q 7 is fixed. The vector Δq is [Δq
1, Δq 2, ..., a [Delta] q 6] T (see FIG. 2).

【0012】[0012]

【数3】[Equation 3]

【0013】ただしq1 は固定。ベクトルΔqは[Δq
2 ,Δq3 ,…,Δq7 T である(図3参照)。
(4)式において(2)式の値をいれてΔq1 の値を求
める。Δq7 =0として新たなqを求める。 qi =qi +Δqi (i=1,2,…,7) (5) この値を使って{zi }と{hi }を求める。そして
(4)式に代入する。そこで新たに次式を計算する。 [ΔrT ΔωT T =[0T −[Δθ*k]T T (6) この意味は、肘回転によって制御点での姿勢変化を元に
戻すことを意味している。(6)を(4)に代入しこの
式を解くことによってΔqi を求める。Δqi=0とし
1i を求める。 1i =qi +Δqi (i=1,2,…,7) (7) 以上の計算によって得られる{ 1i }はマニピュレー
タを回転軸kの回りに角度Δθだけ回転した場合に得ら
れる関節角度である。このことを繰り返せばマニピュレ
ータの肘は制御点での位置と姿勢を元のまま保った可能
な限り回転する。
However, q 1 is fixed. The vector Δq is [Δq
2 , Δq 3 , ..., Δq 7 ] T (see FIG. 3).
In equation (4), the value of equation (2) is added to obtain the value of Δq 1 . A new q is obtained with Δq 7 = 0. q i = q i + Δq i (i = 1, 2, ..., 7) (5) {z i } and {h i } are obtained using this value. And it substitutes in Formula (4). Therefore, the following formula is newly calculated. [Δr T Δω T ] T = [0 T − [Δθ * k] T ] T (6) This means that the posture change at the control point is restored by the elbow rotation. Δq i is obtained by substituting (6) into (4) and solving this equation. 1 q i is calculated with Δq i = 0. 1 q i = q i + Δq i (i = 1,2, ..., 7) (7) The { 1 q i } obtained by the above calculation is obtained when the manipulator is rotated about the rotation axis k by the angle Δθ. This is the joint angle. If this is repeated, the elbow of the manipulator will rotate as much as possible while maintaining the original position and posture at the control point.

【0014】(3)または(4)式を解くことは6元の
連立方程式を解くことである。ロボットマニピュレータ
の形態が特異点状態に入るとマトリクスが縮退して解け
なくなることがある。この場合、制御点の位置あるいは
姿勢を多少犠牲にして解を求めることが必要になること
がある。従って事前にシミュレータでもってこのような
動作が可能であることを確認しておくことが必要であ
る。以上の説明では7軸多関節ロボットマニピュレータ
の関節は回転軸のみとしてのみ説明したがスライド軸を
中心に含む場合でも同様な論法で可能であることは言う
までもない。ただし、この場合、機構的に肘回転が実現
不可能となる制約が多くなることは言うまでもなく、人
間腕型7軸多関節ロボットマニピュレータではスライド
軸は採用されないことが多い。
Solving the equation (3) or (4) is solving a simultaneous equation of six elements. When the form of the robot manipulator enters the singularity state, the matrix may degenerate and become unsolvable. In this case, it may be necessary to sacrifice the position or orientation of the control point to some extent to obtain a solution. Therefore, it is necessary to confirm in advance that such an operation is possible with a simulator. In the above description, the joints of the 7-axis articulated robot manipulator are described only as the rotation axes, but it goes without saying that the same reasoning is possible even when the slide axes are included in the center. However, in this case, it goes without saying that there are many restrictions that mechanically make elbow rotation impossible, and in many cases, the human arm type 7-axis articulated robot manipulator does not employ a slide shaft.

【0015】[0015]

【発明の効果】以上に述べたように、本発明によれば、
7軸多関節型のロボットマニピュレータの肘回転によっ
て、障害物の回避あるいは場合によって肘関節の回転に
よって制御点での取りうる動作範囲が広くなるという効
果がある。
As described above, according to the present invention,
The elbow rotation of the 7-axis articulated robot manipulator has the effect of widening the range of motion that can be taken at the control point by avoiding obstacles or rotating the elbow joint in some cases.

【図面の簡単な説明】[Brief description of drawings]

【図1】7軸多関節ロボットマニピュレータの制御点、
肩の点、肘回転軸ベクトルkを示す図
FIG. 1 is a control point of a 7-axis articulated robot manipulator,
Diagram showing shoulder points and elbow rotation axis vector k

【図2】7軸目を固定した場合のベクトルhi とzi
示す図
FIG. 2 is a diagram showing vectors h i and z i when the 7th axis is fixed.

【図3】1軸目を固定した場合のベクトルhi とzi
示す図
FIG. 3 is a diagram showing vectors h i and z i when the first axis is fixed.

【図4】7軸多関節ロボットマニピュレータの例を示す
FIG. 4 is a diagram showing an example of a 7-axis articulated robot manipulator.

【数2】 [Equation 2]

【数2】 [Equation 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 7軸多関節型ロボットマニピュレータに
おいて、マニピュレータの肩の点と前記制御点を結ぶ回
転軸を想定し、 7軸多関節型ロボットマニピュレータの第7軸を固定し
て根本の第1軸から6軸をとった疑似6軸ロボットマニ
ピュレータを仮想し、 その疑似6軸ロボットマニピュレータを前記回転軸回り
に微小角度だけ回転させるための軸角度を逆変換の計算
で求め、 この回転によって制御点での姿勢にずれが生ずるのでこ
れを補正し、 第一軸を除く先端からの6軸をとって疑似6軸ロボット
マニピュレータを仮想し、 最初の制御点での姿勢に肘回転後の制御点の姿勢を合わ
せるための逆変換の計算を行い先端6軸の角度を求め、 以上により求まった7軸の軸角度を指令軸角度として動
作させることにより前記回転軸のまわりに先端制御点で
の位置・姿勢を変化させないでマニピュレータの肘部分
を微小角度だけ回転させることを特徴とする7軸多関節
ロボットマニピュレータの肘回転方法。
1. In a 7-axis articulated robot manipulator, a rotation axis connecting the shoulder point of the manipulator and the control point is assumed, and the 7-axis of the 7-axis articulated robot manipulator is fixed and the first The pseudo 6-axis robot manipulator taking 6 axes from the axis is hypothesized, and the axis angle for rotating the pseudo 6-axis robot manipulator by a minute angle around the rotation axis is obtained by the calculation of the inverse transformation, and the control point is obtained by this rotation. Since there is a deviation in the posture at, the 6-axis from the tip excluding the first axis is corrected and the pseudo 6-axis robot manipulator is virtualized, and the posture at the first control point is changed to the control point after elbow rotation. By performing the inverse transformation calculation to match the posture, the angles of the 6 axes of the tip are calculated, and the axis angles of the 7 axes calculated above are used as the command axis angles to rotate around the rotation axis. An elbow rotation method for a 7-axis articulated robot manipulator characterized in that the elbow portion of the manipulator is rotated by a minute angle without changing the position / orientation at the tip control point.
【請求項2】 7軸多関節型ロボットマニピュレータに
おいて、先端制御点での位置・姿勢を変化させないでマ
ニピュレータの肩の点と前記制御点を結ぶ回転軸(k)
のまわりにマニピュレータの肘部分を微小角度(Δθ)
だけ回転させるために、最小のジョイント角度を{ 0
i }として、まず7軸目を固定した擬似6軸ロボットマ
ニピュレータのヤコビアン方程式 [0T [Δθ*k]T T =JB *[Δq1 Δq2
Δq6 T を解いてマニピュレータの各ジョイント微小角度(Δq
i i=1,2,…,6;Δq7 =0)を求め、次に、 qi =qi +Δqi (i=1,2,…,7) により各ジョイントの角度をもとめ、この角度を用いて
マニピュレータの先端6軸よりなる疑似6軸ロボットマ
ニピュレータのヤコビアン方程式 [0T −[Δθ*k]T T =JF *[Δq2 Δ
3 ...Δq7 T を解いてマニピュレータの各ジョイント微小角度(Δq
1 i=2,3,…,7;Δq1 =0)を求め、1 i =qi +Δqi (i=1,2,…,7) として最終的なジョイント角度{ 1i }を求め、Δθ
の回転を実現するために最初のジョイント角度
0i }に微小角度{ 1i 0i }を加えること
によって肘回転を行うことを特徴とする7軸多関節ロボ
ットマニピュレータの肘回転方法。
2. In a 7-axis articulated robot manipulator, a rotation axis (k) connecting a shoulder point of the manipulator and the control point without changing the position / orientation at the tip control point.
A small angle (Δθ) around the elbow part of the manipulator around
The minimum joint angle is { 0 q
i }, first, the Jacobian equation of a pseudo 6-axis robot manipulator with the 7th axis fixed [0 T [Δθ * k] T ] T = J B * [Δq 1 Δq 2 ...
Δq 6 ] T is solved and each joint minute angle (Δq
i i = 1, 2, ..., 6; Δq 7 = 0) is obtained, and then the angle of each joint is obtained by q i = q i + Δq i (i = 1, 2, ..., 7), and this angle is calculated. By using the Jacobian equation [0 T − [Δθ * k] T ] T = J F * [Δq 2 Δ of a pseudo 6-axis robot manipulator consisting of 6 axes of the tip of the manipulator.
q 3. . . Δq 7 ] T is solved and each joint minute angle of the manipulator (Δq
1 i = 2, 3, ..., 7; Δq 1 = 0) is obtained, and the final joint angle { 1 q i } is set as 1 q i = q i + Δq i (i = 1, 2, ..., 7). Calculate, Δθ
Elbow rotation of a 7-axis articulated robot manipulator characterized by performing elbow rotation by adding a small angle { 1 q i0 q i } to the initial joint angle { 0 q i } to realize the rotation of Method.
JP13136893A 1993-05-07 1993-05-07 Elbow rotation method for 7-axis articulated robot manipulator Expired - Lifetime JP3331674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13136893A JP3331674B2 (en) 1993-05-07 1993-05-07 Elbow rotation method for 7-axis articulated robot manipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13136893A JP3331674B2 (en) 1993-05-07 1993-05-07 Elbow rotation method for 7-axis articulated robot manipulator

Publications (2)

Publication Number Publication Date
JPH06315880A true JPH06315880A (en) 1994-11-15
JP3331674B2 JP3331674B2 (en) 2002-10-07

Family

ID=15056302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13136893A Expired - Lifetime JP3331674B2 (en) 1993-05-07 1993-05-07 Elbow rotation method for 7-axis articulated robot manipulator

Country Status (1)

Country Link
JP (1) JP3331674B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771621A2 (en) * 1995-10-11 1997-05-07 Mitsubishi Jukogyo Kabushiki Kaisha Elbow-position control way of redundant manipulator
JP2010036293A (en) * 2008-08-04 2010-02-18 Jtekt Corp Multi-articulated robot
WO2012028197A1 (en) * 2010-09-03 2012-03-08 Abb Research Ltd An industrial robot, a component system for a such and a method for assembling a such
CN102672720A (en) * 2012-05-31 2012-09-19 中国航天科技集团公司第五研究院第五一三研究所 Control method for three-joint mechanical arm
JP2013166222A (en) * 2012-02-16 2013-08-29 Seiko Epson Corp Robot control device, robot control method, robot control program, and robot system
JP2015037818A (en) * 2013-08-17 2015-02-26 セイコーエプソン株式会社 Robot, control method for robot, program, and route creation device
JP2015531624A (en) * 2012-08-15 2015-11-05 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for joint motion cancellation using zero space

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251901A (en) * 1986-04-25 1987-11-02 Fanuc Ltd Course controller for multiaxis robot
JPS648407A (en) * 1987-07-01 1989-01-12 Hitachi Ltd Method for controlling operation of industrial robot
JPH01267706A (en) * 1988-04-19 1989-10-25 Toyoda Mach Works Ltd Method for controlling robot
JPH02269586A (en) * 1989-04-11 1990-11-02 Toshiba Corp Manipulator drive control device
JPH03217906A (en) * 1990-01-23 1991-09-25 Yaskawa Electric Mfg Co Ltd Control method for articulated robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251901A (en) * 1986-04-25 1987-11-02 Fanuc Ltd Course controller for multiaxis robot
JPS648407A (en) * 1987-07-01 1989-01-12 Hitachi Ltd Method for controlling operation of industrial robot
JPH01267706A (en) * 1988-04-19 1989-10-25 Toyoda Mach Works Ltd Method for controlling robot
JPH02269586A (en) * 1989-04-11 1990-11-02 Toshiba Corp Manipulator drive control device
JPH03217906A (en) * 1990-01-23 1991-09-25 Yaskawa Electric Mfg Co Ltd Control method for articulated robot

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771621A2 (en) * 1995-10-11 1997-05-07 Mitsubishi Jukogyo Kabushiki Kaisha Elbow-position control way of redundant manipulator
EP0771621A3 (en) * 1995-10-11 1999-03-24 Mitsubishi Jukogyo Kabushiki Kaisha Elbow-position control way of redundant manipulator
JP2010036293A (en) * 2008-08-04 2010-02-18 Jtekt Corp Multi-articulated robot
WO2012028197A1 (en) * 2010-09-03 2012-03-08 Abb Research Ltd An industrial robot, a component system for a such and a method for assembling a such
JP2013166222A (en) * 2012-02-16 2013-08-29 Seiko Epson Corp Robot control device, robot control method, robot control program, and robot system
CN102672720A (en) * 2012-05-31 2012-09-19 中国航天科技集团公司第五研究院第五一三研究所 Control method for three-joint mechanical arm
JP2015531624A (en) * 2012-08-15 2015-11-05 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for joint motion cancellation using zero space
JP2018020169A (en) * 2012-08-15 2018-02-08 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Systems and methods for cancellation of joint motion using null-space
JP2015037818A (en) * 2013-08-17 2015-02-26 セイコーエプソン株式会社 Robot, control method for robot, program, and route creation device

Also Published As

Publication number Publication date
JP3331674B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
JP3207728B2 (en) Control method of redundant manipulator
JP5114019B2 (en) Method for controlling the trajectory of an effector
Hannan et al. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots
WO1999033617A1 (en) Arm structure for man type working robots
US20090321150A1 (en) Walking robot and method of controlling the same
JPH0282302A (en) Robot controller
CN105856231B (en) A kind of motion control method of particular configuration six-shaft industrial robot
KR20180099623A (en) Robot arm and robot wrist
JPH06315880A (en) Elbow rotating method for seven-axis multi-joint robot manipulator
CN116330267A (en) Control method based on industrial robot wrist singular point calculation
JPH09103945A (en) Timepiece outer case polishing device and universal grinding device
Fung et al. Dynamic modelling of a non-linearly constrained flexible manipulator with a tip mass by Hamilton's principle
Chen et al. An analytical solution of inverse kinematics for a 7-DOF redundant manipulator
WO1990002028A1 (en) Vertical articulated robot
JPS62194513A (en) Controller for arc interpolation posture of robot
JP2019093487A (en) Robot control device and robot reverse conversion processing method
JP4230196B2 (en) Positioning calculation method and positioning calculation apparatus
CN112917479A (en) Approximate pose calculation method and device of five-axis robot and storage medium
JP5371733B2 (en) 7-axis articulated robot control method and control program
JPH0647689A (en) Control method of articulated robot
JP3146463B2 (en) Elbow movement control device for redundant axis manipulator
Chandra et al. Dual-arm coordination using dual quaternions and virtual mechanisms
JPH03262009A (en) Method for controlling multi-degree-of-freedom robot and its teaching method
JP3431026B2 (en) Method for controlling a manipulator having seven or more axes having redundant axes
JP2019093488A (en) Robot control device and robot reverse conversion processing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

EXPY Cancellation because of completion of term